Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [864,2,Mod(107,864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 5, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("864.107");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.w (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
107.1 | −1.41174 | − | 0.0836695i | 0 | 1.98600 | + | 0.236238i | −0.833551 | − | 0.345268i | 0 | −3.45115 | + | 3.45115i | −2.78394 | − | 0.499674i | 0 | 1.14787 | + | 0.557170i | ||||||
107.2 | −1.39320 | − | 0.242879i | 0 | 1.88202 | + | 0.676758i | 3.50739 | + | 1.45281i | 0 | −2.11049 | + | 2.11049i | −2.45766 | − | 1.39996i | 0 | −4.53364 | − | 2.87593i | ||||||
107.3 | −1.37973 | − | 0.310377i | 0 | 1.80733 | + | 0.856477i | −1.77643 | − | 0.735821i | 0 | 2.53483 | − | 2.53483i | −2.22781 | − | 1.74266i | 0 | 2.22262 | + | 1.56660i | ||||||
107.4 | −1.36834 | + | 0.357292i | 0 | 1.74468 | − | 0.977791i | 0.202568 | + | 0.0839066i | 0 | −0.0119413 | + | 0.0119413i | −2.03796 | + | 1.96131i | 0 | −0.307161 | − | 0.0424363i | ||||||
107.5 | −1.25271 | + | 0.656291i | 0 | 1.13856 | − | 1.64428i | 1.92929 | + | 0.799136i | 0 | 1.25938 | − | 1.25938i | −0.347162 | + | 2.80704i | 0 | −2.94130 | + | 0.265087i | ||||||
107.6 | −1.19791 | − | 0.751667i | 0 | 0.869994 | + | 1.80086i | −3.00885 | − | 1.24631i | 0 | −0.981137 | + | 0.981137i | 0.311473 | − | 2.81122i | 0 | 2.66753 | + | 3.75462i | ||||||
107.7 | −1.07850 | − | 0.914792i | 0 | 0.326309 | + | 1.97320i | 1.10881 | + | 0.459283i | 0 | 2.29035 | − | 2.29035i | 1.45315 | − | 2.42660i | 0 | −0.775695 | − | 1.50966i | ||||||
107.8 | −1.01437 | + | 0.985425i | 0 | 0.0578733 | − | 1.99916i | −2.90620 | − | 1.20379i | 0 | −0.0493336 | + | 0.0493336i | 1.91132 | + | 2.08491i | 0 | 4.13418 | − | 1.64276i | ||||||
107.9 | −0.948429 | − | 1.04904i | 0 | −0.200965 | + | 1.98988i | 1.78263 | + | 0.738390i | 0 | −0.622002 | + | 0.622002i | 2.27806 | − | 1.67644i | 0 | −0.916100 | − | 2.57036i | ||||||
107.10 | −0.787598 | + | 1.17460i | 0 | −0.759380 | − | 1.85023i | 1.54565 | + | 0.640231i | 0 | 2.40953 | − | 2.40953i | 2.77137 | + | 0.565266i | 0 | −1.96937 | + | 1.31128i | ||||||
107.11 | −0.649337 | + | 1.25633i | 0 | −1.15672 | − | 1.63156i | 3.53205 | + | 1.46302i | 0 | −2.51075 | + | 2.51075i | 2.80088 | − | 0.393792i | 0 | −4.13152 | + | 3.48742i | ||||||
107.12 | −0.501484 | − | 1.32231i | 0 | −1.49703 | + | 1.32624i | 0.112585 | + | 0.0466342i | 0 | −1.45843 | + | 1.45843i | 2.50444 | + | 1.31445i | 0 | 0.00520548 | − | 0.172259i | ||||||
107.13 | −0.394008 | − | 1.35822i | 0 | −1.68952 | + | 1.07030i | −2.44724 | − | 1.01368i | 0 | 3.38875 | − | 3.38875i | 2.11938 | + | 1.87302i | 0 | −0.412566 | + | 3.72328i | ||||||
107.14 | −0.167507 | + | 1.40426i | 0 | −1.94388 | − | 0.470445i | −3.93413 | − | 1.62957i | 0 | 1.80111 | − | 1.80111i | 0.986240 | − | 2.65091i | 0 | 2.94733 | − | 5.25157i | ||||||
107.15 | −0.0811033 | − | 1.41189i | 0 | −1.98684 | + | 0.229017i | 1.02313 | + | 0.423795i | 0 | −0.549738 | + | 0.549738i | 0.484486 | + | 2.78662i | 0 | 0.515371 | − | 1.47892i | ||||||
107.16 | −0.0606141 | + | 1.41291i | 0 | −1.99265 | − | 0.171285i | 1.65199 | + | 0.684276i | 0 | −1.93899 | + | 1.93899i | 0.362794 | − | 2.80506i | 0 | −1.06696 | + | 2.29264i | ||||||
107.17 | 0.0606141 | − | 1.41291i | 0 | −1.99265 | − | 0.171285i | −1.65199 | − | 0.684276i | 0 | −1.93899 | + | 1.93899i | −0.362794 | + | 2.80506i | 0 | −1.06696 | + | 2.29264i | ||||||
107.18 | 0.0811033 | + | 1.41189i | 0 | −1.98684 | + | 0.229017i | −1.02313 | − | 0.423795i | 0 | −0.549738 | + | 0.549738i | −0.484486 | − | 2.78662i | 0 | 0.515371 | − | 1.47892i | ||||||
107.19 | 0.167507 | − | 1.40426i | 0 | −1.94388 | − | 0.470445i | 3.93413 | + | 1.62957i | 0 | 1.80111 | − | 1.80111i | −0.986240 | + | 2.65091i | 0 | 2.94733 | − | 5.25157i | ||||||
107.20 | 0.394008 | + | 1.35822i | 0 | −1.68952 | + | 1.07030i | 2.44724 | + | 1.01368i | 0 | 3.38875 | − | 3.38875i | −2.11938 | − | 1.87302i | 0 | −0.412566 | + | 3.72328i | ||||||
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
32.h | odd | 8 | 1 | inner |
96.o | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.w.a | ✓ | 128 |
3.b | odd | 2 | 1 | inner | 864.2.w.a | ✓ | 128 |
32.h | odd | 8 | 1 | inner | 864.2.w.a | ✓ | 128 |
96.o | even | 8 | 1 | inner | 864.2.w.a | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.2.w.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
864.2.w.a | ✓ | 128 | 3.b | odd | 2 | 1 | inner |
864.2.w.a | ✓ | 128 | 32.h | odd | 8 | 1 | inner |
864.2.w.a | ✓ | 128 | 96.o | even | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{128} + 768 T_{5}^{122} + 201472 T_{5}^{120} + 269056 T_{5}^{118} + 294912 T_{5}^{116} + 72082176 T_{5}^{114} + 14577833472 T_{5}^{112} + 29671856640 T_{5}^{110} + 32138166272 T_{5}^{108} + \cdots + 22\!\cdots\!76 \)
acting on \(S_{2}^{\mathrm{new}}(864, [\chi])\).