Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [864,2,Mod(109,864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("864.109");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.v (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 | −1.39805 | − | 0.213220i | 0 | 1.90907 | + | 0.596184i | 0.0181233 | − | 0.00750691i | 0 | −1.64798 | + | 1.64798i | −2.54186 | − | 1.24055i | 0 | −0.0269378 | + | 0.00663076i | ||||||
109.2 | −1.39716 | + | 0.218946i | 0 | 1.90413 | − | 0.611807i | −2.13352 | + | 0.883735i | 0 | 0.426205 | − | 0.426205i | −2.52642 | + | 1.27169i | 0 | 2.78739 | − | 1.70185i | ||||||
109.3 | −1.38295 | + | 0.295740i | 0 | 1.82508 | − | 0.817983i | 3.70533 | − | 1.53480i | 0 | 1.70420 | − | 1.70420i | −2.28207 | + | 1.67097i | 0 | −4.67037 | + | 3.21836i | ||||||
109.4 | −1.33208 | − | 0.474937i | 0 | 1.54887 | + | 1.26531i | −0.0485815 | + | 0.0201231i | 0 | 2.80669 | − | 2.80669i | −1.46228 | − | 2.42110i | 0 | 0.0742716 | − | 0.00373246i | ||||||
109.5 | −1.29834 | − | 0.560644i | 0 | 1.37136 | + | 1.45581i | 1.49059 | − | 0.617423i | 0 | −3.02902 | + | 3.02902i | −0.964291 | − | 2.65897i | 0 | −2.28144 | − | 0.0340682i | ||||||
109.6 | −1.18499 | + | 0.771885i | 0 | 0.808388 | − | 1.82935i | −0.796479 | + | 0.329912i | 0 | 3.41414 | − | 3.41414i | 0.454114 | + | 2.79173i | 0 | 0.689163 | − | 1.00573i | ||||||
109.7 | −1.17722 | + | 0.783679i | 0 | 0.771696 | − | 1.84512i | −3.84162 | + | 1.59125i | 0 | −2.86540 | + | 2.86540i | 0.537529 | + | 2.77688i | 0 | 3.27540 | − | 4.88384i | ||||||
109.8 | −1.01339 | − | 0.986432i | 0 | 0.0539048 | + | 1.99927i | −2.55155 | + | 1.05689i | 0 | 1.06497 | − | 1.06497i | 1.91752 | − | 2.07921i | 0 | 3.62825 | + | 1.44589i | ||||||
109.9 | −0.957543 | − | 1.04073i | 0 | −0.166221 | + | 1.99308i | 3.57149 | − | 1.47936i | 0 | 1.49427 | − | 1.49427i | 2.23341 | − | 1.73547i | 0 | −4.95946 | − | 2.30039i | ||||||
109.10 | −0.934820 | + | 1.06118i | 0 | −0.252222 | − | 1.98403i | 0.930451 | − | 0.385405i | 0 | −0.938500 | + | 0.938500i | 2.34121 | + | 1.58706i | 0 | −0.460818 | + | 1.34766i | ||||||
109.11 | −0.791979 | + | 1.17165i | 0 | −0.745540 | − | 1.85585i | 2.17386 | − | 0.900442i | 0 | −1.13840 | + | 1.13840i | 2.76486 | + | 0.596278i | 0 | −0.666644 | + | 3.26014i | ||||||
109.12 | −0.694736 | − | 1.23180i | 0 | −1.03468 | + | 1.71156i | −1.00178 | + | 0.414949i | 0 | −1.78507 | + | 1.78507i | 2.82714 | + | 0.0854454i | 0 | 1.20711 | + | 0.945711i | ||||||
109.13 | −0.567462 | − | 1.29537i | 0 | −1.35597 | + | 1.47015i | 2.16011 | − | 0.894745i | 0 | 1.46314 | − | 1.46314i | 2.67385 | + | 0.922239i | 0 | −2.38480 | − | 2.29041i | ||||||
109.14 | −0.139754 | + | 1.40729i | 0 | −1.96094 | − | 0.393350i | −0.345772 | + | 0.143223i | 0 | 0.299071 | − | 0.299071i | 0.827608 | − | 2.70464i | 0 | −0.153234 | − | 0.506617i | ||||||
109.15 | −0.114947 | + | 1.40953i | 0 | −1.97357 | − | 0.324044i | −2.86147 | + | 1.18526i | 0 | −2.81522 | + | 2.81522i | 0.683608 | − | 2.74457i | 0 | −1.34175 | − | 4.16959i | ||||||
109.16 | −0.0434074 | + | 1.41355i | 0 | −1.99623 | − | 0.122717i | 2.68483 | − | 1.11209i | 0 | 1.54691 | − | 1.54691i | 0.260117 | − | 2.81644i | 0 | 1.45545 | + | 3.84340i | ||||||
109.17 | 0.0434074 | − | 1.41355i | 0 | −1.99623 | − | 0.122717i | −2.68483 | + | 1.11209i | 0 | 1.54691 | − | 1.54691i | −0.260117 | + | 2.81644i | 0 | 1.45545 | + | 3.84340i | ||||||
109.18 | 0.114947 | − | 1.40953i | 0 | −1.97357 | − | 0.324044i | 2.86147 | − | 1.18526i | 0 | −2.81522 | + | 2.81522i | −0.683608 | + | 2.74457i | 0 | −1.34175 | − | 4.16959i | ||||||
109.19 | 0.139754 | − | 1.40729i | 0 | −1.96094 | − | 0.393350i | 0.345772 | − | 0.143223i | 0 | 0.299071 | − | 0.299071i | −0.827608 | + | 2.70464i | 0 | −0.153234 | − | 0.506617i | ||||||
109.20 | 0.567462 | + | 1.29537i | 0 | −1.35597 | + | 1.47015i | −2.16011 | + | 0.894745i | 0 | 1.46314 | − | 1.46314i | −2.67385 | − | 0.922239i | 0 | −2.38480 | − | 2.29041i | ||||||
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
32.g | even | 8 | 1 | inner |
96.p | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.v.a | ✓ | 128 |
3.b | odd | 2 | 1 | inner | 864.2.v.a | ✓ | 128 |
32.g | even | 8 | 1 | inner | 864.2.v.a | ✓ | 128 |
96.p | odd | 8 | 1 | inner | 864.2.v.a | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.2.v.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
864.2.v.a | ✓ | 128 | 3.b | odd | 2 | 1 | inner |
864.2.v.a | ✓ | 128 | 32.g | even | 8 | 1 | inner |
864.2.v.a | ✓ | 128 | 96.p | odd | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{128} + 1024 T_{5}^{122} + 204544 T_{5}^{120} + 220672 T_{5}^{118} + 524288 T_{5}^{116} + 161525376 T_{5}^{114} + 14612910264 T_{5}^{112} + 34844108800 T_{5}^{110} + \cdots + 31\!\cdots\!01 \)
acting on \(S_{2}^{\mathrm{new}}(864, [\chi])\).