Properties

Label 864.2.p
Level 864
Weight 2
Character orbit p
Rep. character \(\chi_{864}(143,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 20
Newform subspaces 2
Sturm bound 288
Trace bound 1

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 864.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(288\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(864, [\chi])\).

Total New Old
Modular forms 336 28 308
Cusp forms 240 20 220
Eisenstein series 96 8 88

Trace form

\( 20q + O(q^{10}) \) \( 20q - 6q^{11} + 8q^{19} - 4q^{25} + 18q^{41} + 2q^{43} - 4q^{49} + 30q^{59} + 6q^{65} + 2q^{67} - 8q^{73} + 54q^{83} + 36q^{91} - 2q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(864, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
864.2.p.a \(4\) \(6.899\) \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) \(0\) \(0\) \(0\) \(0\) \(q+(-6+\beta _{1}+3\beta _{2}-\beta _{3})q^{11}+(-3+\cdots)q^{17}+\cdots\)
864.2.p.b \(16\) \(6.899\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q-\beta _{6}q^{5}+(-\beta _{4}-\beta _{11})q^{7}+(1-\beta _{1}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(864, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(864, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ (\( ( 1 - 5 T^{2} + 25 T^{4} )^{2} \))(\( 1 - 13 T^{2} + 48 T^{4} + 103 T^{6} - 1099 T^{8} + 3648 T^{10} - 5222 T^{12} - 177298 T^{14} + 1667616 T^{16} - 4432450 T^{18} - 3263750 T^{20} + 57000000 T^{22} - 429296875 T^{24} + 1005859375 T^{26} + 11718750000 T^{28} - 79345703125 T^{30} + 152587890625 T^{32} \))
$7$ (\( ( 1 + 7 T^{2} + 49 T^{4} )^{2} \))(\( 1 + 23 T^{2} + 204 T^{4} + 1399 T^{6} + 12029 T^{8} + 45000 T^{10} - 343382 T^{12} - 4039462 T^{14} - 24407256 T^{16} - 197933638 T^{18} - 824460182 T^{20} + 5294205000 T^{22} + 69344791229 T^{24} + 395182873351 T^{26} + 2823622589004 T^{28} + 15599130675527 T^{30} + 33232930569601 T^{32} \))
$11$ (\( ( 1 + 6 T + 11 T^{2} )^{2}( 1 + 6 T + 25 T^{2} + 66 T^{3} + 121 T^{4} ) \))(\( ( 1 - 9 T + 41 T^{2} - 108 T^{3} + 276 T^{4} - 1188 T^{5} + 4961 T^{6} - 11979 T^{7} + 14641 T^{8} )^{2}( 1 + 3 T + 38 T^{2} + 87 T^{3} + 606 T^{4} + 957 T^{5} + 4598 T^{6} + 3993 T^{7} + 14641 T^{8} )^{2} \))
$13$ (\( ( 1 + 13 T^{2} + 169 T^{4} )^{2} \))(\( 1 + 47 T^{2} + 1116 T^{4} + 17239 T^{6} + 168353 T^{8} + 463056 T^{10} - 26916578 T^{12} - 784598686 T^{14} - 12569281176 T^{16} - 132597177934 T^{18} - 768764384258 T^{20} + 2235082868304 T^{22} + 137330714072513 T^{24} + 2376542540984911 T^{26} + 26000662996688796 T^{28} + 185056690127866583 T^{30} + 665416609183179841 T^{32} \))
$17$ (\( ( 1 - 6 T + 19 T^{2} - 102 T^{3} + 289 T^{4} )( 1 + 6 T + 19 T^{2} + 102 T^{3} + 289 T^{4} ) \))(\( ( 1 - 101 T^{2} + 4882 T^{4} - 146891 T^{6} + 2998666 T^{8} - 42451499 T^{10} + 407749522 T^{12} - 2437894469 T^{14} + 6975757441 T^{16} )^{2} \))
$19$ (\( ( 1 - 2 T - 15 T^{2} - 38 T^{3} + 361 T^{4} )^{2} \))(\( ( 1 - T + 64 T^{2} - 49 T^{3} + 1726 T^{4} - 931 T^{5} + 23104 T^{6} - 6859 T^{7} + 130321 T^{8} )^{4} \))
$23$ (\( ( 1 - 23 T^{2} + 529 T^{4} )^{2} \))(\( 1 - 85 T^{2} + 3432 T^{4} - 80441 T^{6} + 1017209 T^{8} + 1764696 T^{10} - 386280290 T^{12} + 9323832998 T^{14} - 183562178736 T^{16} + 4932307655942 T^{18} - 108097062633890 T^{20} + 261238341174744 T^{22} + 79658639026700729 T^{24} - 3332389988537139209 T^{26} + 75210991050693741672 T^{28} - \)\(98\!\cdots\!65\)\( T^{30} + \)\(61\!\cdots\!61\)\( T^{32} \))
$29$ (\( ( 1 - 29 T^{2} + 841 T^{4} )^{2} \))(\( 1 - 97 T^{2} + 3780 T^{4} - 80561 T^{6} + 1632089 T^{8} - 54786000 T^{10} + 1038848902 T^{12} + 18974156858 T^{14} - 1329857348520 T^{16} + 15957265917578 T^{18} + 734758090255462 T^{20} - 32587990464306000 T^{22} + 816446667883105529 T^{24} - 33892595421897492761 T^{26} + \)\(13\!\cdots\!80\)\( T^{28} - \)\(28\!\cdots\!57\)\( T^{30} + \)\(25\!\cdots\!21\)\( T^{32} \))
$31$ (\( ( 1 + 31 T^{2} + 961 T^{4} )^{2} \))(\( 1 + 131 T^{2} + 7152 T^{4} + 312151 T^{6} + 16524593 T^{8} + 706250232 T^{10} + 22761450214 T^{12} + 818587141454 T^{14} + 29243993208000 T^{16} + 786662242937294 T^{18} + 21020677263083494 T^{20} + 626799680607103992 T^{22} + 14093677267060286513 T^{24} + \)\(25\!\cdots\!51\)\( T^{26} + \)\(56\!\cdots\!72\)\( T^{28} + \)\(99\!\cdots\!51\)\( T^{30} + \)\(72\!\cdots\!81\)\( T^{32} \))
$37$ (\( ( 1 - 37 T^{2} )^{4} \))(\( ( 1 - 140 T^{2} + 8596 T^{4} - 317540 T^{6} + 10470934 T^{8} - 434712260 T^{10} + 16110287956 T^{12} - 359201697260 T^{14} + 3512479453921 T^{16} )^{2} \))
$41$ (\( ( 1 + 6 T + 41 T^{2} )^{2}( 1 + 6 T - 5 T^{2} + 246 T^{3} + 1681 T^{4} ) \))(\( ( 1 - 18 T + 292 T^{2} - 3312 T^{3} + 34963 T^{4} - 303732 T^{5} + 2503888 T^{6} - 17908938 T^{7} + 122450608 T^{8} - 734266458 T^{9} + 4209035728 T^{10} - 20933513172 T^{11} + 98797081843 T^{12} - 383715737712 T^{13} + 1387030438372 T^{14} - 3505576929858 T^{15} + 7984925229121 T^{16} )^{2} \))
$43$ (\( ( 1 - 10 T + 43 T^{2} )^{2}( 1 + 10 T + 57 T^{2} + 430 T^{3} + 1849 T^{4} ) \))(\( ( 1 + 4 T - 96 T^{2} - 868 T^{3} + 4061 T^{4} + 55182 T^{5} + 78652 T^{6} - 1341518 T^{7} - 8451684 T^{8} - 57685274 T^{9} + 145427548 T^{10} + 4387355274 T^{11} + 13883750861 T^{12} - 127603328524 T^{13} - 606850852704 T^{14} + 1087274444428 T^{15} + 11688200277601 T^{16} )^{2} \))
$47$ (\( ( 1 - 47 T^{2} + 2209 T^{4} )^{2} \))(\( 1 - 265 T^{2} + 38172 T^{4} - 3663305 T^{6} + 256619789 T^{8} - 13483362840 T^{10} + 543517455226 T^{12} - 17957421673750 T^{14} + 672442507889160 T^{16} - 39667944477313750 T^{18} + 2652191799434662906 T^{20} - \)\(14\!\cdots\!60\)\( T^{22} + \)\(61\!\cdots\!29\)\( T^{24} - \)\(19\!\cdots\!45\)\( T^{26} + \)\(44\!\cdots\!52\)\( T^{28} - \)\(68\!\cdots\!85\)\( T^{30} + \)\(56\!\cdots\!21\)\( T^{32} \))
$53$ (\( ( 1 + 53 T^{2} )^{4} \))(\( ( 1 + 196 T^{2} + 21556 T^{4} + 1665484 T^{6} + 98315734 T^{8} + 4678344556 T^{10} + 170087208436 T^{12} + 4344214781284 T^{14} + 62259690411361 T^{16} )^{2} \))
$59$ (\( ( 1 - 6 T + 59 T^{2} )^{2}( 1 - 6 T - 23 T^{2} - 354 T^{3} + 3481 T^{4} ) \))(\( ( 1 - 6 T + 178 T^{2} - 996 T^{3} + 15871 T^{4} - 89238 T^{5} + 1194346 T^{6} - 6437052 T^{7} + 79012984 T^{8} - 379786068 T^{9} + 4157518426 T^{10} - 18327611202 T^{11} + 192314636431 T^{12} - 712064601804 T^{13} + 7508134988098 T^{14} - 14931908908914 T^{15} + 146830437604321 T^{16} )^{2} \))
$61$ (\( ( 1 + 61 T^{2} + 3721 T^{4} )^{2} \))(\( 1 + 299 T^{2} + 43416 T^{4} + 4465735 T^{6} + 393470093 T^{8} + 31461221184 T^{10} + 2332722797890 T^{12} + 164022774523334 T^{14} + 10603540284680400 T^{16} + 610328744001325814 T^{18} + 32298508956660075490 T^{20} + \)\(16\!\cdots\!24\)\( T^{22} + \)\(75\!\cdots\!33\)\( T^{24} + \)\(31\!\cdots\!35\)\( T^{26} + \)\(11\!\cdots\!36\)\( T^{28} + \)\(29\!\cdots\!59\)\( T^{30} + \)\(36\!\cdots\!61\)\( T^{32} \))
$67$ (\( ( 1 + 14 T + 67 T^{2} )^{2}( 1 - 14 T + 129 T^{2} - 938 T^{3} + 4489 T^{4} ) \))(\( ( 1 - 8 T - 138 T^{2} + 1052 T^{3} + 11279 T^{4} - 57198 T^{5} - 930218 T^{6} + 1298482 T^{7} + 71382744 T^{8} + 86998294 T^{9} - 4175748602 T^{10} - 17203042074 T^{11} + 227284493759 T^{12} + 1420331612564 T^{13} - 12483256739322 T^{14} - 48485692842584 T^{15} + 406067677556641 T^{16} )^{2} \))
$71$ (\( ( 1 + 71 T^{2} )^{4} \))(\( ( 1 + 400 T^{2} + 73324 T^{4} + 8374048 T^{6} + 685441990 T^{8} + 42213575968 T^{10} + 1863286097644 T^{12} + 51240113568400 T^{14} + 645753531245761 T^{16} )^{2} \))
$73$ (\( ( 1 + 2 T - 69 T^{2} + 146 T^{3} + 5329 T^{4} )^{2} \))(\( ( 1 + T + 214 T^{2} - 5 T^{3} + 20758 T^{4} - 365 T^{5} + 1140406 T^{6} + 389017 T^{7} + 28398241 T^{8} )^{4} \))
$79$ (\( ( 1 + 79 T^{2} + 6241 T^{4} )^{2} \))(\( 1 + 383 T^{2} + 74724 T^{4} + 9593503 T^{6} + 916548293 T^{8} + 73505234952 T^{10} + 5745220732498 T^{12} + 475438917658202 T^{14} + 38877973133064792 T^{16} + 2967214285104838682 T^{18} + \)\(22\!\cdots\!38\)\( T^{20} + \)\(17\!\cdots\!92\)\( T^{22} + \)\(13\!\cdots\!73\)\( T^{24} + \)\(90\!\cdots\!03\)\( T^{26} + \)\(44\!\cdots\!84\)\( T^{28} + \)\(14\!\cdots\!23\)\( T^{30} + \)\(23\!\cdots\!21\)\( T^{32} \))
$83$ (\( ( 1 - 18 T + 241 T^{2} - 1494 T^{3} + 6889 T^{4} )( 1 + 18 T + 241 T^{2} + 1494 T^{3} + 6889 T^{4} ) \))(\( ( 1 - 27 T + 544 T^{2} - 8127 T^{3} + 107593 T^{4} - 1304076 T^{5} + 14403022 T^{6} - 148987620 T^{7} + 1398163588 T^{8} - 12365972460 T^{9} + 99222418558 T^{10} - 745653703812 T^{11} + 5106183131353 T^{12} - 32012583305661 T^{13} + 177855563112736 T^{14} - 732673376719929 T^{15} + 2252292232139041 T^{16} )^{2} \))
$89$ (\( ( 1 - 18 T + 89 T^{2} )^{2}( 1 + 18 T + 89 T^{2} )^{2} \))(\( ( 1 - 440 T^{2} + 100348 T^{4} - 14946776 T^{6} + 1566592486 T^{8} - 118393412696 T^{10} + 6296058399868 T^{12} - 218671768022840 T^{14} + 3936588805702081 T^{16} )^{2} \))
$97$ (\( ( 1 + 10 T + 97 T^{2} )^{2}( 1 - 10 T + 3 T^{2} - 970 T^{3} + 9409 T^{4} ) \))(\( ( 1 - 4 T - 198 T^{2} - 320 T^{3} + 21017 T^{4} + 106308 T^{5} - 1078406 T^{6} - 6931984 T^{7} + 64836612 T^{8} - 672402448 T^{9} - 10146722054 T^{10} + 97024441284 T^{11} + 1860619898777 T^{12} - 2747948882240 T^{13} - 164928456975942 T^{14} - 323193137912452 T^{15} + 7837433594376961 T^{16} )^{2} \))
show more
show less