Properties

Label 864.2.c.b.863.3
Level $864$
Weight $2$
Character 864.863
Analytic conductor $6.899$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 863.3
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 864.863
Dual form 864.2.c.b.863.6

$q$-expansion

\(f(q)\) \(=\) \(q-1.03528i q^{5} -0.267949i q^{7} +O(q^{10})\) \(q-1.03528i q^{5} -0.267949i q^{7} -3.86370 q^{11} -2.46410 q^{13} -6.69213i q^{17} -1.73205i q^{19} -5.93426 q^{23} +3.92820 q^{25} -2.07055i q^{29} +0.535898i q^{31} -0.277401 q^{35} -6.46410 q^{37} -2.07055i q^{41} +7.46410i q^{43} -9.52056 q^{47} +6.92820 q^{49} -13.3843i q^{53} +4.00000i q^{55} -7.45001 q^{59} -9.39230 q^{61} +2.55103i q^{65} -9.73205i q^{67} +11.3137 q^{71} +9.92820 q^{73} +1.03528i q^{77} -15.1962i q^{79} -7.72741 q^{83} -6.92820 q^{85} -6.69213i q^{89} +0.660254i q^{91} -1.79315 q^{95} +7.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 8q^{13} - 24q^{25} - 24q^{37} + 8q^{61} + 24q^{73} + 56q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.03528i − 0.462990i −0.972836 0.231495i \(-0.925638\pi\)
0.972836 0.231495i \(-0.0743616\pi\)
\(6\) 0 0
\(7\) − 0.267949i − 0.101275i −0.998717 0.0506376i \(-0.983875\pi\)
0.998717 0.0506376i \(-0.0161254\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.86370 −1.16495 −0.582475 0.812848i \(-0.697916\pi\)
−0.582475 + 0.812848i \(0.697916\pi\)
\(12\) 0 0
\(13\) −2.46410 −0.683419 −0.341709 0.939806i \(-0.611006\pi\)
−0.341709 + 0.939806i \(0.611006\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 6.69213i − 1.62308i −0.584297 0.811540i \(-0.698630\pi\)
0.584297 0.811540i \(-0.301370\pi\)
\(18\) 0 0
\(19\) − 1.73205i − 0.397360i −0.980064 0.198680i \(-0.936335\pi\)
0.980064 0.198680i \(-0.0636654\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.93426 −1.23738 −0.618689 0.785636i \(-0.712336\pi\)
−0.618689 + 0.785636i \(0.712336\pi\)
\(24\) 0 0
\(25\) 3.92820 0.785641
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 2.07055i − 0.384492i −0.981347 0.192246i \(-0.938423\pi\)
0.981347 0.192246i \(-0.0615771\pi\)
\(30\) 0 0
\(31\) 0.535898i 0.0962502i 0.998841 + 0.0481251i \(0.0153246\pi\)
−0.998841 + 0.0481251i \(0.984675\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.277401 −0.0468894
\(36\) 0 0
\(37\) −6.46410 −1.06269 −0.531346 0.847155i \(-0.678314\pi\)
−0.531346 + 0.847155i \(0.678314\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 2.07055i − 0.323366i −0.986843 0.161683i \(-0.948308\pi\)
0.986843 0.161683i \(-0.0516922\pi\)
\(42\) 0 0
\(43\) 7.46410i 1.13826i 0.822246 + 0.569132i \(0.192721\pi\)
−0.822246 + 0.569132i \(0.807279\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.52056 −1.38872 −0.694358 0.719630i \(-0.744312\pi\)
−0.694358 + 0.719630i \(0.744312\pi\)
\(48\) 0 0
\(49\) 6.92820 0.989743
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 13.3843i − 1.83847i −0.393710 0.919235i \(-0.628808\pi\)
0.393710 0.919235i \(-0.371192\pi\)
\(54\) 0 0
\(55\) 4.00000i 0.539360i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.45001 −0.969908 −0.484954 0.874540i \(-0.661164\pi\)
−0.484954 + 0.874540i \(0.661164\pi\)
\(60\) 0 0
\(61\) −9.39230 −1.20256 −0.601281 0.799038i \(-0.705343\pi\)
−0.601281 + 0.799038i \(0.705343\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.55103i 0.316416i
\(66\) 0 0
\(67\) − 9.73205i − 1.18896i −0.804111 0.594480i \(-0.797358\pi\)
0.804111 0.594480i \(-0.202642\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3137 1.34269 0.671345 0.741145i \(-0.265717\pi\)
0.671345 + 0.741145i \(0.265717\pi\)
\(72\) 0 0
\(73\) 9.92820 1.16201 0.581004 0.813901i \(-0.302660\pi\)
0.581004 + 0.813901i \(0.302660\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.03528i 0.117981i
\(78\) 0 0
\(79\) − 15.1962i − 1.70970i −0.518875 0.854850i \(-0.673649\pi\)
0.518875 0.854850i \(-0.326351\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.72741 −0.848193 −0.424097 0.905617i \(-0.639408\pi\)
−0.424097 + 0.905617i \(0.639408\pi\)
\(84\) 0 0
\(85\) −6.92820 −0.751469
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 6.69213i − 0.709364i −0.934987 0.354682i \(-0.884589\pi\)
0.934987 0.354682i \(-0.115411\pi\)
\(90\) 0 0
\(91\) 0.660254i 0.0692134i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.79315 −0.183973
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.4548i 1.53781i 0.639362 + 0.768906i \(0.279198\pi\)
−0.639362 + 0.768906i \(0.720802\pi\)
\(102\) 0 0
\(103\) 17.5885i 1.73304i 0.499140 + 0.866521i \(0.333649\pi\)
−0.499140 + 0.866521i \(0.666351\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.1774 1.46726 0.733628 0.679551i \(-0.237826\pi\)
0.733628 + 0.679551i \(0.237826\pi\)
\(108\) 0 0
\(109\) −0.928203 −0.0889057 −0.0444529 0.999011i \(-0.514154\pi\)
−0.0444529 + 0.999011i \(0.514154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.76268i 0.824324i 0.911111 + 0.412162i \(0.135226\pi\)
−0.911111 + 0.412162i \(0.864774\pi\)
\(114\) 0 0
\(115\) 6.14359i 0.572893i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.79315 −0.164378
\(120\) 0 0
\(121\) 3.92820 0.357109
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.24316i − 0.826733i
\(126\) 0 0
\(127\) − 3.46410i − 0.307389i −0.988118 0.153695i \(-0.950883\pi\)
0.988118 0.153695i \(-0.0491172\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.72741 0.675147 0.337573 0.941299i \(-0.390394\pi\)
0.337573 + 0.941299i \(0.390394\pi\)
\(132\) 0 0
\(133\) −0.464102 −0.0402427
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.8332i 0.925546i 0.886477 + 0.462773i \(0.153145\pi\)
−0.886477 + 0.462773i \(0.846855\pi\)
\(138\) 0 0
\(139\) 1.19615i 0.101456i 0.998712 + 0.0507282i \(0.0161542\pi\)
−0.998712 + 0.0507282i \(0.983846\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.52056 0.796149
\(144\) 0 0
\(145\) −2.14359 −0.178016
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.3137i 0.926855i 0.886135 + 0.463428i \(0.153381\pi\)
−0.886135 + 0.463428i \(0.846619\pi\)
\(150\) 0 0
\(151\) − 8.26795i − 0.672836i −0.941713 0.336418i \(-0.890784\pi\)
0.941713 0.336418i \(-0.109216\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.554803 0.0445628
\(156\) 0 0
\(157\) −3.07180 −0.245156 −0.122578 0.992459i \(-0.539116\pi\)
−0.122578 + 0.992459i \(0.539116\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.59008i 0.125316i
\(162\) 0 0
\(163\) − 15.5885i − 1.22098i −0.792023 0.610491i \(-0.790972\pi\)
0.792023 0.610491i \(-0.209028\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.34795 0.181690 0.0908451 0.995865i \(-0.471043\pi\)
0.0908451 + 0.995865i \(0.471043\pi\)
\(168\) 0 0
\(169\) −6.92820 −0.532939
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.24316i 0.702744i 0.936236 + 0.351372i \(0.114285\pi\)
−0.936236 + 0.351372i \(0.885715\pi\)
\(174\) 0 0
\(175\) − 1.05256i − 0.0795660i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.5959 1.46467 0.732334 0.680946i \(-0.238431\pi\)
0.732334 + 0.680946i \(0.238431\pi\)
\(180\) 0 0
\(181\) −6.46410 −0.480473 −0.240236 0.970714i \(-0.577225\pi\)
−0.240236 + 0.970714i \(0.577225\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.69213i 0.492015i
\(186\) 0 0
\(187\) 25.8564i 1.89081i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.6617 0.988523 0.494262 0.869313i \(-0.335438\pi\)
0.494262 + 0.869313i \(0.335438\pi\)
\(192\) 0 0
\(193\) 0.0717968 0.00516804 0.00258402 0.999997i \(-0.499177\pi\)
0.00258402 + 0.999997i \(0.499177\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.4195i 1.02735i 0.857985 + 0.513675i \(0.171716\pi\)
−0.857985 + 0.513675i \(0.828284\pi\)
\(198\) 0 0
\(199\) 25.5885i 1.81392i 0.421219 + 0.906959i \(0.361602\pi\)
−0.421219 + 0.906959i \(0.638398\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.554803 −0.0389395
\(204\) 0 0
\(205\) −2.14359 −0.149715
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.69213i 0.462904i
\(210\) 0 0
\(211\) − 21.7321i − 1.49610i −0.663645 0.748048i \(-0.730991\pi\)
0.663645 0.748048i \(-0.269009\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.72741 0.527005
\(216\) 0 0
\(217\) 0.143594 0.00974776
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.4901i 1.10924i
\(222\) 0 0
\(223\) − 23.4641i − 1.57127i −0.618689 0.785636i \(-0.712336\pi\)
0.618689 0.785636i \(-0.287664\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.14110 0.274855 0.137427 0.990512i \(-0.456117\pi\)
0.137427 + 0.990512i \(0.456117\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 11.3137i − 0.741186i −0.928795 0.370593i \(-0.879155\pi\)
0.928795 0.370593i \(-0.120845\pi\)
\(234\) 0 0
\(235\) 9.85641i 0.642961i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.4548 0.999689 0.499844 0.866115i \(-0.333391\pi\)
0.499844 + 0.866115i \(0.333391\pi\)
\(240\) 0 0
\(241\) 5.92820 0.381869 0.190935 0.981603i \(-0.438848\pi\)
0.190935 + 0.981603i \(0.438848\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 7.17260i − 0.458241i
\(246\) 0 0
\(247\) 4.26795i 0.271563i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.58630 −0.226365 −0.113183 0.993574i \(-0.536105\pi\)
−0.113183 + 0.993574i \(0.536105\pi\)
\(252\) 0 0
\(253\) 22.9282 1.44148
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.07055i 0.129158i 0.997913 + 0.0645788i \(0.0205704\pi\)
−0.997913 + 0.0645788i \(0.979430\pi\)
\(258\) 0 0
\(259\) 1.73205i 0.107624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.4548 −0.952985 −0.476492 0.879179i \(-0.658092\pi\)
−0.476492 + 0.879179i \(0.658092\pi\)
\(264\) 0 0
\(265\) −13.8564 −0.851192
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.10583i 0.189366i 0.995507 + 0.0946829i \(0.0301837\pi\)
−0.995507 + 0.0946829i \(0.969816\pi\)
\(270\) 0 0
\(271\) − 13.0526i − 0.792886i −0.918059 0.396443i \(-0.870244\pi\)
0.918059 0.396443i \(-0.129756\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.1774 −0.915232
\(276\) 0 0
\(277\) 20.9282 1.25745 0.628727 0.777626i \(-0.283576\pi\)
0.628727 + 0.777626i \(0.283576\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.5254i 1.04548i 0.852493 + 0.522738i \(0.175089\pi\)
−0.852493 + 0.522738i \(0.824911\pi\)
\(282\) 0 0
\(283\) − 0.535898i − 0.0318559i −0.999873 0.0159279i \(-0.994930\pi\)
0.999873 0.0159279i \(-0.00507023\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.554803 −0.0327490
\(288\) 0 0
\(289\) −27.7846 −1.63439
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 27.8038i − 1.62432i −0.583438 0.812158i \(-0.698293\pi\)
0.583438 0.812158i \(-0.301707\pi\)
\(294\) 0 0
\(295\) 7.71281i 0.449057i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 14.6226 0.845647
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.72363i 0.556773i
\(306\) 0 0
\(307\) − 22.3923i − 1.27800i −0.769208 0.638998i \(-0.779349\pi\)
0.769208 0.638998i \(-0.220651\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.0754 0.571321 0.285661 0.958331i \(-0.407787\pi\)
0.285661 + 0.958331i \(0.407787\pi\)
\(312\) 0 0
\(313\) −19.9282 −1.12641 −0.563204 0.826318i \(-0.690432\pi\)
−0.563204 + 0.826318i \(0.690432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.07055i − 0.116294i −0.998308 0.0581469i \(-0.981481\pi\)
0.998308 0.0581469i \(-0.0185192\pi\)
\(318\) 0 0
\(319\) 8.00000i 0.447914i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −11.5911 −0.644947
\(324\) 0 0
\(325\) −9.67949 −0.536922
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.55103i 0.140643i
\(330\) 0 0
\(331\) 25.1962i 1.38491i 0.721463 + 0.692453i \(0.243470\pi\)
−0.721463 + 0.692453i \(0.756530\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.0754 −0.550476
\(336\) 0 0
\(337\) −14.8564 −0.809280 −0.404640 0.914476i \(-0.632603\pi\)
−0.404640 + 0.914476i \(0.632603\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.07055i − 0.112127i
\(342\) 0 0
\(343\) − 3.73205i − 0.201512i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.4548 0.829658 0.414829 0.909899i \(-0.363841\pi\)
0.414829 + 0.909899i \(0.363841\pi\)
\(348\) 0 0
\(349\) 10.3205 0.552444 0.276222 0.961094i \(-0.410917\pi\)
0.276222 + 0.961094i \(0.410917\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 35.0507i − 1.86556i −0.360443 0.932781i \(-0.617375\pi\)
0.360443 0.932781i \(-0.382625\pi\)
\(354\) 0 0
\(355\) − 11.7128i − 0.621652i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −32.1480 −1.69671 −0.848353 0.529432i \(-0.822405\pi\)
−0.848353 + 0.529432i \(0.822405\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 10.2784i − 0.537998i
\(366\) 0 0
\(367\) − 17.0526i − 0.890136i −0.895497 0.445068i \(-0.853179\pi\)
0.895497 0.445068i \(-0.146821\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.58630 −0.186192
\(372\) 0 0
\(373\) 13.2487 0.685992 0.342996 0.939337i \(-0.388558\pi\)
0.342996 + 0.939337i \(0.388558\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.10205i 0.262769i
\(378\) 0 0
\(379\) 9.19615i 0.472375i 0.971708 + 0.236187i \(0.0758979\pi\)
−0.971708 + 0.236187i \(0.924102\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.0507 −1.79101 −0.895504 0.445053i \(-0.853185\pi\)
−0.895504 + 0.445053i \(0.853185\pi\)
\(384\) 0 0
\(385\) 1.07180 0.0546238
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 14.4195i − 0.731100i −0.930792 0.365550i \(-0.880881\pi\)
0.930792 0.365550i \(-0.119119\pi\)
\(390\) 0 0
\(391\) 39.7128i 2.00836i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.7322 −0.791574
\(396\) 0 0
\(397\) 26.7846 1.34428 0.672141 0.740424i \(-0.265375\pi\)
0.672141 + 0.740424i \(0.265375\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 22.6274i − 1.12996i −0.825105 0.564980i \(-0.808884\pi\)
0.825105 0.564980i \(-0.191116\pi\)
\(402\) 0 0
\(403\) − 1.32051i − 0.0657792i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.9754 1.23798
\(408\) 0 0
\(409\) −13.0000 −0.642809 −0.321404 0.946942i \(-0.604155\pi\)
−0.321404 + 0.946942i \(0.604155\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.99622i 0.0982277i
\(414\) 0 0
\(415\) 8.00000i 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.7322 −0.768569 −0.384284 0.923215i \(-0.625552\pi\)
−0.384284 + 0.923215i \(0.625552\pi\)
\(420\) 0 0
\(421\) 9.53590 0.464751 0.232376 0.972626i \(-0.425350\pi\)
0.232376 + 0.972626i \(0.425350\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 26.2880i − 1.27516i
\(426\) 0 0
\(427\) 2.51666i 0.121790i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.37945 −0.259119 −0.129560 0.991572i \(-0.541356\pi\)
−0.129560 + 0.991572i \(0.541356\pi\)
\(432\) 0 0
\(433\) −26.7846 −1.28719 −0.643593 0.765368i \(-0.722557\pi\)
−0.643593 + 0.765368i \(0.722557\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.2784i 0.491684i
\(438\) 0 0
\(439\) − 21.3205i − 1.01757i −0.860893 0.508786i \(-0.830094\pi\)
0.860893 0.508786i \(-0.169906\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.3233 −1.29817 −0.649085 0.760716i \(-0.724848\pi\)
−0.649085 + 0.760716i \(0.724848\pi\)
\(444\) 0 0
\(445\) −6.92820 −0.328428
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.9038i 0.608967i 0.952518 + 0.304484i \(0.0984839\pi\)
−0.952518 + 0.304484i \(0.901516\pi\)
\(450\) 0 0
\(451\) 8.00000i 0.376705i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.683545 0.0320451
\(456\) 0 0
\(457\) −34.7846 −1.62716 −0.813578 0.581456i \(-0.802483\pi\)
−0.813578 + 0.581456i \(0.802483\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 25.7332i − 1.19852i −0.800556 0.599258i \(-0.795462\pi\)
0.800556 0.599258i \(-0.204538\pi\)
\(462\) 0 0
\(463\) − 31.1962i − 1.44981i −0.688850 0.724904i \(-0.741884\pi\)
0.688850 0.724904i \(-0.258116\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −38.3596 −1.77507 −0.887536 0.460738i \(-0.847585\pi\)
−0.887536 + 0.460738i \(0.847585\pi\)
\(468\) 0 0
\(469\) −2.60770 −0.120412
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 28.8391i − 1.32602i
\(474\) 0 0
\(475\) − 6.80385i − 0.312182i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.9000 0.680799 0.340399 0.940281i \(-0.389438\pi\)
0.340399 + 0.940281i \(0.389438\pi\)
\(480\) 0 0
\(481\) 15.9282 0.726264
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 7.24693i − 0.329066i
\(486\) 0 0
\(487\) 23.4449i 1.06239i 0.847250 + 0.531194i \(0.178257\pi\)
−0.847250 + 0.531194i \(0.821743\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.7322 0.709985 0.354992 0.934869i \(-0.384483\pi\)
0.354992 + 0.934869i \(0.384483\pi\)
\(492\) 0 0
\(493\) −13.8564 −0.624061
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 3.03150i − 0.135981i
\(498\) 0 0
\(499\) − 12.5359i − 0.561184i −0.959827 0.280592i \(-0.909469\pi\)
0.959827 0.280592i \(-0.0905308\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.1165 −1.29824 −0.649120 0.760686i \(-0.724863\pi\)
−0.649120 + 0.760686i \(0.724863\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 18.5606i − 0.822686i −0.911481 0.411343i \(-0.865060\pi\)
0.911481 0.411343i \(-0.134940\pi\)
\(510\) 0 0
\(511\) − 2.66025i − 0.117683i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.2089 0.802380
\(516\) 0 0
\(517\) 36.7846 1.61779
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37.6018i 1.64736i 0.567053 + 0.823681i \(0.308084\pi\)
−0.567053 + 0.823681i \(0.691916\pi\)
\(522\) 0 0
\(523\) − 10.8038i − 0.472419i −0.971702 0.236210i \(-0.924095\pi\)
0.971702 0.236210i \(-0.0759052\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.58630 0.156222
\(528\) 0 0
\(529\) 12.2154 0.531104
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.10205i 0.220994i
\(534\) 0 0
\(535\) − 15.7128i − 0.679324i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −26.7685 −1.15300
\(540\) 0 0
\(541\) 14.6077 0.628034 0.314017 0.949417i \(-0.398325\pi\)
0.314017 + 0.949417i \(0.398325\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.960947i 0.0411624i
\(546\) 0 0
\(547\) − 5.73205i − 0.245085i −0.992463 0.122542i \(-0.960895\pi\)
0.992463 0.122542i \(-0.0391047\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.58630 −0.152782
\(552\) 0 0
\(553\) −4.07180 −0.173150
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.2784i 0.435511i 0.976003 + 0.217756i \(0.0698736\pi\)
−0.976003 + 0.217756i \(0.930126\pi\)
\(558\) 0 0
\(559\) − 18.3923i − 0.777912i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.0411 0.802487 0.401244 0.915971i \(-0.368578\pi\)
0.401244 + 0.915971i \(0.368578\pi\)
\(564\) 0 0
\(565\) 9.07180 0.381653
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 38.5627i − 1.61663i −0.588748 0.808316i \(-0.700379\pi\)
0.588748 0.808316i \(-0.299621\pi\)
\(570\) 0 0
\(571\) 23.0526i 0.964720i 0.875973 + 0.482360i \(0.160220\pi\)
−0.875973 + 0.482360i \(0.839780\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −23.3110 −0.972134
\(576\) 0 0
\(577\) −26.0718 −1.08538 −0.542692 0.839932i \(-0.682595\pi\)
−0.542692 + 0.839932i \(0.682595\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.07055i 0.0859010i
\(582\) 0 0
\(583\) 51.7128i 2.14173i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.277401 0.0114496 0.00572479 0.999984i \(-0.498178\pi\)
0.00572479 + 0.999984i \(0.498178\pi\)
\(588\) 0 0
\(589\) 0.928203 0.0382459
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 25.8076i − 1.05979i −0.848063 0.529895i \(-0.822231\pi\)
0.848063 0.529895i \(-0.177769\pi\)
\(594\) 0 0
\(595\) 1.85641i 0.0761052i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.8685 −0.484934 −0.242467 0.970160i \(-0.577957\pi\)
−0.242467 + 0.970160i \(0.577957\pi\)
\(600\) 0 0
\(601\) 6.78461 0.276750 0.138375 0.990380i \(-0.455812\pi\)
0.138375 + 0.990380i \(0.455812\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 4.06678i − 0.165338i
\(606\) 0 0
\(607\) 10.6603i 0.432686i 0.976317 + 0.216343i \(0.0694130\pi\)
−0.976317 + 0.216343i \(0.930587\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 23.4596 0.949075
\(612\) 0 0
\(613\) −37.3923 −1.51026 −0.755130 0.655575i \(-0.772427\pi\)
−0.755130 + 0.655575i \(0.772427\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.72363i − 0.391459i −0.980658 0.195729i \(-0.937293\pi\)
0.980658 0.195729i \(-0.0627074\pi\)
\(618\) 0 0
\(619\) − 0.660254i − 0.0265379i −0.999912 0.0132689i \(-0.995776\pi\)
0.999912 0.0132689i \(-0.00422375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.79315 −0.0718411
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 43.2586i 1.72483i
\(630\) 0 0
\(631\) − 19.9808i − 0.795422i −0.917511 0.397711i \(-0.869805\pi\)
0.917511 0.397711i \(-0.130195\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.58630 −0.142318
\(636\) 0 0
\(637\) −17.0718 −0.676409
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.2233i 1.66772i 0.551975 + 0.833861i \(0.313874\pi\)
−0.551975 + 0.833861i \(0.686126\pi\)
\(642\) 0 0
\(643\) 17.6077i 0.694380i 0.937795 + 0.347190i \(0.112864\pi\)
−0.937795 + 0.347190i \(0.887136\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.1822 0.911387 0.455694 0.890137i \(-0.349391\pi\)
0.455694 + 0.890137i \(0.349391\pi\)
\(648\) 0 0
\(649\) 28.7846 1.12989
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 10.3528i − 0.405135i −0.979268 0.202567i \(-0.935071\pi\)
0.979268 0.202567i \(-0.0649285\pi\)
\(654\) 0 0
\(655\) − 8.00000i − 0.312586i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.4959 1.34377 0.671885 0.740655i \(-0.265485\pi\)
0.671885 + 0.740655i \(0.265485\pi\)
\(660\) 0 0
\(661\) −43.2487 −1.68218 −0.841090 0.540895i \(-0.818086\pi\)
−0.841090 + 0.540895i \(0.818086\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.480473i 0.0186320i
\(666\) 0 0
\(667\) 12.2872i 0.475762i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36.2891 1.40092
\(672\) 0 0
\(673\) 20.8564 0.803955 0.401978 0.915649i \(-0.368323\pi\)
0.401978 + 0.915649i \(0.368323\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 21.5921i − 0.829853i −0.909855 0.414927i \(-0.863807\pi\)
0.909855 0.414927i \(-0.136193\pi\)
\(678\) 0 0
\(679\) − 1.87564i − 0.0719806i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −33.9411 −1.29872 −0.649361 0.760481i \(-0.724963\pi\)
−0.649361 + 0.760481i \(0.724963\pi\)
\(684\) 0 0
\(685\) 11.2154 0.428518
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 32.9802i 1.25644i
\(690\) 0 0
\(691\) − 30.3923i − 1.15618i −0.815974 0.578089i \(-0.803799\pi\)
0.815974 0.578089i \(-0.196201\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.23835 0.0469732
\(696\) 0 0
\(697\) −13.8564 −0.524849
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 49.4703i 1.86847i 0.356663 + 0.934233i \(0.383914\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(702\) 0 0
\(703\) 11.1962i 0.422271i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.14110 0.155742
\(708\) 0 0
\(709\) 12.1769 0.457314 0.228657 0.973507i \(-0.426567\pi\)
0.228657 + 0.973507i \(0.426567\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 3.18016i − 0.119098i
\(714\) 0 0
\(715\) − 9.85641i − 0.368609i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.58630 0.133746 0.0668732 0.997761i \(-0.478698\pi\)
0.0668732 + 0.997761i \(0.478698\pi\)
\(720\) 0 0
\(721\) 4.71281 0.175514
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 8.13355i − 0.302072i
\(726\) 0 0
\(727\) − 21.3205i − 0.790734i −0.918523 0.395367i \(-0.870617\pi\)
0.918523 0.395367i \(-0.129383\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 49.9507 1.84749
\(732\) 0 0
\(733\) −32.9282 −1.21623 −0.608115 0.793849i \(-0.708074\pi\)
−0.608115 + 0.793849i \(0.708074\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.6018i 1.38508i
\(738\) 0 0
\(739\) − 14.3923i − 0.529429i −0.964327 0.264715i \(-0.914722\pi\)
0.964327 0.264715i \(-0.0852778\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.5302 0.936611 0.468306 0.883567i \(-0.344865\pi\)
0.468306 + 0.883567i \(0.344865\pi\)
\(744\) 0 0
\(745\) 11.7128 0.429124
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 4.06678i − 0.148597i
\(750\) 0 0
\(751\) − 3.19615i − 0.116629i −0.998298 0.0583146i \(-0.981427\pi\)
0.998298 0.0583146i \(-0.0185727\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.55961 −0.311516
\(756\) 0 0
\(757\) −5.39230 −0.195987 −0.0979933 0.995187i \(-0.531242\pi\)
−0.0979933 + 0.995187i \(0.531242\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 43.8134i 1.58824i 0.607764 + 0.794118i \(0.292067\pi\)
−0.607764 + 0.794118i \(0.707933\pi\)
\(762\) 0 0
\(763\) 0.248711i 0.00900395i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.3576 0.662853
\(768\) 0 0
\(769\) 12.8564 0.463614 0.231807 0.972762i \(-0.425536\pi\)
0.231807 + 0.972762i \(0.425536\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 20.5569i − 0.739379i −0.929155 0.369690i \(-0.879464\pi\)
0.929155 0.369690i \(-0.120536\pi\)
\(774\) 0 0
\(775\) 2.10512i 0.0756181i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.58630 −0.128493
\(780\) 0 0
\(781\) −43.7128 −1.56417
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.18016i 0.113505i
\(786\) 0 0
\(787\) 30.2679i 1.07894i 0.842006 + 0.539468i \(0.181375\pi\)
−0.842006 + 0.539468i \(0.818625\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.34795 0.0834836
\(792\) 0 0
\(793\) 23.1436 0.821853
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.03150i − 0.107381i −0.998558 0.0536906i \(-0.982902\pi\)
0.998558 0.0536906i \(-0.0170985\pi\)
\(798\) 0 0
\(799\) 63.7128i 2.25400i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −38.3596 −1.35368
\(804\) 0 0
\(805\) 1.64617 0.0580199
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.5959i 0.688956i 0.938794 + 0.344478i \(0.111944\pi\)
−0.938794 + 0.344478i \(0.888056\pi\)
\(810\) 0 0
\(811\) 15.4641i 0.543018i 0.962436 + 0.271509i \(0.0875227\pi\)
−0.962436 + 0.271509i \(0.912477\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.1384 −0.565302
\(816\) 0 0
\(817\) 12.9282 0.452301
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.5921i 0.753571i 0.926301 + 0.376785i \(0.122971\pi\)
−0.926301 + 0.376785i \(0.877029\pi\)
\(822\) 0 0
\(823\) − 39.9808i − 1.39364i −0.717245 0.696821i \(-0.754597\pi\)
0.717245 0.696821i \(-0.245403\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 54.3692 1.89060 0.945302 0.326196i \(-0.105767\pi\)
0.945302 + 0.326196i \(0.105767\pi\)
\(828\) 0 0
\(829\) 15.6795 0.544571 0.272286 0.962216i \(-0.412220\pi\)
0.272286 + 0.962216i \(0.412220\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 46.3644i − 1.60643i
\(834\) 0 0
\(835\) − 2.43078i − 0.0841206i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 52.9822 1.82915 0.914575 0.404416i \(-0.132525\pi\)
0.914575 + 0.404416i \(0.132525\pi\)
\(840\) 0 0
\(841\) 24.7128 0.852166
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.17260i 0.246745i
\(846\) 0 0
\(847\) − 1.05256i − 0.0361664i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 38.3596 1.31495
\(852\) 0 0
\(853\) 26.6077 0.911030 0.455515 0.890228i \(-0.349455\pi\)
0.455515 + 0.890228i \(0.349455\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.0822i 1.30086i 0.759564 + 0.650432i \(0.225412\pi\)
−0.759564 + 0.650432i \(0.774588\pi\)
\(858\) 0 0
\(859\) − 18.5167i − 0.631780i −0.948796 0.315890i \(-0.897697\pi\)
0.948796 0.315890i \(-0.102303\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.6302 −0.361855 −0.180927 0.983496i \(-0.557910\pi\)
−0.180927 + 0.983496i \(0.557910\pi\)
\(864\) 0 0
\(865\) 9.56922 0.325363
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 58.7134i 1.99172i
\(870\) 0 0
\(871\) 23.9808i 0.812557i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.47670 −0.0837276
\(876\) 0 0
\(877\) 25.2487 0.852588 0.426294 0.904585i \(-0.359819\pi\)
0.426294 + 0.904585i \(0.359819\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 12.9038i − 0.434740i −0.976089 0.217370i \(-0.930252\pi\)
0.976089 0.217370i \(-0.0697478\pi\)
\(882\) 0 0
\(883\) 24.1244i 0.811849i 0.913907 + 0.405925i \(0.133050\pi\)
−0.913907 + 0.405925i \(0.866950\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.8685 0.398506 0.199253 0.979948i \(-0.436149\pi\)
0.199253 + 0.979948i \(0.436149\pi\)
\(888\) 0 0
\(889\) −0.928203 −0.0311309
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.4901i 0.551820i
\(894\) 0 0
\(895\) − 20.2872i − 0.678126i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.10961 0.0370074
\(900\) 0 0
\(901\) −89.5692 −2.98398
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.69213i 0.222454i
\(906\) 0 0
\(907\) − 54.5167i − 1.81020i −0.425203 0.905098i \(-0.639797\pi\)
0.425203 0.905098i \(-0.360203\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.554803 0.0183814 0.00919072 0.999958i \(-0.497074\pi\)
0.00919072 + 0.999958i \(0.497074\pi\)
\(912\) 0 0
\(913\) 29.8564 0.988103
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2.07055i − 0.0683757i
\(918\) 0 0
\(919\) − 57.0333i − 1.88136i −0.339301 0.940678i \(-0.610191\pi\)
0.339301 0.940678i \(-0.389809\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −27.8781 −0.917620
\(924\) 0 0
\(925\) −25.3923 −0.834894
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 22.6274i − 0.742381i −0.928557 0.371191i \(-0.878950\pi\)
0.928557 0.371191i \(-0.121050\pi\)
\(930\) 0 0
\(931\) − 12.0000i − 0.393284i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 26.7685 0.875424
\(936\) 0 0
\(937\) 6.21539 0.203048 0.101524 0.994833i \(-0.467628\pi\)
0.101524 + 0.994833i \(0.467628\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31.9449i 1.04137i 0.853748 + 0.520687i \(0.174324\pi\)
−0.853748 + 0.520687i \(0.825676\pi\)
\(942\) 0 0
\(943\) 12.2872i 0.400126i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.277401 −0.00901433 −0.00450717 0.999990i \(-0.501435\pi\)
−0.00450717 + 0.999990i \(0.501435\pi\)
\(948\) 0 0
\(949\) −24.4641 −0.794138
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.9038i 0.417995i 0.977916 + 0.208997i \(0.0670200\pi\)
−0.977916 + 0.208997i \(0.932980\pi\)
\(954\) 0 0
\(955\) − 14.1436i − 0.457676i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.90276 0.0937349
\(960\) 0 0
\(961\) 30.7128 0.990736
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 0.0743295i − 0.00239275i
\(966\) 0 0
\(967\) 11.7321i 0.377277i 0.982047 + 0.188639i \(0.0604075\pi\)
−0.982047 + 0.188639i \(0.939593\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.6418 1.49681 0.748404 0.663243i \(-0.230820\pi\)
0.748404 + 0.663243i \(0.230820\pi\)
\(972\) 0 0
\(973\) 0.320508 0.0102750
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.24316i 0.295715i 0.989009 + 0.147857i \(0.0472377\pi\)
−0.989009 + 0.147857i \(0.952762\pi\)
\(978\) 0 0
\(979\) 25.8564i 0.826374i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −44.0165 −1.40391 −0.701954 0.712222i \(-0.747689\pi\)
−0.701954 + 0.712222i \(0.747689\pi\)
\(984\) 0 0
\(985\) 14.9282 0.475652
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 44.2939i − 1.40846i
\(990\) 0 0
\(991\) − 7.48334i − 0.237716i −0.992911 0.118858i \(-0.962077\pi\)
0.992911 0.118858i \(-0.0379233\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26.4911 0.839825
\(996\) 0 0
\(997\) −6.78461 −0.214871 −0.107435 0.994212i \(-0.534264\pi\)
−0.107435 + 0.994212i \(0.534264\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.c.b.863.3 8
3.2 odd 2 inner 864.2.c.b.863.5 yes 8
4.3 odd 2 inner 864.2.c.b.863.4 yes 8
8.3 odd 2 1728.2.c.f.1727.6 8
8.5 even 2 1728.2.c.f.1727.5 8
9.2 odd 6 2592.2.s.g.863.2 8
9.4 even 3 2592.2.s.c.1727.2 8
9.5 odd 6 2592.2.s.c.1727.3 8
9.7 even 3 2592.2.s.g.863.3 8
12.11 even 2 inner 864.2.c.b.863.6 yes 8
24.5 odd 2 1728.2.c.f.1727.3 8
24.11 even 2 1728.2.c.f.1727.4 8
36.7 odd 6 2592.2.s.c.863.3 8
36.11 even 6 2592.2.s.c.863.2 8
36.23 even 6 2592.2.s.g.1727.3 8
36.31 odd 6 2592.2.s.g.1727.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.2.c.b.863.3 8 1.1 even 1 trivial
864.2.c.b.863.4 yes 8 4.3 odd 2 inner
864.2.c.b.863.5 yes 8 3.2 odd 2 inner
864.2.c.b.863.6 yes 8 12.11 even 2 inner
1728.2.c.f.1727.3 8 24.5 odd 2
1728.2.c.f.1727.4 8 24.11 even 2
1728.2.c.f.1727.5 8 8.5 even 2
1728.2.c.f.1727.6 8 8.3 odd 2
2592.2.s.c.863.2 8 36.11 even 6
2592.2.s.c.863.3 8 36.7 odd 6
2592.2.s.c.1727.2 8 9.4 even 3
2592.2.s.c.1727.3 8 9.5 odd 6
2592.2.s.g.863.2 8 9.2 odd 6
2592.2.s.g.863.3 8 9.7 even 3
2592.2.s.g.1727.2 8 36.31 odd 6
2592.2.s.g.1727.3 8 36.23 even 6