Properties

Label 864.2.c
Level $864$
Weight $2$
Character orbit 864.c
Rep. character $\chi_{864}(863,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $2$
Sturm bound $288$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(288\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(864, [\chi])\).

Total New Old
Modular forms 168 16 152
Cusp forms 120 16 104
Eisenstein series 48 0 48

Trace form

\( 16q + O(q^{10}) \) \( 16q - 8q^{13} - 24q^{25} - 24q^{37} + 40q^{61} + 48q^{85} + 16q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(864, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
864.2.c.a \(8\) \(6.899\) \(\Q(\zeta_{24})\) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{3}q^{5}-\zeta_{24}^{7}q^{7}+(\zeta_{24}+\zeta_{24}^{5}+\cdots)q^{11}+\cdots\)
864.2.c.b \(8\) \(6.899\) \(\Q(\zeta_{24})\) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{24}^{2}q^{5}+(-\zeta_{24}-\zeta_{24}^{3})q^{7}+\zeta_{24}^{6}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(864, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(864, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)