Newspace parameters
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{10} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( -\zeta_{24}^{6} + 2\zeta_{24}^{2} \)
|
\(\beta_{2}\) | \(=\) |
\( 2\zeta_{24}^{6} \)
|
\(\beta_{3}\) | \(=\) |
\( \zeta_{24}^{5} + 2\zeta_{24}^{4} + \zeta_{24}^{3} - \zeta_{24} - 1 \)
|
\(\beta_{4}\) | \(=\) |
\( -\zeta_{24}^{5} + 2\zeta_{24}^{4} - \zeta_{24}^{3} + \zeta_{24} - 1 \)
|
\(\beta_{5}\) | \(=\) |
\( -2\zeta_{24}^{5} + 2\zeta_{24}^{3} + 2\zeta_{24} \)
|
\(\beta_{6}\) | \(=\) |
\( -4\zeta_{24}^{7} + 2\zeta_{24}^{5} + 2\zeta_{24}^{3} + 2\zeta_{24} \)
|
\(\beta_{7}\) | \(=\) |
\( 2\zeta_{24}^{7} + \zeta_{24}^{6} + \zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} \)
|
\(\zeta_{24}\) | \(=\) |
\( ( 2\beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} ) / 8 \)
|
\(\zeta_{24}^{2}\) | \(=\) |
\( ( \beta_{2} + 2\beta_1 ) / 4 \)
|
\(\zeta_{24}^{3}\) | \(=\) |
\( ( \beta_{5} - \beta_{4} + \beta_{3} ) / 4 \)
|
\(\zeta_{24}^{4}\) | \(=\) |
\( ( \beta_{4} + \beta_{3} + 2 ) / 4 \)
|
\(\zeta_{24}^{5}\) | \(=\) |
\( ( 2\beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} ) / 8 \)
|
\(\zeta_{24}^{6}\) | \(=\) |
\( ( \beta_{2} ) / 2 \)
|
\(\zeta_{24}^{7}\) | \(=\) |
\( ( 2\beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} ) / 8 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(353\) | \(703\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
863.1 |
|
0 | 0 | 0 | − | 3.14626i | 0 | − | 3.44949i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||
863.2 | 0 | 0 | 0 | − | 3.14626i | 0 | 3.44949i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
863.3 | 0 | 0 | 0 | − | 0.317837i | 0 | − | 1.44949i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
863.4 | 0 | 0 | 0 | − | 0.317837i | 0 | 1.44949i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
863.5 | 0 | 0 | 0 | 0.317837i | 0 | − | 1.44949i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
863.6 | 0 | 0 | 0 | 0.317837i | 0 | 1.44949i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
863.7 | 0 | 0 | 0 | 3.14626i | 0 | − | 3.44949i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
863.8 | 0 | 0 | 0 | 3.14626i | 0 | 3.44949i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.c.a | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 864.2.c.a | ✓ | 8 |
4.b | odd | 2 | 1 | inner | 864.2.c.a | ✓ | 8 |
8.b | even | 2 | 1 | 1728.2.c.g | 8 | ||
8.d | odd | 2 | 1 | 1728.2.c.g | 8 | ||
9.c | even | 3 | 1 | 2592.2.s.a | 8 | ||
9.c | even | 3 | 1 | 2592.2.s.h | 8 | ||
9.d | odd | 6 | 1 | 2592.2.s.a | 8 | ||
9.d | odd | 6 | 1 | 2592.2.s.h | 8 | ||
12.b | even | 2 | 1 | inner | 864.2.c.a | ✓ | 8 |
24.f | even | 2 | 1 | 1728.2.c.g | 8 | ||
24.h | odd | 2 | 1 | 1728.2.c.g | 8 | ||
36.f | odd | 6 | 1 | 2592.2.s.a | 8 | ||
36.f | odd | 6 | 1 | 2592.2.s.h | 8 | ||
36.h | even | 6 | 1 | 2592.2.s.a | 8 | ||
36.h | even | 6 | 1 | 2592.2.s.h | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.2.c.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
864.2.c.a | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
864.2.c.a | ✓ | 8 | 4.b | odd | 2 | 1 | inner |
864.2.c.a | ✓ | 8 | 12.b | even | 2 | 1 | inner |
1728.2.c.g | 8 | 8.b | even | 2 | 1 | ||
1728.2.c.g | 8 | 8.d | odd | 2 | 1 | ||
1728.2.c.g | 8 | 24.f | even | 2 | 1 | ||
1728.2.c.g | 8 | 24.h | odd | 2 | 1 | ||
2592.2.s.a | 8 | 9.c | even | 3 | 1 | ||
2592.2.s.a | 8 | 9.d | odd | 6 | 1 | ||
2592.2.s.a | 8 | 36.f | odd | 6 | 1 | ||
2592.2.s.a | 8 | 36.h | even | 6 | 1 | ||
2592.2.s.h | 8 | 9.c | even | 3 | 1 | ||
2592.2.s.h | 8 | 9.d | odd | 6 | 1 | ||
2592.2.s.h | 8 | 36.f | odd | 6 | 1 | ||
2592.2.s.h | 8 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 10T_{5}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(864, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( T^{8} \)
$5$
\( (T^{4} + 10 T^{2} + 1)^{2} \)
$7$
\( (T^{4} + 14 T^{2} + 25)^{2} \)
$11$
\( (T^{4} - 22 T^{2} + 25)^{2} \)
$13$
\( (T^{2} + 4 T - 20)^{4} \)
$17$
\( (T^{2} + 12)^{4} \)
$19$
\( (T^{2} + 24)^{4} \)
$23$
\( (T^{2} - 8)^{4} \)
$29$
\( (T^{4} + 88 T^{2} + 400)^{2} \)
$31$
\( (T^{4} + 62 T^{2} + 361)^{2} \)
$37$
\( (T^{2} - 24)^{4} \)
$41$
\( (T^{4} + 112 T^{2} + 1600)^{2} \)
$43$
\( (T^{4} + 56 T^{2} + 400)^{2} \)
$47$
\( (T^{4} - 88 T^{2} + 400)^{2} \)
$53$
\( (T^{4} + 186 T^{2} + 3249)^{2} \)
$59$
\( (T^{4} - 88 T^{2} + 400)^{2} \)
$61$
\( (T - 4)^{8} \)
$67$
\( (T^{4} + 248 T^{2} + 5776)^{2} \)
$71$
\( (T^{4} - 232 T^{2} + 10000)^{2} \)
$73$
\( (T^{2} + 6 T - 15)^{4} \)
$79$
\( (T^{2} + 4)^{4} \)
$83$
\( (T^{4} - 406 T^{2} + 38809)^{2} \)
$89$
\( (T^{4} + 168 T^{2} + 3600)^{2} \)
$97$
\( (T + 5)^{8} \)
show more
show less