# Properties

 Label 864.2.p.a Level 864 Weight 2 Character orbit 864.p Analytic conductor 6.899 Analytic rank 0 Dimension 4 CM discriminant -8 Inner twists 4

# Related objects

## Newspace parameters

 Level: $$N$$ = $$864 = 2^{5} \cdot 3^{3}$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 864.p (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$6.89907473464$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 72) Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q +O(q^{10})$$ $$q + ( -6 + \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{11} + ( -3 + 6 \beta_{2} + 2 \beta_{3} ) q^{17} + ( 1 + 6 \beta_{1} - 3 \beta_{3} ) q^{19} + 5 \beta_{2} q^{25} + ( -3 + 4 \beta_{1} - 3 \beta_{2} ) q^{41} + ( -3 \beta_{1} + 5 \beta_{2} - 3 \beta_{3} ) q^{43} + ( -7 + 7 \beta_{2} ) q^{49} + ( 3 + 5 \beta_{1} + 3 \beta_{2} ) q^{59} + ( -7 - 3 \beta_{1} + 7 \beta_{2} + 6 \beta_{3} ) q^{67} + ( -1 + 12 \beta_{1} - 6 \beta_{3} ) q^{73} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{83} -4 \beta_{3} q^{89} + ( -6 \beta_{1} - 5 \beta_{2} - 6 \beta_{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q - 18q^{11} + 4q^{19} + 10q^{25} - 18q^{41} + 10q^{43} - 14q^{49} + 18q^{59} - 14q^{67} - 4q^{73} - 10q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 2 x^{2} + 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2}$$$$/2$$ $$\beta_{3}$$ $$=$$ $$\nu^{3}$$$$/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$2 \beta_{2}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{3}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/864\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$353$$ $$703$$ $$\chi(n)$$ $$-1$$ $$1 - \beta_{2}$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
143.1
 −1.22474 + 0.707107i 1.22474 − 0.707107i −1.22474 − 0.707107i 1.22474 + 0.707107i
0 0 0 0 0 0 0 0 0
143.2 0 0 0 0 0 0 0 0 0
719.1 0 0 0 0 0 0 0 0 0
719.2 0 0 0 0 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by $$\Q(\sqrt{-2})$$
9.d odd 6 1 inner
72.l even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 864.2.p.a 4
3.b odd 2 1 288.2.p.a 4
4.b odd 2 1 216.2.l.a 4
8.b even 2 1 216.2.l.a 4
8.d odd 2 1 CM 864.2.p.a 4
9.c even 3 1 288.2.p.a 4
9.c even 3 1 2592.2.f.a 4
9.d odd 6 1 inner 864.2.p.a 4
9.d odd 6 1 2592.2.f.a 4
12.b even 2 1 72.2.l.a 4
24.f even 2 1 288.2.p.a 4
24.h odd 2 1 72.2.l.a 4
36.f odd 6 1 72.2.l.a 4
36.f odd 6 1 648.2.f.a 4
36.h even 6 1 216.2.l.a 4
36.h even 6 1 648.2.f.a 4
72.j odd 6 1 216.2.l.a 4
72.j odd 6 1 648.2.f.a 4
72.l even 6 1 inner 864.2.p.a 4
72.l even 6 1 2592.2.f.a 4
72.n even 6 1 72.2.l.a 4
72.n even 6 1 648.2.f.a 4
72.p odd 6 1 288.2.p.a 4
72.p odd 6 1 2592.2.f.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.2.l.a 4 12.b even 2 1
72.2.l.a 4 24.h odd 2 1
72.2.l.a 4 36.f odd 6 1
72.2.l.a 4 72.n even 6 1
216.2.l.a 4 4.b odd 2 1
216.2.l.a 4 8.b even 2 1
216.2.l.a 4 36.h even 6 1
216.2.l.a 4 72.j odd 6 1
288.2.p.a 4 3.b odd 2 1
288.2.p.a 4 9.c even 3 1
288.2.p.a 4 24.f even 2 1
288.2.p.a 4 72.p odd 6 1
648.2.f.a 4 36.f odd 6 1
648.2.f.a 4 36.h even 6 1
648.2.f.a 4 72.j odd 6 1
648.2.f.a 4 72.n even 6 1
864.2.p.a 4 1.a even 1 1 trivial
864.2.p.a 4 8.d odd 2 1 CM
864.2.p.a 4 9.d odd 6 1 inner
864.2.p.a 4 72.l even 6 1 inner
2592.2.f.a 4 9.c even 3 1
2592.2.f.a 4 9.d odd 6 1
2592.2.f.a 4 72.l even 6 1
2592.2.f.a 4 72.p odd 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}$$ acting on $$S_{2}^{\mathrm{new}}(864, [\chi])$$.

## Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 
$3$ 
$5$ $$( 1 - 5 T^{2} + 25 T^{4} )^{2}$$
$7$ $$( 1 + 7 T^{2} + 49 T^{4} )^{2}$$
$11$ $$( 1 + 6 T + 11 T^{2} )^{2}( 1 + 6 T + 25 T^{2} + 66 T^{3} + 121 T^{4} )$$
$13$ $$( 1 + 13 T^{2} + 169 T^{4} )^{2}$$
$17$ $$( 1 - 6 T + 19 T^{2} - 102 T^{3} + 289 T^{4} )( 1 + 6 T + 19 T^{2} + 102 T^{3} + 289 T^{4} )$$
$19$ $$( 1 - 2 T - 15 T^{2} - 38 T^{3} + 361 T^{4} )^{2}$$
$23$ $$( 1 - 23 T^{2} + 529 T^{4} )^{2}$$
$29$ $$( 1 - 29 T^{2} + 841 T^{4} )^{2}$$
$31$ $$( 1 + 31 T^{2} + 961 T^{4} )^{2}$$
$37$ $$( 1 - 37 T^{2} )^{4}$$
$41$ $$( 1 + 6 T + 41 T^{2} )^{2}( 1 + 6 T - 5 T^{2} + 246 T^{3} + 1681 T^{4} )$$
$43$ $$( 1 - 10 T + 43 T^{2} )^{2}( 1 + 10 T + 57 T^{2} + 430 T^{3} + 1849 T^{4} )$$
$47$ $$( 1 - 47 T^{2} + 2209 T^{4} )^{2}$$
$53$ $$( 1 + 53 T^{2} )^{4}$$
$59$ $$( 1 - 6 T + 59 T^{2} )^{2}( 1 - 6 T - 23 T^{2} - 354 T^{3} + 3481 T^{4} )$$
$61$ $$( 1 + 61 T^{2} + 3721 T^{4} )^{2}$$
$67$ $$( 1 + 14 T + 67 T^{2} )^{2}( 1 - 14 T + 129 T^{2} - 938 T^{3} + 4489 T^{4} )$$
$71$ $$( 1 + 71 T^{2} )^{4}$$
$73$ $$( 1 + 2 T - 69 T^{2} + 146 T^{3} + 5329 T^{4} )^{2}$$
$79$ $$( 1 + 79 T^{2} + 6241 T^{4} )^{2}$$
$83$ $$( 1 - 18 T + 241 T^{2} - 1494 T^{3} + 6889 T^{4} )( 1 + 18 T + 241 T^{2} + 1494 T^{3} + 6889 T^{4} )$$
$89$ $$( 1 - 18 T + 89 T^{2} )^{2}( 1 + 18 T + 89 T^{2} )^{2}$$
$97$ $$( 1 + 10 T + 97 T^{2} )^{2}( 1 - 10 T + 3 T^{2} - 970 T^{3} + 9409 T^{4} )$$