Defining parameters
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(864, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 336 | 24 | 312 |
Cusp forms | 240 | 24 | 216 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(864, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
864.2.i.a | $2$ | $6.899$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(4\) | \(-2\) | \(q+4\zeta_{6}q^{5}+(-2+2\zeta_{6})q^{7}+(5-5\zeta_{6})q^{11}+\cdots\) |
864.2.i.b | $2$ | $6.899$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(4\) | \(2\) | \(q+4\zeta_{6}q^{5}+(2-2\zeta_{6})q^{7}+(-5+5\zeta_{6})q^{11}+\cdots\) |
864.2.i.c | $4$ | $6.899$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(-2\) | \(-2\) | \(q-\beta _{1}q^{5}+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{7}+\cdots\) |
864.2.i.d | $4$ | $6.899$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(-1+\zeta_{12})q^{5}-\zeta_{12}^{2}q^{7}-\zeta_{12}^{2}q^{11}+\cdots\) |
864.2.i.e | $4$ | $6.899$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(-2\) | \(2\) | \(q-\beta _{1}q^{5}+(1-\beta _{1}+\beta _{2}-\beta _{3})q^{7}+(1+\cdots)q^{11}+\cdots\) |
864.2.i.f | $8$ | $6.899$ | 8.0.170772624.1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\beta _{6}q^{5}+(\beta _{1}-\beta _{7})q^{7}-\beta _{3}q^{11}+(-2\beta _{4}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(864, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(864, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)