Properties

Label 864.2.d.b.433.3
Level $864$
Weight $2$
Character 864.433
Analytic conductor $6.899$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,2,Mod(433,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 433.3
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 864.433
Dual form 864.2.d.b.433.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58579i q^{5} +5.24264 q^{7} +O(q^{10})\) \(q+1.58579i q^{5} +5.24264 q^{7} -5.82843i q^{11} +2.48528 q^{25} +2.82843i q^{29} -0.757359 q^{31} +8.31371i q^{35} +20.4853 q^{49} +10.0711i q^{53} +9.24264 q^{55} -11.3137i q^{59} +1.48528 q^{73} -30.5563i q^{77} +10.0000 q^{79} +12.1716i q^{83} -17.9706 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{7} - 24 q^{25} - 20 q^{31} + 48 q^{49} + 20 q^{55} - 28 q^{73} + 40 q^{79} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58579i 0.709185i 0.935021 + 0.354593i \(0.115380\pi\)
−0.935021 + 0.354593i \(0.884620\pi\)
\(6\) 0 0
\(7\) 5.24264 1.98153 0.990766 0.135583i \(-0.0432908\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.82843i − 1.75734i −0.477432 0.878668i \(-0.658432\pi\)
0.477432 0.878668i \(-0.341568\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 2.48528 0.497056
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.82843i 0.525226i 0.964901 + 0.262613i \(0.0845842\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) −0.757359 −0.136026 −0.0680129 0.997684i \(-0.521666\pi\)
−0.0680129 + 0.997684i \(0.521666\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.31371i 1.40527i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 20.4853 2.92647
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0711i 1.38337i 0.722200 + 0.691684i \(0.243131\pi\)
−0.722200 + 0.691684i \(0.756869\pi\)
\(54\) 0 0
\(55\) 9.24264 1.24628
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 11.3137i − 1.47292i −0.676481 0.736460i \(-0.736496\pi\)
0.676481 0.736460i \(-0.263504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1.48528 0.173839 0.0869195 0.996215i \(-0.472298\pi\)
0.0869195 + 0.996215i \(0.472298\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 30.5563i − 3.48222i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.1716i 1.33600i 0.744160 + 0.668002i \(0.232850\pi\)
−0.744160 + 0.668002i \(0.767150\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.9706 −1.82463 −0.912317 0.409484i \(-0.865709\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 6.89949i − 0.686525i −0.939239 0.343263i \(-0.888468\pi\)
0.939239 0.343263i \(-0.111532\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.6569i 1.99697i 0.0549930 + 0.998487i \(0.482486\pi\)
−0.0549930 + 0.998487i \(0.517514\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −22.9706 −2.08823
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8701i 1.06169i
\(126\) 0 0
\(127\) −6.75736 −0.599619 −0.299809 0.953999i \(-0.596923\pi\)
−0.299809 + 0.953999i \(0.596923\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 14.3137i − 1.25059i −0.780387 0.625297i \(-0.784978\pi\)
0.780387 0.625297i \(-0.215022\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.48528 −0.372482
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.5858i 1.60453i 0.596968 + 0.802265i \(0.296372\pi\)
−0.596968 + 0.802265i \(0.703628\pi\)
\(150\) 0 0
\(151\) −20.2132 −1.64493 −0.822464 0.568818i \(-0.807401\pi\)
−0.822464 + 0.568818i \(0.807401\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 1.20101i − 0.0964675i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 24.8995i − 1.89307i −0.322596 0.946537i \(-0.604555\pi\)
0.322596 0.946537i \(-0.395445\pi\)
\(174\) 0 0
\(175\) 13.0294 0.984933
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 15.3431i − 1.14680i −0.819275 0.573400i \(-0.805624\pi\)
0.819275 0.573400i \(-0.194376\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −4.51472 −0.324977 −0.162488 0.986710i \(-0.551952\pi\)
−0.162488 + 0.986710i \(0.551952\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 28.0711i 1.99998i 0.00438501 + 0.999990i \(0.498604\pi\)
−0.00438501 + 0.999990i \(0.501396\pi\)
\(198\) 0 0
\(199\) −14.2132 −1.00755 −0.503774 0.863836i \(-0.668055\pi\)
−0.503774 + 0.863836i \(0.668055\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.8284i 1.04075i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.97056 −0.269539
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 28.2843i − 1.87729i −0.344881 0.938647i \(-0.612081\pi\)
0.344881 0.938647i \(-0.387919\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 32.4853i 2.07541i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65685i 0.357057i 0.983935 + 0.178529i \(0.0571337\pi\)
−0.983935 + 0.178529i \(0.942866\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −15.9706 −0.981064
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 31.1127i − 1.89697i −0.316815 0.948487i \(-0.602613\pi\)
0.316815 0.948487i \(-0.397387\pi\)
\(270\) 0 0
\(271\) −32.2132 −1.95681 −0.978406 0.206691i \(-0.933731\pi\)
−0.978406 + 0.206691i \(0.933731\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 14.4853i − 0.873495i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 14.1421i − 0.826192i −0.910687 0.413096i \(-0.864447\pi\)
0.910687 0.413096i \(-0.135553\pi\)
\(294\) 0 0
\(295\) 17.9411 1.04457
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 25.4853 1.44051 0.720257 0.693708i \(-0.244024\pi\)
0.720257 + 0.693708i \(0.244024\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.556349i 0.0312477i 0.999878 + 0.0156238i \(0.00497343\pi\)
−0.999878 + 0.0156238i \(0.995027\pi\)
\(318\) 0 0
\(319\) 16.4853 0.922999
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.41421i 0.239043i
\(342\) 0 0
\(343\) 70.6985 3.81736
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 6.85786i − 0.368149i −0.982912 0.184075i \(-0.941071\pi\)
0.982912 0.184075i \(-0.0589288\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.35534i 0.123284i
\(366\) 0 0
\(367\) 23.2426 1.21326 0.606628 0.794986i \(-0.292522\pi\)
0.606628 + 0.794986i \(0.292522\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 52.7990i 2.74119i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 48.4558 2.46954
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 36.5563i 1.85348i 0.375703 + 0.926740i \(0.377401\pi\)
−0.375703 + 0.926740i \(0.622599\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.8579i 0.797896i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 38.9411 1.92551 0.962757 0.270367i \(-0.0871450\pi\)
0.962757 + 0.270367i \(0.0871450\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 59.3137i − 2.91864i
\(414\) 0 0
\(415\) −19.3015 −0.947474
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 39.5980i 1.93449i 0.253849 + 0.967244i \(0.418303\pi\)
−0.253849 + 0.967244i \(0.581697\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.9411 1.29471 0.647354 0.762190i \(-0.275876\pi\)
0.647354 + 0.762190i \(0.275876\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −38.2132 −1.82382 −0.911908 0.410394i \(-0.865391\pi\)
−0.911908 + 0.410394i \(0.865391\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 28.2843i − 1.34383i −0.740630 0.671913i \(-0.765473\pi\)
0.740630 0.671913i \(-0.234527\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −35.9706 −1.68263 −0.841316 0.540544i \(-0.818219\pi\)
−0.841316 + 0.540544i \(0.818219\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 42.8995i − 1.99803i −0.0443887 0.999014i \(-0.514134\pi\)
0.0443887 0.999014i \(-0.485866\pi\)
\(462\) 0 0
\(463\) 42.6985 1.98437 0.992183 0.124788i \(-0.0398251\pi\)
0.992183 + 0.124788i \(0.0398251\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4.79899i − 0.222071i −0.993816 0.111035i \(-0.964583\pi\)
0.993816 0.111035i \(-0.0354167\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 28.4975i − 1.29400i
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.6863i 0.978689i 0.872091 + 0.489344i \(0.162764\pi\)
−0.872091 + 0.489344i \(0.837236\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.9411 0.486874
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 37.5858i 1.66596i 0.553303 + 0.832980i \(0.313367\pi\)
−0.553303 + 0.832980i \(0.686633\pi\)
\(510\) 0 0
\(511\) 7.78680 0.344468
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 22.2010i − 0.978293i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −32.7574 −1.41622
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 119.397i − 5.14279i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 52.4264 2.22940
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 46.0711i 1.95209i 0.217560 + 0.976047i \(0.430190\pi\)
−0.217560 + 0.976047i \(0.569810\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 47.1421i 1.98680i 0.114684 + 0.993402i \(0.463415\pi\)
−0.114684 + 0.993402i \(0.536585\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 63.8112i 2.64733i
\(582\) 0 0
\(583\) 58.6985 2.43104
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.6274i 1.55305i 0.630087 + 0.776525i \(0.283019\pi\)
−0.630087 + 0.776525i \(0.716981\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −43.4264 −1.77140 −0.885700 0.464258i \(-0.846321\pi\)
−0.885700 + 0.464258i \(0.846321\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 36.4264i − 1.48094i
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.39697 −0.255879
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 29.2426 1.16413 0.582066 0.813142i \(-0.302245\pi\)
0.582066 + 0.813142i \(0.302245\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 10.7157i − 0.425241i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −65.9411 −2.58842
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.04163i 0.353826i 0.984226 + 0.176913i \(0.0566112\pi\)
−0.984226 + 0.176913i \(0.943389\pi\)
\(654\) 0 0
\(655\) 22.6985 0.886903
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.62742i 0.0633952i 0.999498 + 0.0316976i \(0.0100913\pi\)
−0.999498 + 0.0316976i \(0.989909\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 50.9411 1.96364 0.981818 0.189824i \(-0.0607919\pi\)
0.981818 + 0.189824i \(0.0607919\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.82843i 0.108705i 0.998522 + 0.0543526i \(0.0173095\pi\)
−0.998522 + 0.0543526i \(0.982690\pi\)
\(678\) 0 0
\(679\) −94.2132 −3.61557
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.65685i 0.216454i 0.994126 + 0.108227i \(0.0345173\pi\)
−0.994126 + 0.108227i \(0.965483\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 51.3848i − 1.94078i −0.241551 0.970388i \(-0.577656\pi\)
0.241551 0.970388i \(-0.422344\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 36.1716i − 1.36037i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −73.3970 −2.73345
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.02944i 0.261067i
\(726\) 0 0
\(727\) −45.6690 −1.69377 −0.846886 0.531775i \(-0.821525\pi\)
−0.846886 + 0.531775i \(0.821525\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −31.0589 −1.13791
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 108.296i 3.95707i
\(750\) 0 0
\(751\) −51.6690 −1.88543 −0.942715 0.333599i \(-0.891737\pi\)
−0.942715 + 0.333599i \(0.891737\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 32.0538i − 1.16656i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −55.4264 −1.99873 −0.999364 0.0356685i \(-0.988644\pi\)
−0.999364 + 0.0356685i \(0.988644\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.7990i 0.712120i 0.934463 + 0.356060i \(0.115880\pi\)
−0.934463 + 0.356060i \(0.884120\pi\)
\(774\) 0 0
\(775\) −1.88225 −0.0676125
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 41.8701i − 1.48311i −0.670890 0.741557i \(-0.734088\pi\)
0.670890 0.741557i \(-0.265912\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 8.65685i − 0.305494i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 48.0833i − 1.67812i −0.544041 0.839059i \(-0.683106\pi\)
0.544041 0.839059i \(-0.316894\pi\)
\(822\) 0 0
\(823\) 6.69848 0.233495 0.116747 0.993162i \(-0.462753\pi\)
0.116747 + 0.993162i \(0.462753\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.5685i 1.96708i 0.180688 + 0.983540i \(0.442168\pi\)
−0.180688 + 0.983540i \(0.557832\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.6152i 0.709185i
\(846\) 0 0
\(847\) −120.426 −4.13790
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 39.4853 1.34254
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 58.2843i − 1.97716i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 62.2304i 2.10377i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −35.4264 −1.18816
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 24.3310 0.813294
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 2.14214i − 0.0714442i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 70.9411 2.34781
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 75.0416i − 2.47809i
\(918\) 0 0
\(919\) 54.6985 1.80434 0.902168 0.431384i \(-0.141975\pi\)
0.902168 + 0.431384i \(0.141975\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.0294 0.392985 0.196492 0.980505i \(-0.437045\pi\)
0.196492 + 0.980505i \(0.437045\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 8.95837i − 0.292034i −0.989282 0.146017i \(-0.953354\pi\)
0.989282 0.146017i \(-0.0466455\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 49.2843i − 1.60152i −0.598983 0.800762i \(-0.704428\pi\)
0.598983 0.800762i \(-0.295572\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.4264 −0.981497
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 7.15938i − 0.230469i
\(966\) 0 0
\(967\) 35.2426 1.13333 0.566663 0.823949i \(-0.308234\pi\)
0.566663 + 0.823949i \(0.308234\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.1127i 0.902179i 0.892479 + 0.451090i \(0.148965\pi\)
−0.892479 + 0.451090i \(0.851035\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −44.5147 −1.41836
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −50.2132 −1.59507 −0.797537 0.603269i \(-0.793864\pi\)
−0.797537 + 0.603269i \(0.793864\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 22.5391i − 0.714538i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.d.b.433.3 4
3.2 odd 2 inner 864.2.d.b.433.2 4
4.3 odd 2 216.2.d.a.109.4 yes 4
8.3 odd 2 216.2.d.a.109.1 4
8.5 even 2 inner 864.2.d.b.433.2 4
9.2 odd 6 2592.2.r.o.433.3 8
9.4 even 3 2592.2.r.o.2161.3 8
9.5 odd 6 2592.2.r.o.2161.2 8
9.7 even 3 2592.2.r.o.433.2 8
12.11 even 2 216.2.d.a.109.1 4
16.3 odd 4 6912.2.a.bz.1.1 2
16.5 even 4 6912.2.a.y.1.2 2
16.11 odd 4 6912.2.a.z.1.2 2
16.13 even 4 6912.2.a.by.1.1 2
24.5 odd 2 CM 864.2.d.b.433.3 4
24.11 even 2 216.2.d.a.109.4 yes 4
36.7 odd 6 648.2.n.p.109.3 8
36.11 even 6 648.2.n.p.109.2 8
36.23 even 6 648.2.n.p.541.3 8
36.31 odd 6 648.2.n.p.541.2 8
48.5 odd 4 6912.2.a.by.1.1 2
48.11 even 4 6912.2.a.bz.1.1 2
48.29 odd 4 6912.2.a.y.1.2 2
48.35 even 4 6912.2.a.z.1.2 2
72.5 odd 6 2592.2.r.o.2161.3 8
72.11 even 6 648.2.n.p.109.3 8
72.13 even 6 2592.2.r.o.2161.2 8
72.29 odd 6 2592.2.r.o.433.2 8
72.43 odd 6 648.2.n.p.109.2 8
72.59 even 6 648.2.n.p.541.2 8
72.61 even 6 2592.2.r.o.433.3 8
72.67 odd 6 648.2.n.p.541.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.d.a.109.1 4 8.3 odd 2
216.2.d.a.109.1 4 12.11 even 2
216.2.d.a.109.4 yes 4 4.3 odd 2
216.2.d.a.109.4 yes 4 24.11 even 2
648.2.n.p.109.2 8 36.11 even 6
648.2.n.p.109.2 8 72.43 odd 6
648.2.n.p.109.3 8 36.7 odd 6
648.2.n.p.109.3 8 72.11 even 6
648.2.n.p.541.2 8 36.31 odd 6
648.2.n.p.541.2 8 72.59 even 6
648.2.n.p.541.3 8 36.23 even 6
648.2.n.p.541.3 8 72.67 odd 6
864.2.d.b.433.2 4 3.2 odd 2 inner
864.2.d.b.433.2 4 8.5 even 2 inner
864.2.d.b.433.3 4 1.1 even 1 trivial
864.2.d.b.433.3 4 24.5 odd 2 CM
2592.2.r.o.433.2 8 9.7 even 3
2592.2.r.o.433.2 8 72.29 odd 6
2592.2.r.o.433.3 8 9.2 odd 6
2592.2.r.o.433.3 8 72.61 even 6
2592.2.r.o.2161.2 8 9.5 odd 6
2592.2.r.o.2161.2 8 72.13 even 6
2592.2.r.o.2161.3 8 9.4 even 3
2592.2.r.o.2161.3 8 72.5 odd 6
6912.2.a.y.1.2 2 16.5 even 4
6912.2.a.y.1.2 2 48.29 odd 4
6912.2.a.z.1.2 2 16.11 odd 4
6912.2.a.z.1.2 2 48.35 even 4
6912.2.a.by.1.1 2 16.13 even 4
6912.2.a.by.1.1 2 48.5 odd 4
6912.2.a.bz.1.1 2 16.3 odd 4
6912.2.a.bz.1.1 2 48.11 even 4