Properties

Label 864.2.i.f
Level 864
Weight 2
Character orbit 864.i
Analytic conductor 6.899
Analytic rank 0
Dimension 8
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 864.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.170772624.1
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{5} + ( \beta_{1} - \beta_{7} ) q^{7} +O(q^{10})\) \( q + \beta_{6} q^{5} + ( \beta_{1} - \beta_{7} ) q^{7} -\beta_{3} q^{11} + ( -2 \beta_{4} - \beta_{6} ) q^{13} + \beta_{5} q^{17} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{19} -\beta_{7} q^{23} + ( -4 + 3 \beta_{4} - \beta_{5} - \beta_{6} ) q^{25} + ( -3 + 2 \beta_{4} - \beta_{5} - \beta_{6} ) q^{29} + ( -2 \beta_{2} - \beta_{7} ) q^{31} + ( -3 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{35} + 4 q^{37} + \beta_{4} q^{41} -\beta_{3} q^{43} + ( -\beta_{1} + \beta_{7} ) q^{47} + ( -5 \beta_{4} + 3 \beta_{6} ) q^{49} + 4 q^{53} + ( \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{55} + ( \beta_{2} - 2 \beta_{7} ) q^{59} + ( -5 + 8 \beta_{4} + 3 \beta_{5} + 3 \beta_{6} ) q^{61} + ( 7 - 8 \beta_{4} - \beta_{5} - \beta_{6} ) q^{65} + ( \beta_{2} - 2 \beta_{7} ) q^{67} + 2 \beta_{1} q^{71} + ( 8 + \beta_{5} ) q^{73} + ( -6 \beta_{4} - 3 \beta_{6} ) q^{77} + ( \beta_{1} + 2 \beta_{3} - \beta_{7} ) q^{79} + ( \beta_{1} - 2 \beta_{3} - \beta_{7} ) q^{83} -8 \beta_{4} q^{85} + ( -8 - 2 \beta_{5} ) q^{89} + ( \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{91} + 4 \beta_{7} q^{95} + ( -9 + 9 \beta_{4} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 2q^{5} + O(q^{10}) \) \( 8q - 2q^{5} - 6q^{13} - 4q^{17} - 14q^{25} - 10q^{29} + 32q^{37} + 4q^{41} - 26q^{49} + 32q^{53} - 26q^{61} + 30q^{65} + 60q^{73} - 18q^{77} - 32q^{85} - 56q^{89} - 36q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 3 x^{7} + 5 x^{6} - 6 x^{5} + 6 x^{4} - 12 x^{3} + 20 x^{2} - 24 x + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{7} + 3 \nu^{4} + 6 \nu^{2} + 4 \nu \)\()/4\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{7} + 3 \nu^{6} + 3 \nu^{5} - 6 \nu^{4} + 6 \nu^{3} + 4 \nu - 24 \)\()/8\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{7} + 3 \nu^{6} - 9 \nu^{5} + 6 \nu^{4} - 6 \nu^{3} + 24 \nu^{2} - 44 \nu + 48 \)\()/8\)
\(\beta_{4}\)\(=\)\((\)\( 3 \nu^{7} - 5 \nu^{6} + 7 \nu^{5} - 6 \nu^{4} + 10 \nu^{3} - 24 \nu^{2} + 28 \nu - 24 \)\()/8\)
\(\beta_{5}\)\(=\)\((\)\( -\nu^{7} + 4 \nu^{6} - 6 \nu^{5} + 5 \nu^{4} - 6 \nu^{3} + 14 \nu^{2} - 20 \nu + 20 \)\()/4\)
\(\beta_{6}\)\(=\)\((\)\( -2 \nu^{7} + 3 \nu^{6} - 5 \nu^{5} + 4 \nu^{4} - 5 \nu^{3} + 13 \nu^{2} - 18 \nu + 20 \)\()/2\)
\(\beta_{7}\)\(=\)\((\)\( 2 \nu^{7} - 3 \nu^{6} + 6 \nu^{5} - 3 \nu^{4} + 6 \nu^{3} - 15 \nu^{2} + 16 \nu - 24 \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{7} - \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} + \beta_{1} + 2\)\()/6\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{7} - 3 \beta_{6} - 3 \beta_{4} + 2 \beta_{3} + \beta_{2} + 2 \beta_{1}\)\()/6\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{6} + \beta_{5} + 10 \beta_{4} + 3 \beta_{3} + 3 \beta_{2} + 3 \beta_{1} - 4\)\()/6\)
\(\nu^{4}\)\(=\)\((\)\(3 \beta_{7} + 3 \beta_{6} + 3 \beta_{5} + 3 \beta_{4} - \beta_{3} - 2 \beta_{2} + 3 \beta_{1}\)\()/6\)
\(\nu^{5}\)\(=\)\((\)\(5 \beta_{7} - \beta_{6} - 2 \beta_{5} - 17 \beta_{4} + \beta_{2} + 32\)\()/6\)
\(\nu^{6}\)\(=\)\((\)\(2 \beta_{7} + 9 \beta_{5} - 5 \beta_{3} + 5 \beta_{2} - \beta_{1} + 24\)\()/6\)
\(\nu^{7}\)\(=\)\((\)\(-\beta_{7} - 13 \beta_{6} + 13 \beta_{5} - 5 \beta_{4} + 5 \beta_{3} + \beta_{1} + 8\)\()/6\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(-\beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.774115 + 1.18353i
1.41203 + 0.0786378i
−1.02187 + 0.977642i
0.335728 1.37379i
0.774115 1.18353i
1.41203 0.0786378i
−1.02187 0.977642i
0.335728 + 1.37379i
0 0 0 −1.68614 2.92048i 0 −2.35143 + 4.07279i 0 0 0
289.2 0 0 0 −1.68614 2.92048i 0 2.35143 4.07279i 0 0 0
289.3 0 0 0 1.18614 + 2.05446i 0 −1.10489 + 1.91373i 0 0 0
289.4 0 0 0 1.18614 + 2.05446i 0 1.10489 1.91373i 0 0 0
577.1 0 0 0 −1.68614 + 2.92048i 0 −2.35143 4.07279i 0 0 0
577.2 0 0 0 −1.68614 + 2.92048i 0 2.35143 + 4.07279i 0 0 0
577.3 0 0 0 1.18614 2.05446i 0 −1.10489 1.91373i 0 0 0
577.4 0 0 0 1.18614 2.05446i 0 1.10489 + 1.91373i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
9.c even 3 1 inner
36.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 864.2.i.f 8
3.b odd 2 1 288.2.i.f 8
4.b odd 2 1 inner 864.2.i.f 8
8.b even 2 1 1728.2.i.n 8
8.d odd 2 1 1728.2.i.n 8
9.c even 3 1 inner 864.2.i.f 8
9.c even 3 1 2592.2.a.x 4
9.d odd 6 1 288.2.i.f 8
9.d odd 6 1 2592.2.a.u 4
12.b even 2 1 288.2.i.f 8
24.f even 2 1 576.2.i.n 8
24.h odd 2 1 576.2.i.n 8
36.f odd 6 1 inner 864.2.i.f 8
36.f odd 6 1 2592.2.a.x 4
36.h even 6 1 288.2.i.f 8
36.h even 6 1 2592.2.a.u 4
72.j odd 6 1 576.2.i.n 8
72.j odd 6 1 5184.2.a.cf 4
72.l even 6 1 576.2.i.n 8
72.l even 6 1 5184.2.a.cf 4
72.n even 6 1 1728.2.i.n 8
72.n even 6 1 5184.2.a.cc 4
72.p odd 6 1 1728.2.i.n 8
72.p odd 6 1 5184.2.a.cc 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
288.2.i.f 8 3.b odd 2 1
288.2.i.f 8 9.d odd 6 1
288.2.i.f 8 12.b even 2 1
288.2.i.f 8 36.h even 6 1
576.2.i.n 8 24.f even 2 1
576.2.i.n 8 24.h odd 2 1
576.2.i.n 8 72.j odd 6 1
576.2.i.n 8 72.l even 6 1
864.2.i.f 8 1.a even 1 1 trivial
864.2.i.f 8 4.b odd 2 1 inner
864.2.i.f 8 9.c even 3 1 inner
864.2.i.f 8 36.f odd 6 1 inner
1728.2.i.n 8 8.b even 2 1
1728.2.i.n 8 8.d odd 2 1
1728.2.i.n 8 72.n even 6 1
1728.2.i.n 8 72.p odd 6 1
2592.2.a.u 4 9.d odd 6 1
2592.2.a.u 4 36.h even 6 1
2592.2.a.x 4 9.c even 3 1
2592.2.a.x 4 36.f odd 6 1
5184.2.a.cc 4 72.n even 6 1
5184.2.a.cc 4 72.p odd 6 1
5184.2.a.cf 4 72.j odd 6 1
5184.2.a.cf 4 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(864, [\chi])\):

\( T_{5}^{4} + T_{5}^{3} + 9 T_{5}^{2} - 8 T_{5} + 64 \)
\( T_{7}^{8} + 27 T_{7}^{6} + 621 T_{7}^{4} + 2916 T_{7}^{2} + 11664 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( ( 1 + T - T^{2} - 8 T^{3} - 26 T^{4} - 40 T^{5} - 25 T^{6} + 125 T^{7} + 625 T^{8} )^{2} \)
$7$ \( 1 - T^{2} - 23 T^{4} + 74 T^{6} - 1874 T^{8} + 3626 T^{10} - 55223 T^{12} - 117649 T^{14} + 5764801 T^{16} \)
$11$ \( 1 - 8 T^{2} + 103 T^{4} + 2248 T^{6} - 20864 T^{8} + 272008 T^{10} + 1508023 T^{12} - 14172488 T^{14} + 214358881 T^{16} \)
$13$ \( ( 1 + 3 T - 11 T^{2} - 18 T^{3} + 114 T^{4} - 234 T^{5} - 1859 T^{6} + 6591 T^{7} + 28561 T^{8} )^{2} \)
$17$ \( ( 1 + T + 26 T^{2} + 17 T^{3} + 289 T^{4} )^{4} \)
$19$ \( ( 1 + 31 T^{2} + 888 T^{4} + 11191 T^{6} + 130321 T^{8} )^{2} \)
$23$ \( 1 - 65 T^{2} + 2185 T^{4} - 63830 T^{6} + 1646734 T^{8} - 33766070 T^{10} + 611452585 T^{12} - 9622332785 T^{14} + 78310985281 T^{16} \)
$29$ \( ( 1 + 5 T - 31 T^{2} - 10 T^{3} + 1570 T^{4} - 290 T^{5} - 26071 T^{6} + 121945 T^{7} + 707281 T^{8} )^{2} \)
$31$ \( 1 + 11 T^{2} - 1163 T^{4} - 7018 T^{6} + 608854 T^{8} - 6744298 T^{10} - 1074054923 T^{12} + 9762540491 T^{14} + 852891037441 T^{16} \)
$37$ \( ( 1 - 4 T + 37 T^{2} )^{8} \)
$41$ \( ( 1 - T - 40 T^{2} - 41 T^{3} + 1681 T^{4} )^{4} \)
$43$ \( 1 - 136 T^{2} + 10471 T^{4} - 588472 T^{6} + 26782720 T^{8} - 1088084728 T^{10} + 35798265271 T^{12} - 859705374664 T^{14} + 11688200277601 T^{16} \)
$47$ \( 1 - 161 T^{2} + 15097 T^{4} - 1031366 T^{6} + 55019806 T^{8} - 2278287494 T^{10} + 73668544057 T^{12} - 1735453667969 T^{14} + 23811286661761 T^{16} \)
$53$ \( ( 1 - 4 T + 53 T^{2} )^{8} \)
$59$ \( 1 - 56 T^{2} - 4313 T^{4} - 27272 T^{6} + 32453824 T^{8} - 94933832 T^{10} - 52262177993 T^{12} - 2362109883896 T^{14} + 146830437604321 T^{16} \)
$61$ \( ( 1 + 13 T + 79 T^{2} - 416 T^{3} - 5930 T^{4} - 25376 T^{5} + 293959 T^{6} + 2950753 T^{7} + 13845841 T^{8} )^{2} \)
$67$ \( 1 - 88 T^{2} - 2873 T^{4} - 144232 T^{6} + 57806752 T^{8} - 647457448 T^{10} - 57894170633 T^{12} - 7960337630872 T^{14} + 406067677556641 T^{16} \)
$71$ \( ( 1 + 176 T^{2} + 16638 T^{4} + 887216 T^{6} + 25411681 T^{8} )^{2} \)
$73$ \( ( 1 - 15 T + 194 T^{2} - 1095 T^{3} + 5329 T^{4} )^{4} \)
$79$ \( 1 - 181 T^{2} + 12757 T^{4} - 1361482 T^{6} + 156748534 T^{8} - 8497009162 T^{10} + 496886183317 T^{12} - 43998829449301 T^{14} + 1517108809906561 T^{16} \)
$83$ \( 1 - 125 T^{2} + 6925 T^{4} + 634750 T^{6} - 79408946 T^{8} + 4372792750 T^{10} + 328648872925 T^{12} - 40867546671125 T^{14} + 2252292232139041 T^{16} \)
$89$ \( ( 1 + 14 T + 194 T^{2} + 1246 T^{3} + 7921 T^{4} )^{4} \)
$97$ \( ( 1 + 9 T - 16 T^{2} + 873 T^{3} + 9409 T^{4} )^{4} \)
show more
show less