Properties

Label 864.2.i
Level $864$
Weight $2$
Character orbit 864.i
Rep. character $\chi_{864}(289,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $6$
Sturm bound $288$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(288\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(864, [\chi])\).

Total New Old
Modular forms 336 24 312
Cusp forms 240 24 216
Eisenstein series 96 0 96

Trace form

\( 24 q + O(q^{10}) \) \( 24 q - 8 q^{17} - 12 q^{25} + 8 q^{29} - 12 q^{41} - 12 q^{49} + 48 q^{53} + 16 q^{65} + 24 q^{73} + 16 q^{77} + 64 q^{89} - 12 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(864, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
864.2.i.a 864.i 9.c $2$ $6.899$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+(5-5\zeta_{6})q^{11}+\cdots\)
864.2.i.b 864.i 9.c $2$ $6.899$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(-5+5\zeta_{6})q^{11}+\cdots\)
864.2.i.c 864.i 9.c $4$ $6.899$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{5}+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\)
864.2.i.d 864.i 9.c $4$ $6.899$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{12})q^{5}-\zeta_{12}^{2}q^{7}-\zeta_{12}^{2}q^{11}+\cdots\)
864.2.i.e 864.i 9.c $4$ $6.899$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{5}+(1-\beta _{1}+\beta _{2}-\beta _{3})q^{7}+(1+\cdots)q^{11}+\cdots\)
864.2.i.f 864.i 9.c $8$ $6.899$ 8.0.170772624.1 None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{6}q^{5}+(\beta _{1}-\beta _{7})q^{7}-\beta _{3}q^{11}+(-2\beta _{4}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(864, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(864, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)