Properties

Label 864.2.k
Level 864
Weight 2
Character orbit k
Rep. character \(\chi_{864}(217,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 0
Newform subspaces 0
Sturm bound 288
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 864.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 0 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(864, [\chi])\).

Total New Old
Modular forms 312 0 312
Cusp forms 264 0 264
Eisenstein series 48 0 48

Decomposition of \(S_{2}^{\mathrm{old}}(864, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(864, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database