Properties

Label 864.2.bi.a.767.35
Level $864$
Weight $2$
Character 864.767
Analytic conductor $6.899$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(95,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.95"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 17])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(36\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 767.35
Character \(\chi\) \(=\) 864.767
Dual form 864.2.bi.a.383.35

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71055 - 0.272051i) q^{3} +(0.354987 - 0.975319i) q^{5} +(4.63649 + 0.817538i) q^{7} +(2.85198 - 0.930714i) q^{9} +(-2.32491 + 0.846199i) q^{11} +(-2.86530 + 2.40427i) q^{13} +(0.341888 - 1.76491i) q^{15} +(2.82032 - 1.62831i) q^{17} +(3.42322 + 1.97639i) q^{19} +(8.15337 + 0.137081i) q^{21} +(-1.06509 - 6.04044i) q^{23} +(3.00499 + 2.52149i) q^{25} +(4.62525 - 2.36792i) q^{27} +(-5.10059 + 6.07864i) q^{29} +(-10.2706 + 1.81099i) q^{31} +(-3.74667 + 2.07996i) q^{33} +(2.44325 - 4.23184i) q^{35} +(0.0304565 + 0.0527523i) q^{37} +(-4.24716 + 4.89214i) q^{39} +(-4.26685 - 5.08504i) q^{41} +(-3.68141 - 10.1146i) q^{43} +(0.104672 - 3.11198i) q^{45} +(1.20067 - 6.80932i) q^{47} +(14.2508 + 5.18687i) q^{49} +(4.38132 - 3.55258i) q^{51} +6.06507i q^{53} +2.56792i q^{55} +(6.39327 + 2.44944i) q^{57} +(8.99831 + 3.27512i) q^{59} +(-1.05617 + 5.98986i) q^{61} +(13.9840 - 1.98364i) q^{63} +(1.32779 + 3.64807i) q^{65} +(-0.695330 - 0.828662i) q^{67} +(-3.46520 - 10.0427i) q^{69} +(-3.24312 - 5.61724i) q^{71} +(1.27559 - 2.20939i) q^{73} +(5.82616 + 3.49562i) q^{75} +(-11.4712 + 2.02269i) q^{77} +(2.30281 - 2.74438i) q^{79} +(7.26754 - 5.30875i) q^{81} +(-5.87486 - 4.92959i) q^{83} +(-0.586947 - 3.32874i) q^{85} +(-7.07112 + 11.7855i) q^{87} +(5.37546 + 3.10353i) q^{89} +(-15.2505 + 8.80488i) q^{91} +(-17.0757 + 5.89191i) q^{93} +(3.14281 - 2.63713i) q^{95} +(-1.14812 + 0.417883i) q^{97} +(-5.84303 + 4.57717i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 24 q^{29} + 36 q^{33} + 36 q^{41} - 24 q^{45} + 12 q^{57} + 48 q^{65} + 48 q^{69} + 48 q^{77} + 48 q^{81} + 36 q^{89} - 144 q^{93} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71055 0.272051i 0.987588 0.157069i
\(4\) 0 0
\(5\) 0.354987 0.975319i 0.158755 0.436176i −0.834657 0.550770i \(-0.814334\pi\)
0.993412 + 0.114593i \(0.0365565\pi\)
\(6\) 0 0
\(7\) 4.63649 + 0.817538i 1.75243 + 0.309000i 0.955482 0.295050i \(-0.0953364\pi\)
0.796946 + 0.604051i \(0.206448\pi\)
\(8\) 0 0
\(9\) 2.85198 0.930714i 0.950659 0.310238i
\(10\) 0 0
\(11\) −2.32491 + 0.846199i −0.700987 + 0.255139i −0.667832 0.744312i \(-0.732778\pi\)
−0.0331549 + 0.999450i \(0.510555\pi\)
\(12\) 0 0
\(13\) −2.86530 + 2.40427i −0.794691 + 0.666825i −0.946902 0.321523i \(-0.895805\pi\)
0.152211 + 0.988348i \(0.451361\pi\)
\(14\) 0 0
\(15\) 0.341888 1.76491i 0.0882750 0.455698i
\(16\) 0 0
\(17\) 2.82032 1.62831i 0.684028 0.394924i −0.117343 0.993091i \(-0.537438\pi\)
0.801371 + 0.598168i \(0.204104\pi\)
\(18\) 0 0
\(19\) 3.42322 + 1.97639i 0.785340 + 0.453416i 0.838319 0.545179i \(-0.183539\pi\)
−0.0529796 + 0.998596i \(0.516872\pi\)
\(20\) 0 0
\(21\) 8.15337 + 0.137081i 1.77921 + 0.0299135i
\(22\) 0 0
\(23\) −1.06509 6.04044i −0.222087 1.25952i −0.868176 0.496256i \(-0.834708\pi\)
0.646089 0.763262i \(-0.276404\pi\)
\(24\) 0 0
\(25\) 3.00499 + 2.52149i 0.600998 + 0.504297i
\(26\) 0 0
\(27\) 4.62525 2.36792i 0.890130 0.455706i
\(28\) 0 0
\(29\) −5.10059 + 6.07864i −0.947155 + 1.12878i 0.0443902 + 0.999014i \(0.485866\pi\)
−0.991545 + 0.129761i \(0.958579\pi\)
\(30\) 0 0
\(31\) −10.2706 + 1.81099i −1.84466 + 0.325263i −0.983195 0.182560i \(-0.941562\pi\)
−0.861462 + 0.507823i \(0.830450\pi\)
\(32\) 0 0
\(33\) −3.74667 + 2.07996i −0.652212 + 0.362075i
\(34\) 0 0
\(35\) 2.44325 4.23184i 0.412985 0.715312i
\(36\) 0 0
\(37\) 0.0304565 + 0.0527523i 0.00500702 + 0.00867242i 0.868518 0.495658i \(-0.165073\pi\)
−0.863511 + 0.504330i \(0.831740\pi\)
\(38\) 0 0
\(39\) −4.24716 + 4.89214i −0.680090 + 0.783369i
\(40\) 0 0
\(41\) −4.26685 5.08504i −0.666370 0.794149i 0.321915 0.946769i \(-0.395674\pi\)
−0.988285 + 0.152620i \(0.951229\pi\)
\(42\) 0 0
\(43\) −3.68141 10.1146i −0.561410 1.54246i −0.817572 0.575826i \(-0.804680\pi\)
0.256162 0.966634i \(-0.417542\pi\)
\(44\) 0 0
\(45\) 0.104672 3.11198i 0.0156036 0.463907i
\(46\) 0 0
\(47\) 1.20067 6.80932i 0.175135 0.993241i −0.762852 0.646573i \(-0.776202\pi\)
0.937988 0.346669i \(-0.112687\pi\)
\(48\) 0 0
\(49\) 14.2508 + 5.18687i 2.03583 + 0.740981i
\(50\) 0 0
\(51\) 4.38132 3.55258i 0.613507 0.497461i
\(52\) 0 0
\(53\) 6.06507i 0.833101i 0.909113 + 0.416551i \(0.136761\pi\)
−0.909113 + 0.416551i \(0.863239\pi\)
\(54\) 0 0
\(55\) 2.56792i 0.346258i
\(56\) 0 0
\(57\) 6.39327 + 2.44944i 0.846809 + 0.324436i
\(58\) 0 0
\(59\) 8.99831 + 3.27512i 1.17148 + 0.426384i 0.853185 0.521608i \(-0.174668\pi\)
0.318295 + 0.947992i \(0.396890\pi\)
\(60\) 0 0
\(61\) −1.05617 + 5.98986i −0.135229 + 0.766924i 0.839470 + 0.543405i \(0.182865\pi\)
−0.974700 + 0.223518i \(0.928246\pi\)
\(62\) 0 0
\(63\) 13.9840 1.98364i 1.76182 0.249916i
\(64\) 0 0
\(65\) 1.32779 + 3.64807i 0.164692 + 0.452487i
\(66\) 0 0
\(67\) −0.695330 0.828662i −0.0849481 0.101237i 0.721896 0.692001i \(-0.243271\pi\)
−0.806844 + 0.590764i \(0.798826\pi\)
\(68\) 0 0
\(69\) −3.46520 10.0427i −0.417161 1.20900i
\(70\) 0 0
\(71\) −3.24312 5.61724i −0.384887 0.666644i 0.606867 0.794804i \(-0.292426\pi\)
−0.991754 + 0.128160i \(0.959093\pi\)
\(72\) 0 0
\(73\) 1.27559 2.20939i 0.149297 0.258589i −0.781671 0.623691i \(-0.785632\pi\)
0.930968 + 0.365102i \(0.118966\pi\)
\(74\) 0 0
\(75\) 5.82616 + 3.49562i 0.672748 + 0.403640i
\(76\) 0 0
\(77\) −11.4712 + 2.02269i −1.30727 + 0.230507i
\(78\) 0 0
\(79\) 2.30281 2.74438i 0.259086 0.308767i −0.620783 0.783982i \(-0.713185\pi\)
0.879870 + 0.475215i \(0.157630\pi\)
\(80\) 0 0
\(81\) 7.26754 5.30875i 0.807505 0.589861i
\(82\) 0 0
\(83\) −5.87486 4.92959i −0.644850 0.541093i 0.260654 0.965432i \(-0.416062\pi\)
−0.905503 + 0.424339i \(0.860506\pi\)
\(84\) 0 0
\(85\) −0.586947 3.32874i −0.0636634 0.361053i
\(86\) 0 0
\(87\) −7.07112 + 11.7855i −0.758104 + 1.26353i
\(88\) 0 0
\(89\) 5.37546 + 3.10353i 0.569798 + 0.328973i 0.757069 0.653335i \(-0.226631\pi\)
−0.187271 + 0.982308i \(0.559964\pi\)
\(90\) 0 0
\(91\) −15.2505 + 8.80488i −1.59869 + 0.923003i
\(92\) 0 0
\(93\) −17.0757 + 5.89191i −1.77067 + 0.610963i
\(94\) 0 0
\(95\) 3.14281 2.63713i 0.322446 0.270564i
\(96\) 0 0
\(97\) −1.14812 + 0.417883i −0.116574 + 0.0424296i −0.399649 0.916668i \(-0.630868\pi\)
0.283074 + 0.959098i \(0.408646\pi\)
\(98\) 0 0
\(99\) −5.84303 + 4.57717i −0.587246 + 0.460023i
\(100\) 0 0
\(101\) −1.20697 0.212822i −0.120098 0.0211766i 0.113276 0.993564i \(-0.463866\pi\)
−0.233374 + 0.972387i \(0.574977\pi\)
\(102\) 0 0
\(103\) −0.0294082 + 0.0807983i −0.00289768 + 0.00796130i −0.941133 0.338036i \(-0.890237\pi\)
0.938235 + 0.345998i \(0.112460\pi\)
\(104\) 0 0
\(105\) 3.02804 7.90347i 0.295506 0.771300i
\(106\) 0 0
\(107\) −5.49195 −0.530927 −0.265463 0.964121i \(-0.585525\pi\)
−0.265463 + 0.964121i \(0.585525\pi\)
\(108\) 0 0
\(109\) 2.30129 0.220424 0.110212 0.993908i \(-0.464847\pi\)
0.110212 + 0.993908i \(0.464847\pi\)
\(110\) 0 0
\(111\) 0.0664488 + 0.0819498i 0.00630704 + 0.00777833i
\(112\) 0 0
\(113\) −2.55145 + 7.01005i −0.240020 + 0.659450i 0.759935 + 0.649999i \(0.225231\pi\)
−0.999955 + 0.00945118i \(0.996992\pi\)
\(114\) 0 0
\(115\) −6.26945 1.10547i −0.584629 0.103086i
\(116\) 0 0
\(117\) −5.93408 + 9.52370i −0.548606 + 0.880466i
\(118\) 0 0
\(119\) 14.4076 5.24393i 1.32074 0.480710i
\(120\) 0 0
\(121\) −3.73733 + 3.13599i −0.339757 + 0.285090i
\(122\) 0 0
\(123\) −8.68206 7.53742i −0.782835 0.679626i
\(124\) 0 0
\(125\) 8.02028 4.63051i 0.717356 0.414166i
\(126\) 0 0
\(127\) 5.18979 + 2.99632i 0.460519 + 0.265881i 0.712262 0.701913i \(-0.247671\pi\)
−0.251743 + 0.967794i \(0.581004\pi\)
\(128\) 0 0
\(129\) −9.04892 16.3000i −0.796713 1.43513i
\(130\) 0 0
\(131\) 1.38993 + 7.88269i 0.121439 + 0.688714i 0.983359 + 0.181671i \(0.0581505\pi\)
−0.861921 + 0.507043i \(0.830738\pi\)
\(132\) 0 0
\(133\) 14.2559 + 11.9621i 1.23615 + 1.03725i
\(134\) 0 0
\(135\) −0.667570 5.35168i −0.0574553 0.460599i
\(136\) 0 0
\(137\) −9.28580 + 11.0664i −0.793339 + 0.945465i −0.999453 0.0330630i \(-0.989474\pi\)
0.206114 + 0.978528i \(0.433918\pi\)
\(138\) 0 0
\(139\) −17.3993 + 3.06797i −1.47579 + 0.260222i −0.852895 0.522083i \(-0.825155\pi\)
−0.622896 + 0.782305i \(0.714044\pi\)
\(140\) 0 0
\(141\) 0.201322 11.9743i 0.0169544 1.00842i
\(142\) 0 0
\(143\) 4.62708 8.01433i 0.386936 0.670192i
\(144\) 0 0
\(145\) 4.11797 + 7.13254i 0.341979 + 0.592325i
\(146\) 0 0
\(147\) 25.7878 + 4.99547i 2.12694 + 0.412019i
\(148\) 0 0
\(149\) −11.9992 14.3001i −0.983010 1.17151i −0.985183 0.171509i \(-0.945136\pi\)
0.00217220 0.999998i \(-0.499309\pi\)
\(150\) 0 0
\(151\) 5.98345 + 16.4394i 0.486926 + 1.33782i 0.903450 + 0.428693i \(0.141026\pi\)
−0.416524 + 0.909125i \(0.636752\pi\)
\(152\) 0 0
\(153\) 6.52799 7.26882i 0.527757 0.587649i
\(154\) 0 0
\(155\) −1.87965 + 10.6600i −0.150977 + 0.856232i
\(156\) 0 0
\(157\) −2.12384 0.773014i −0.169501 0.0616932i 0.255876 0.966710i \(-0.417636\pi\)
−0.425377 + 0.905016i \(0.639858\pi\)
\(158\) 0 0
\(159\) 1.65001 + 10.3746i 0.130854 + 0.822760i
\(160\) 0 0
\(161\) 28.8772i 2.27584i
\(162\) 0 0
\(163\) 8.31889i 0.651586i 0.945441 + 0.325793i \(0.105631\pi\)
−0.945441 + 0.325793i \(0.894369\pi\)
\(164\) 0 0
\(165\) 0.698605 + 4.39256i 0.0543863 + 0.341961i
\(166\) 0 0
\(167\) −23.2280 8.45431i −1.79744 0.654214i −0.998613 0.0526516i \(-0.983233\pi\)
−0.798826 0.601563i \(-0.794545\pi\)
\(168\) 0 0
\(169\) 0.171991 0.975410i 0.0132301 0.0750315i
\(170\) 0 0
\(171\) 11.6024 + 2.45060i 0.887257 + 0.187402i
\(172\) 0 0
\(173\) −4.89575 13.4510i −0.372217 1.02266i −0.974502 0.224377i \(-0.927965\pi\)
0.602285 0.798281i \(-0.294257\pi\)
\(174\) 0 0
\(175\) 11.8712 + 14.1475i 0.897378 + 1.06945i
\(176\) 0 0
\(177\) 16.2831 + 3.15426i 1.22391 + 0.237089i
\(178\) 0 0
\(179\) −5.27954 9.14443i −0.394611 0.683486i 0.598440 0.801167i \(-0.295787\pi\)
−0.993051 + 0.117681i \(0.962454\pi\)
\(180\) 0 0
\(181\) −3.32337 + 5.75625i −0.247024 + 0.427859i −0.962699 0.270575i \(-0.912786\pi\)
0.715675 + 0.698434i \(0.246119\pi\)
\(182\) 0 0
\(183\) −0.177095 + 10.5333i −0.0130912 + 0.778645i
\(184\) 0 0
\(185\) 0.0622620 0.0109785i 0.00457759 0.000807153i
\(186\) 0 0
\(187\) −5.17912 + 6.17223i −0.378735 + 0.451358i
\(188\) 0 0
\(189\) 23.3808 7.19750i 1.70070 0.523541i
\(190\) 0 0
\(191\) 7.13864 + 5.99003i 0.516534 + 0.433423i 0.863421 0.504483i \(-0.168317\pi\)
−0.346888 + 0.937907i \(0.612762\pi\)
\(192\) 0 0
\(193\) −3.18805 18.0803i −0.229481 1.30145i −0.853932 0.520385i \(-0.825788\pi\)
0.624451 0.781064i \(-0.285323\pi\)
\(194\) 0 0
\(195\) 3.26371 + 5.87898i 0.233719 + 0.421003i
\(196\) 0 0
\(197\) −14.5047 8.37430i −1.03342 0.596644i −0.115456 0.993313i \(-0.536833\pi\)
−0.917962 + 0.396669i \(0.870166\pi\)
\(198\) 0 0
\(199\) −9.77840 + 5.64556i −0.693172 + 0.400203i −0.804799 0.593547i \(-0.797727\pi\)
0.111627 + 0.993750i \(0.464394\pi\)
\(200\) 0 0
\(201\) −1.41484 1.22830i −0.0997948 0.0866379i
\(202\) 0 0
\(203\) −28.6183 + 24.0136i −2.00861 + 1.68543i
\(204\) 0 0
\(205\) −6.47421 + 2.35642i −0.452179 + 0.164580i
\(206\) 0 0
\(207\) −8.65954 16.2359i −0.601880 1.12847i
\(208\) 0 0
\(209\) −9.63110 1.69822i −0.666197 0.117469i
\(210\) 0 0
\(211\) 6.44678 17.7124i 0.443815 1.21937i −0.493149 0.869945i \(-0.664154\pi\)
0.936964 0.349426i \(-0.113624\pi\)
\(212\) 0 0
\(213\) −7.07569 8.72629i −0.484818 0.597916i
\(214\) 0 0
\(215\) −11.1718 −0.761911
\(216\) 0 0
\(217\) −49.1001 −3.33313
\(218\) 0 0
\(219\) 1.58090 4.12630i 0.106827 0.278829i
\(220\) 0 0
\(221\) −4.16615 + 11.4464i −0.280246 + 0.769969i
\(222\) 0 0
\(223\) 9.44848 + 1.66602i 0.632717 + 0.111565i 0.480803 0.876829i \(-0.340345\pi\)
0.151914 + 0.988394i \(0.451456\pi\)
\(224\) 0 0
\(225\) 10.9169 + 4.39443i 0.727796 + 0.292962i
\(226\) 0 0
\(227\) 22.6809 8.25517i 1.50538 0.547915i 0.547935 0.836521i \(-0.315414\pi\)
0.957448 + 0.288606i \(0.0931917\pi\)
\(228\) 0 0
\(229\) 7.77014 6.51992i 0.513465 0.430848i −0.348881 0.937167i \(-0.613438\pi\)
0.862347 + 0.506318i \(0.168994\pi\)
\(230\) 0 0
\(231\) −19.0719 + 6.58067i −1.25484 + 0.432976i
\(232\) 0 0
\(233\) −20.3652 + 11.7578i −1.33417 + 0.770282i −0.985936 0.167126i \(-0.946551\pi\)
−0.348232 + 0.937408i \(0.613218\pi\)
\(234\) 0 0
\(235\) −6.21504 3.58826i −0.405425 0.234072i
\(236\) 0 0
\(237\) 3.19246 5.32089i 0.207373 0.345629i
\(238\) 0 0
\(239\) 1.68591 + 9.56129i 0.109053 + 0.618468i 0.989524 + 0.144369i \(0.0461152\pi\)
−0.880471 + 0.474099i \(0.842774\pi\)
\(240\) 0 0
\(241\) 12.0056 + 10.0739i 0.773351 + 0.648918i 0.941565 0.336832i \(-0.109356\pi\)
−0.168214 + 0.985750i \(0.553800\pi\)
\(242\) 0 0
\(243\) 10.9873 11.0580i 0.704833 0.709373i
\(244\) 0 0
\(245\) 10.1177 12.0578i 0.646397 0.770345i
\(246\) 0 0
\(247\) −14.5603 + 2.56738i −0.926451 + 0.163358i
\(248\) 0 0
\(249\) −11.3904 6.83406i −0.721834 0.433091i
\(250\) 0 0
\(251\) 1.65178 2.86096i 0.104259 0.180582i −0.809176 0.587566i \(-0.800086\pi\)
0.913435 + 0.406984i \(0.133419\pi\)
\(252\) 0 0
\(253\) 7.58766 + 13.1422i 0.477032 + 0.826244i
\(254\) 0 0
\(255\) −1.90959 5.53431i −0.119583 0.346572i
\(256\) 0 0
\(257\) 1.50604 + 1.79483i 0.0939443 + 0.111958i 0.810968 0.585090i \(-0.198941\pi\)
−0.717024 + 0.697048i \(0.754496\pi\)
\(258\) 0 0
\(259\) 0.0980844 + 0.269485i 0.00609467 + 0.0167450i
\(260\) 0 0
\(261\) −8.88928 + 22.0833i −0.550232 + 1.36692i
\(262\) 0 0
\(263\) 1.18990 6.74826i 0.0733724 0.416116i −0.925893 0.377786i \(-0.876685\pi\)
0.999265 0.0383292i \(-0.0122036\pi\)
\(264\) 0 0
\(265\) 5.91538 + 2.15302i 0.363379 + 0.132259i
\(266\) 0 0
\(267\) 10.0393 + 3.84634i 0.614397 + 0.235392i
\(268\) 0 0
\(269\) 31.7431i 1.93541i 0.252080 + 0.967706i \(0.418885\pi\)
−0.252080 + 0.967706i \(0.581115\pi\)
\(270\) 0 0
\(271\) 4.28252i 0.260145i 0.991505 + 0.130072i \(0.0415210\pi\)
−0.991505 + 0.130072i \(0.958479\pi\)
\(272\) 0 0
\(273\) −23.6914 + 19.2101i −1.43387 + 1.16265i
\(274\) 0 0
\(275\) −9.12002 3.31941i −0.549958 0.200168i
\(276\) 0 0
\(277\) −2.75570 + 15.6284i −0.165574 + 0.939017i 0.782896 + 0.622152i \(0.213741\pi\)
−0.948471 + 0.316865i \(0.897370\pi\)
\(278\) 0 0
\(279\) −27.6060 + 14.7239i −1.65273 + 0.881496i
\(280\) 0 0
\(281\) 9.95108 + 27.3404i 0.593632 + 1.63099i 0.763710 + 0.645559i \(0.223376\pi\)
−0.170079 + 0.985430i \(0.554402\pi\)
\(282\) 0 0
\(283\) −11.7848 14.0446i −0.700534 0.834864i 0.292053 0.956402i \(-0.405662\pi\)
−0.992587 + 0.121538i \(0.961217\pi\)
\(284\) 0 0
\(285\) 4.65851 5.36596i 0.275947 0.317852i
\(286\) 0 0
\(287\) −15.6260 27.0650i −0.922373 1.59760i
\(288\) 0 0
\(289\) −3.19720 + 5.53771i −0.188071 + 0.325748i
\(290\) 0 0
\(291\) −1.85024 + 1.02716i −0.108463 + 0.0602131i
\(292\) 0 0
\(293\) −2.05437 + 0.362241i −0.120017 + 0.0211623i −0.233334 0.972397i \(-0.574964\pi\)
0.113317 + 0.993559i \(0.463853\pi\)
\(294\) 0 0
\(295\) 6.38857 7.61360i 0.371957 0.443281i
\(296\) 0 0
\(297\) −8.74958 + 9.41908i −0.507702 + 0.546551i
\(298\) 0 0
\(299\) 17.5747 + 14.7469i 1.01637 + 0.852835i
\(300\) 0 0
\(301\) −8.79975 49.9059i −0.507209 2.87653i
\(302\) 0 0
\(303\) −2.12249 0.0356850i −0.121934 0.00205005i
\(304\) 0 0
\(305\) 5.46710 + 3.15643i 0.313045 + 0.180737i
\(306\) 0 0
\(307\) −3.72456 + 2.15038i −0.212572 + 0.122729i −0.602506 0.798114i \(-0.705831\pi\)
0.389934 + 0.920843i \(0.372498\pi\)
\(308\) 0 0
\(309\) −0.0283230 + 0.146210i −0.00161124 + 0.00831761i
\(310\) 0 0
\(311\) −0.907913 + 0.761830i −0.0514830 + 0.0431994i −0.668166 0.744012i \(-0.732920\pi\)
0.616683 + 0.787212i \(0.288476\pi\)
\(312\) 0 0
\(313\) 28.7922 10.4795i 1.62743 0.592336i 0.642652 0.766158i \(-0.277834\pi\)
0.984777 + 0.173822i \(0.0556119\pi\)
\(314\) 0 0
\(315\) 3.02947 14.3431i 0.170691 0.808141i
\(316\) 0 0
\(317\) 15.3113 + 2.69979i 0.859967 + 0.151635i 0.586205 0.810162i \(-0.300621\pi\)
0.273761 + 0.961798i \(0.411732\pi\)
\(318\) 0 0
\(319\) 6.71467 18.4484i 0.375950 1.03291i
\(320\) 0 0
\(321\) −9.39426 + 1.49409i −0.524337 + 0.0833919i
\(322\) 0 0
\(323\) 12.8728 0.716259
\(324\) 0 0
\(325\) −14.6725 −0.813886
\(326\) 0 0
\(327\) 3.93648 0.626068i 0.217688 0.0346216i
\(328\) 0 0
\(329\) 11.1338 30.5897i 0.613824 1.68647i
\(330\) 0 0
\(331\) 10.9163 + 1.92484i 0.600013 + 0.105799i 0.465401 0.885100i \(-0.345910\pi\)
0.134612 + 0.990898i \(0.457021\pi\)
\(332\) 0 0
\(333\) 0.135959 + 0.122102i 0.00745049 + 0.00669114i
\(334\) 0 0
\(335\) −1.05504 + 0.384004i −0.0576432 + 0.0209804i
\(336\) 0 0
\(337\) 15.1421 12.7058i 0.824845 0.692127i −0.129256 0.991611i \(-0.541259\pi\)
0.954101 + 0.299484i \(0.0968145\pi\)
\(338\) 0 0
\(339\) −2.45730 + 12.6852i −0.133462 + 0.688964i
\(340\) 0 0
\(341\) 22.3458 12.9014i 1.21009 0.698648i
\(342\) 0 0
\(343\) 33.2924 + 19.2214i 1.79762 + 1.03786i
\(344\) 0 0
\(345\) −11.0250 0.185361i −0.593564 0.00997949i
\(346\) 0 0
\(347\) −0.454724 2.57887i −0.0244109 0.138441i 0.970167 0.242439i \(-0.0779475\pi\)
−0.994577 + 0.103998i \(0.966836\pi\)
\(348\) 0 0
\(349\) −1.49726 1.25635i −0.0801463 0.0672507i 0.601834 0.798621i \(-0.294437\pi\)
−0.681981 + 0.731370i \(0.738881\pi\)
\(350\) 0 0
\(351\) −7.55962 + 17.9052i −0.403503 + 0.955706i
\(352\) 0 0
\(353\) −16.8463 + 20.0767i −0.896639 + 1.06857i 0.100645 + 0.994922i \(0.467909\pi\)
−0.997284 + 0.0736501i \(0.976535\pi\)
\(354\) 0 0
\(355\) −6.62987 + 1.16902i −0.351877 + 0.0620454i
\(356\) 0 0
\(357\) 23.2183 12.8896i 1.22884 0.682191i
\(358\) 0 0
\(359\) 5.19681 9.00114i 0.274277 0.475062i −0.695675 0.718356i \(-0.744895\pi\)
0.969953 + 0.243294i \(0.0782281\pi\)
\(360\) 0 0
\(361\) −1.68773 2.92323i −0.0888277 0.153854i
\(362\) 0 0
\(363\) −5.53974 + 6.38101i −0.290761 + 0.334916i
\(364\) 0 0
\(365\) −1.70204 2.02841i −0.0890888 0.106172i
\(366\) 0 0
\(367\) −6.33789 17.4132i −0.330835 0.908962i −0.987895 0.155124i \(-0.950422\pi\)
0.657060 0.753838i \(-0.271800\pi\)
\(368\) 0 0
\(369\) −16.9017 10.5312i −0.879866 0.548232i
\(370\) 0 0
\(371\) −4.95842 + 28.1206i −0.257428 + 1.45995i
\(372\) 0 0
\(373\) 5.82444 + 2.11992i 0.301578 + 0.109766i 0.488377 0.872633i \(-0.337589\pi\)
−0.186799 + 0.982398i \(0.559811\pi\)
\(374\) 0 0
\(375\) 12.4594 10.1027i 0.643400 0.521699i
\(376\) 0 0
\(377\) 29.6803i 1.52861i
\(378\) 0 0
\(379\) 19.5023i 1.00177i −0.865515 0.500883i \(-0.833009\pi\)
0.865515 0.500883i \(-0.166991\pi\)
\(380\) 0 0
\(381\) 9.69255 + 3.71348i 0.496564 + 0.190248i
\(382\) 0 0
\(383\) 26.3076 + 9.57518i 1.34426 + 0.489269i 0.911150 0.412075i \(-0.135196\pi\)
0.433105 + 0.901343i \(0.357418\pi\)
\(384\) 0 0
\(385\) −2.09937 + 11.9061i −0.106994 + 0.606793i
\(386\) 0 0
\(387\) −19.9131 25.4202i −1.01224 1.29218i
\(388\) 0 0
\(389\) 9.67172 + 26.5728i 0.490375 + 1.34730i 0.900337 + 0.435193i \(0.143320\pi\)
−0.409962 + 0.912103i \(0.634458\pi\)
\(390\) 0 0
\(391\) −12.8396 15.3017i −0.649328 0.773838i
\(392\) 0 0
\(393\) 4.52204 + 13.1056i 0.228107 + 0.661091i
\(394\) 0 0
\(395\) −1.85918 3.22019i −0.0935455 0.162026i
\(396\) 0 0
\(397\) 13.1024 22.6940i 0.657590 1.13898i −0.323648 0.946178i \(-0.604909\pi\)
0.981238 0.192802i \(-0.0617574\pi\)
\(398\) 0 0
\(399\) 27.6398 + 16.5835i 1.38372 + 0.830215i
\(400\) 0 0
\(401\) −6.23291 + 1.09903i −0.311257 + 0.0548830i −0.327095 0.944992i \(-0.606070\pi\)
0.0158378 + 0.999875i \(0.494958\pi\)
\(402\) 0 0
\(403\) 25.0743 29.8823i 1.24904 1.48855i
\(404\) 0 0
\(405\) −2.59784 8.97271i −0.129088 0.445858i
\(406\) 0 0
\(407\) −0.115448 0.0968721i −0.00572253 0.00480177i
\(408\) 0 0
\(409\) 6.65238 + 37.7275i 0.328939 + 1.86550i 0.480411 + 0.877043i \(0.340487\pi\)
−0.151472 + 0.988462i \(0.548401\pi\)
\(410\) 0 0
\(411\) −12.8732 + 21.4558i −0.634989 + 1.05834i
\(412\) 0 0
\(413\) 39.0430 + 22.5415i 1.92118 + 1.10919i
\(414\) 0 0
\(415\) −6.89343 + 3.97992i −0.338385 + 0.195367i
\(416\) 0 0
\(417\) −28.9278 + 9.98141i −1.41660 + 0.488792i
\(418\) 0 0
\(419\) 15.8147 13.2701i 0.772601 0.648289i −0.168773 0.985655i \(-0.553980\pi\)
0.941374 + 0.337366i \(0.109536\pi\)
\(420\) 0 0
\(421\) 22.1786 8.07235i 1.08092 0.393422i 0.260669 0.965428i \(-0.416057\pi\)
0.820250 + 0.572006i \(0.193835\pi\)
\(422\) 0 0
\(423\) −2.91326 20.5375i −0.141647 0.998567i
\(424\) 0 0
\(425\) 12.5808 + 2.21833i 0.610258 + 0.107605i
\(426\) 0 0
\(427\) −9.79388 + 26.9085i −0.473959 + 1.30219i
\(428\) 0 0
\(429\) 5.73455 14.9677i 0.276867 0.722649i
\(430\) 0 0
\(431\) 16.5976 0.799478 0.399739 0.916629i \(-0.369101\pi\)
0.399739 + 0.916629i \(0.369101\pi\)
\(432\) 0 0
\(433\) −20.5776 −0.988898 −0.494449 0.869207i \(-0.664630\pi\)
−0.494449 + 0.869207i \(0.664630\pi\)
\(434\) 0 0
\(435\) 8.98442 + 11.0803i 0.430770 + 0.531259i
\(436\) 0 0
\(437\) 8.29225 22.7828i 0.396672 1.08985i
\(438\) 0 0
\(439\) 0.237133 + 0.0418129i 0.0113177 + 0.00199562i 0.179304 0.983794i \(-0.442615\pi\)
−0.167986 + 0.985789i \(0.553726\pi\)
\(440\) 0 0
\(441\) 45.4704 + 1.52941i 2.16526 + 0.0728288i
\(442\) 0 0
\(443\) 22.4320 8.16459i 1.06578 0.387911i 0.251181 0.967940i \(-0.419181\pi\)
0.814596 + 0.580029i \(0.196959\pi\)
\(444\) 0 0
\(445\) 4.93515 4.14108i 0.233949 0.196306i
\(446\) 0 0
\(447\) −24.4155 21.1966i −1.15482 1.00257i
\(448\) 0 0
\(449\) 16.5811 9.57311i 0.782511 0.451783i −0.0548085 0.998497i \(-0.517455\pi\)
0.837319 + 0.546714i \(0.184122\pi\)
\(450\) 0 0
\(451\) 14.2230 + 8.21166i 0.669735 + 0.386672i
\(452\) 0 0
\(453\) 14.7073 + 26.4926i 0.691011 + 1.24473i
\(454\) 0 0
\(455\) 3.17384 + 17.9997i 0.148792 + 0.843841i
\(456\) 0 0
\(457\) −30.3262 25.4467i −1.41860 1.19035i −0.952085 0.305834i \(-0.901065\pi\)
−0.466515 0.884513i \(-0.654491\pi\)
\(458\) 0 0
\(459\) 9.18898 14.2096i 0.428905 0.663249i
\(460\) 0 0
\(461\) −3.24779 + 3.87056i −0.151264 + 0.180270i −0.836355 0.548188i \(-0.815318\pi\)
0.685091 + 0.728458i \(0.259762\pi\)
\(462\) 0 0
\(463\) 31.2054 5.50235i 1.45024 0.255716i 0.607619 0.794229i \(-0.292125\pi\)
0.842617 + 0.538513i \(0.181014\pi\)
\(464\) 0 0
\(465\) −0.315171 + 18.7458i −0.0146157 + 0.869318i
\(466\) 0 0
\(467\) −15.3648 + 26.6126i −0.710998 + 1.23148i 0.253485 + 0.967339i \(0.418423\pi\)
−0.964483 + 0.264145i \(0.914910\pi\)
\(468\) 0 0
\(469\) −2.54643 4.41054i −0.117583 0.203660i
\(470\) 0 0
\(471\) −3.84323 0.744489i −0.177087 0.0343042i
\(472\) 0 0
\(473\) 17.1179 + 20.4003i 0.787082 + 0.938008i
\(474\) 0 0
\(475\) 5.30328 + 14.5706i 0.243331 + 0.668547i
\(476\) 0 0
\(477\) 5.64484 + 17.2974i 0.258460 + 0.791995i
\(478\) 0 0
\(479\) 4.96632 28.1654i 0.226917 1.28691i −0.632070 0.774911i \(-0.717794\pi\)
0.858987 0.511998i \(-0.171094\pi\)
\(480\) 0 0
\(481\) −0.214098 0.0779253i −0.00976202 0.00355309i
\(482\) 0 0
\(483\) −7.85606 49.3959i −0.357463 2.24759i
\(484\) 0 0
\(485\) 1.26813i 0.0575828i
\(486\) 0 0
\(487\) 2.87205i 0.130145i −0.997881 0.0650725i \(-0.979272\pi\)
0.997881 0.0650725i \(-0.0207279\pi\)
\(488\) 0 0
\(489\) 2.26316 + 14.2299i 0.102344 + 0.643498i
\(490\) 0 0
\(491\) −16.1231 5.86832i −0.727625 0.264834i −0.0484657 0.998825i \(-0.515433\pi\)
−0.679159 + 0.733991i \(0.737655\pi\)
\(492\) 0 0
\(493\) −4.48736 + 25.4491i −0.202100 + 1.14617i
\(494\) 0 0
\(495\) 2.39000 + 7.32365i 0.107423 + 0.329174i
\(496\) 0 0
\(497\) −10.4444 28.6956i −0.468493 1.28718i
\(498\) 0 0
\(499\) −24.1598 28.7926i −1.08154 1.28893i −0.954881 0.296987i \(-0.904018\pi\)
−0.126662 0.991946i \(-0.540426\pi\)
\(500\) 0 0
\(501\) −42.0327 8.14234i −1.87788 0.363773i
\(502\) 0 0
\(503\) 13.3677 + 23.1536i 0.596038 + 1.03237i 0.993399 + 0.114706i \(0.0365927\pi\)
−0.397361 + 0.917662i \(0.630074\pi\)
\(504\) 0 0
\(505\) −0.636029 + 1.10163i −0.0283029 + 0.0490221i
\(506\) 0 0
\(507\) 0.0288387 1.71528i 0.00128077 0.0761783i
\(508\) 0 0
\(509\) −24.3407 + 4.29192i −1.07888 + 0.190236i −0.684720 0.728806i \(-0.740076\pi\)
−0.394160 + 0.919042i \(0.628965\pi\)
\(510\) 0 0
\(511\) 7.72052 9.20095i 0.341536 0.407026i
\(512\) 0 0
\(513\) 20.5132 + 1.03543i 0.905679 + 0.0457155i
\(514\) 0 0
\(515\) 0.0683647 + 0.0573648i 0.00301251 + 0.00252779i
\(516\) 0 0
\(517\) 2.97059 + 16.8471i 0.130647 + 0.740933i
\(518\) 0 0
\(519\) −12.0338 21.6767i −0.528225 0.951501i
\(520\) 0 0
\(521\) 2.69784 + 1.55760i 0.118194 + 0.0682395i 0.557932 0.829887i \(-0.311595\pi\)
−0.439737 + 0.898126i \(0.644928\pi\)
\(522\) 0 0
\(523\) 9.27535 5.35512i 0.405583 0.234163i −0.283307 0.959029i \(-0.591432\pi\)
0.688890 + 0.724866i \(0.258098\pi\)
\(524\) 0 0
\(525\) 24.1551 + 20.9705i 1.05422 + 0.915229i
\(526\) 0 0
\(527\) −26.0176 + 21.8313i −1.13334 + 0.950987i
\(528\) 0 0
\(529\) −13.7396 + 5.00079i −0.597372 + 0.217426i
\(530\) 0 0
\(531\) 28.7112 + 0.965705i 1.24596 + 0.0419080i
\(532\) 0 0
\(533\) 24.4516 + 4.31148i 1.05912 + 0.186751i
\(534\) 0 0
\(535\) −1.94957 + 5.35640i −0.0842873 + 0.231577i
\(536\) 0 0
\(537\) −11.5187 14.2057i −0.497067 0.613022i
\(538\) 0 0
\(539\) −37.5210 −1.61614
\(540\) 0 0
\(541\) −3.32479 −0.142944 −0.0714720 0.997443i \(-0.522770\pi\)
−0.0714720 + 0.997443i \(0.522770\pi\)
\(542\) 0 0
\(543\) −4.11881 + 10.7505i −0.176755 + 0.461348i
\(544\) 0 0
\(545\) 0.816929 2.24449i 0.0349934 0.0961435i
\(546\) 0 0
\(547\) 10.4493 + 1.84250i 0.446781 + 0.0787796i 0.392512 0.919747i \(-0.371606\pi\)
0.0542689 + 0.998526i \(0.482717\pi\)
\(548\) 0 0
\(549\) 2.56266 + 18.0660i 0.109372 + 0.771036i
\(550\) 0 0
\(551\) −29.4742 + 10.7277i −1.25564 + 0.457017i
\(552\) 0 0
\(553\) 12.9206 10.8417i 0.549439 0.461034i
\(554\) 0 0
\(555\) 0.103516 0.0357177i 0.00439400 0.00151613i
\(556\) 0 0
\(557\) 34.3902 19.8552i 1.45716 0.841291i 0.458288 0.888804i \(-0.348463\pi\)
0.998871 + 0.0475133i \(0.0151297\pi\)
\(558\) 0 0
\(559\) 34.8665 + 20.1302i 1.47470 + 0.851417i
\(560\) 0 0
\(561\) −7.17999 + 11.9669i −0.303139 + 0.505243i
\(562\) 0 0
\(563\) 7.04951 + 39.9798i 0.297101 + 1.68495i 0.658536 + 0.752549i \(0.271176\pi\)
−0.361435 + 0.932397i \(0.617713\pi\)
\(564\) 0 0
\(565\) 5.93131 + 4.97696i 0.249532 + 0.209382i
\(566\) 0 0
\(567\) 38.0360 18.6725i 1.59736 0.784170i
\(568\) 0 0
\(569\) −16.5625 + 19.7384i −0.694337 + 0.827478i −0.991873 0.127232i \(-0.959391\pi\)
0.297536 + 0.954711i \(0.403835\pi\)
\(570\) 0 0
\(571\) 15.6655 2.76225i 0.655581 0.115597i 0.164044 0.986453i \(-0.447546\pi\)
0.491537 + 0.870857i \(0.336435\pi\)
\(572\) 0 0
\(573\) 13.8406 + 8.30418i 0.578199 + 0.346912i
\(574\) 0 0
\(575\) 12.0303 20.8371i 0.501698 0.868966i
\(576\) 0 0
\(577\) 4.52882 + 7.84415i 0.188537 + 0.326556i 0.944763 0.327755i \(-0.106292\pi\)
−0.756225 + 0.654311i \(0.772959\pi\)
\(578\) 0 0
\(579\) −10.3721 30.0600i −0.431049 1.24925i
\(580\) 0 0
\(581\) −23.2086 27.6589i −0.962854 1.14749i
\(582\) 0 0
\(583\) −5.13225 14.1007i −0.212556 0.583993i
\(584\) 0 0
\(585\) 7.18213 + 9.16841i 0.296944 + 0.379067i
\(586\) 0 0
\(587\) 2.00218 11.3549i 0.0826387 0.468667i −0.915203 0.402994i \(-0.867969\pi\)
0.997841 0.0656730i \(-0.0209194\pi\)
\(588\) 0 0
\(589\) −38.7377 14.0994i −1.59616 0.580955i
\(590\) 0 0
\(591\) −27.0893 10.3787i −1.11430 0.426921i
\(592\) 0 0
\(593\) 3.14084i 0.128979i −0.997918 0.0644895i \(-0.979458\pi\)
0.997918 0.0644895i \(-0.0205419\pi\)
\(594\) 0 0
\(595\) 15.9135i 0.652391i
\(596\) 0 0
\(597\) −15.1906 + 12.3173i −0.621709 + 0.504112i
\(598\) 0 0
\(599\) 6.29887 + 2.29260i 0.257365 + 0.0936732i 0.467481 0.884003i \(-0.345162\pi\)
−0.210116 + 0.977677i \(0.567384\pi\)
\(600\) 0 0
\(601\) 7.89908 44.7979i 0.322210 1.82735i −0.206384 0.978471i \(-0.566170\pi\)
0.528594 0.848875i \(-0.322719\pi\)
\(602\) 0 0
\(603\) −2.75431 1.71617i −0.112164 0.0698879i
\(604\) 0 0
\(605\) 1.73189 + 4.75832i 0.0704113 + 0.193453i
\(606\) 0 0
\(607\) −1.93769 2.30924i −0.0786482 0.0937293i 0.725285 0.688448i \(-0.241708\pi\)
−0.803934 + 0.594719i \(0.797263\pi\)
\(608\) 0 0
\(609\) −42.4202 + 48.8622i −1.71895 + 1.98000i
\(610\) 0 0
\(611\) 12.9312 + 22.3975i 0.523140 + 0.906104i
\(612\) 0 0
\(613\) 24.1313 41.7966i 0.974652 1.68815i 0.293574 0.955936i \(-0.405155\pi\)
0.681079 0.732210i \(-0.261511\pi\)
\(614\) 0 0
\(615\) −10.4334 + 5.79209i −0.420716 + 0.233560i
\(616\) 0 0
\(617\) 27.8944 4.91854i 1.12299 0.198013i 0.418836 0.908062i \(-0.362438\pi\)
0.704152 + 0.710049i \(0.251327\pi\)
\(618\) 0 0
\(619\) 16.8930 20.1323i 0.678988 0.809186i −0.310989 0.950413i \(-0.600660\pi\)
0.989977 + 0.141227i \(0.0451048\pi\)
\(620\) 0 0
\(621\) −19.2296 25.4165i −0.771657 1.01993i
\(622\) 0 0
\(623\) 22.3860 + 18.7841i 0.896877 + 0.752569i
\(624\) 0 0
\(625\) 1.73675 + 9.84959i 0.0694700 + 0.393984i
\(626\) 0 0
\(627\) −16.9365 0.284750i −0.676379 0.0113718i
\(628\) 0 0
\(629\) 0.171794 + 0.0991855i 0.00684989 + 0.00395479i
\(630\) 0 0
\(631\) −25.2286 + 14.5657i −1.00434 + 0.579853i −0.909528 0.415642i \(-0.863557\pi\)
−0.0948072 + 0.995496i \(0.530223\pi\)
\(632\) 0 0
\(633\) 6.20889 32.0518i 0.246781 1.27395i
\(634\) 0 0
\(635\) 4.76468 3.99804i 0.189081 0.158657i
\(636\) 0 0
\(637\) −53.3034 + 19.4009i −2.11196 + 0.768690i
\(638\) 0 0
\(639\) −14.4773 13.0018i −0.572714 0.514344i
\(640\) 0 0
\(641\) 10.0975 + 1.78047i 0.398828 + 0.0703242i 0.369465 0.929245i \(-0.379541\pi\)
0.0293632 + 0.999569i \(0.490652\pi\)
\(642\) 0 0
\(643\) −5.56679 + 15.2946i −0.219533 + 0.603161i −0.999750 0.0223470i \(-0.992886\pi\)
0.780218 + 0.625508i \(0.215108\pi\)
\(644\) 0 0
\(645\) −19.1100 + 3.03930i −0.752454 + 0.119672i
\(646\) 0 0
\(647\) −14.7952 −0.581661 −0.290830 0.956775i \(-0.593932\pi\)
−0.290830 + 0.956775i \(0.593932\pi\)
\(648\) 0 0
\(649\) −23.6917 −0.929980
\(650\) 0 0
\(651\) −83.9883 + 13.3577i −3.29176 + 0.523530i
\(652\) 0 0
\(653\) −0.685785 + 1.88418i −0.0268368 + 0.0737336i −0.952388 0.304890i \(-0.901380\pi\)
0.925551 + 0.378624i \(0.123603\pi\)
\(654\) 0 0
\(655\) 8.18155 + 1.44263i 0.319680 + 0.0563681i
\(656\) 0 0
\(657\) 1.58165 7.48833i 0.0617059 0.292148i
\(658\) 0 0
\(659\) −0.340176 + 0.123814i −0.0132514 + 0.00482310i −0.348637 0.937258i \(-0.613356\pi\)
0.335386 + 0.942081i \(0.391133\pi\)
\(660\) 0 0
\(661\) 2.76874 2.32325i 0.107692 0.0903640i −0.587352 0.809332i \(-0.699830\pi\)
0.695044 + 0.718968i \(0.255385\pi\)
\(662\) 0 0
\(663\) −4.01242 + 20.7131i −0.155829 + 0.804430i
\(664\) 0 0
\(665\) 16.7276 9.65767i 0.648668 0.374508i
\(666\) 0 0
\(667\) 42.1503 + 24.3355i 1.63206 + 0.942273i
\(668\) 0 0
\(669\) 16.6154 + 0.279351i 0.642387 + 0.0108003i
\(670\) 0 0
\(671\) −2.61310 14.8196i −0.100878 0.572106i
\(672\) 0 0
\(673\) 3.29929 + 2.76843i 0.127178 + 0.106715i 0.704158 0.710043i \(-0.251325\pi\)
−0.576980 + 0.816758i \(0.695769\pi\)
\(674\) 0 0
\(675\) 19.8695 + 4.54694i 0.764778 + 0.175012i
\(676\) 0 0
\(677\) 16.4123 19.5594i 0.630774 0.751728i −0.352108 0.935959i \(-0.614535\pi\)
0.982883 + 0.184232i \(0.0589796\pi\)
\(678\) 0 0
\(679\) −5.66489 + 0.998874i −0.217399 + 0.0383333i
\(680\) 0 0
\(681\) 36.5510 20.2912i 1.40064 0.777562i
\(682\) 0 0
\(683\) −9.05123 + 15.6772i −0.346336 + 0.599871i −0.985596 0.169120i \(-0.945908\pi\)
0.639260 + 0.768991i \(0.279241\pi\)
\(684\) 0 0
\(685\) 7.49692 + 12.9850i 0.286443 + 0.496133i
\(686\) 0 0
\(687\) 11.5175 13.2665i 0.439419 0.506150i
\(688\) 0 0
\(689\) −14.5821 17.3782i −0.555532 0.662058i
\(690\) 0 0
\(691\) −3.68849 10.1340i −0.140317 0.385517i 0.849552 0.527506i \(-0.176873\pi\)
−0.989868 + 0.141989i \(0.954650\pi\)
\(692\) 0 0
\(693\) −30.8331 + 16.4451i −1.17125 + 0.624697i
\(694\) 0 0
\(695\) −3.18428 + 18.0590i −0.120787 + 0.685016i
\(696\) 0 0
\(697\) −20.3139 7.39366i −0.769444 0.280055i
\(698\) 0 0
\(699\) −31.6370 + 25.6528i −1.19662 + 0.970277i
\(700\) 0 0
\(701\) 12.4174i 0.469000i −0.972116 0.234500i \(-0.924655\pi\)
0.972116 0.234500i \(-0.0753453\pi\)
\(702\) 0 0
\(703\) 0.240777i 0.00908106i
\(704\) 0 0
\(705\) −11.6073 4.44709i −0.437158 0.167487i
\(706\) 0 0
\(707\) −5.42212 1.97349i −0.203920 0.0742208i
\(708\) 0 0
\(709\) −1.72675 + 9.79290i −0.0648496 + 0.367780i 0.935062 + 0.354484i \(0.115343\pi\)
−0.999912 + 0.0132960i \(0.995768\pi\)
\(710\) 0 0
\(711\) 4.01332 9.97017i 0.150511 0.373910i
\(712\) 0 0
\(713\) 21.8783 + 60.1101i 0.819349 + 2.25114i
\(714\) 0 0
\(715\) −6.17398 7.35786i −0.230894 0.275168i
\(716\) 0 0
\(717\) 5.48500 + 15.8964i 0.204841 + 0.593663i
\(718\) 0 0
\(719\) −4.47701 7.75440i −0.166964 0.289190i 0.770387 0.637577i \(-0.220063\pi\)
−0.937351 + 0.348386i \(0.886730\pi\)
\(720\) 0 0
\(721\) −0.202406 + 0.350578i −0.00753801 + 0.0130562i
\(722\) 0 0
\(723\) 23.2769 + 13.9658i 0.865676 + 0.519395i
\(724\) 0 0
\(725\) −30.6544 + 5.40520i −1.13848 + 0.200744i
\(726\) 0 0
\(727\) 11.5744 13.7938i 0.429270 0.511584i −0.507442 0.861686i \(-0.669409\pi\)
0.936711 + 0.350102i \(0.113853\pi\)
\(728\) 0 0
\(729\) 15.7859 21.9044i 0.584664 0.811275i
\(730\) 0 0
\(731\) −26.8525 22.5319i −0.993174 0.833372i
\(732\) 0 0
\(733\) −1.01377 5.74939i −0.0374445 0.212359i 0.960345 0.278815i \(-0.0899417\pi\)
−0.997789 + 0.0664567i \(0.978831\pi\)
\(734\) 0 0
\(735\) 14.0265 23.3780i 0.517376 0.862312i
\(736\) 0 0
\(737\) 2.31779 + 1.33818i 0.0853770 + 0.0492924i
\(738\) 0 0
\(739\) −39.6890 + 22.9145i −1.45998 + 0.842922i −0.999010 0.0444922i \(-0.985833\pi\)
−0.460974 + 0.887414i \(0.652500\pi\)
\(740\) 0 0
\(741\) −24.2077 + 8.35278i −0.889294 + 0.306847i
\(742\) 0 0
\(743\) 23.1581 19.4320i 0.849588 0.712889i −0.110111 0.993919i \(-0.535121\pi\)
0.959699 + 0.281030i \(0.0906761\pi\)
\(744\) 0 0
\(745\) −18.2067 + 6.62669i −0.667041 + 0.242783i
\(746\) 0 0
\(747\) −21.3430 8.59127i −0.780900 0.314338i
\(748\) 0 0
\(749\) −25.4633 4.48988i −0.930410 0.164056i
\(750\) 0 0
\(751\) 1.50126 4.12468i 0.0547818 0.150512i −0.909283 0.416178i \(-0.863369\pi\)
0.964065 + 0.265666i \(0.0855917\pi\)
\(752\) 0 0
\(753\) 2.04713 5.34320i 0.0746014 0.194717i
\(754\) 0 0
\(755\) 18.1577 0.660826
\(756\) 0 0
\(757\) 13.3993 0.487005 0.243503 0.969900i \(-0.421704\pi\)
0.243503 + 0.969900i \(0.421704\pi\)
\(758\) 0 0
\(759\) 16.5544 + 20.4162i 0.600888 + 0.741061i
\(760\) 0 0
\(761\) −13.0545 + 35.8670i −0.473226 + 1.30018i 0.441920 + 0.897054i \(0.354297\pi\)
−0.915146 + 0.403122i \(0.867925\pi\)
\(762\) 0 0
\(763\) 10.6699 + 1.88139i 0.386276 + 0.0681110i
\(764\) 0 0
\(765\) −4.77207 8.94722i −0.172534 0.323487i
\(766\) 0 0
\(767\) −33.6571 + 12.2502i −1.21529 + 0.442329i
\(768\) 0 0
\(769\) 13.8319 11.6063i 0.498791 0.418535i −0.358373 0.933578i \(-0.616668\pi\)
0.857164 + 0.515043i \(0.172224\pi\)
\(770\) 0 0
\(771\) 3.06445 + 2.66043i 0.110363 + 0.0958131i
\(772\) 0 0
\(773\) −20.4862 + 11.8277i −0.736836 + 0.425413i −0.820918 0.571046i \(-0.806538\pi\)
0.0840816 + 0.996459i \(0.473204\pi\)
\(774\) 0 0
\(775\) −35.4295 20.4552i −1.27266 0.734773i
\(776\) 0 0
\(777\) 0.241092 + 0.434284i 0.00864913 + 0.0155798i
\(778\) 0 0
\(779\) −4.55632 25.8402i −0.163247 0.925820i
\(780\) 0 0
\(781\) 12.2933 + 10.3153i 0.439887 + 0.369109i
\(782\) 0 0
\(783\) −9.19778 + 40.1930i −0.328702 + 1.43638i
\(784\) 0 0
\(785\) −1.50787 + 1.79701i −0.0538182 + 0.0641381i
\(786\) 0 0
\(787\) 17.4793 3.08207i 0.623069 0.109864i 0.146804 0.989166i \(-0.453101\pi\)
0.476265 + 0.879302i \(0.341990\pi\)
\(788\) 0 0
\(789\) 0.199517 11.8670i 0.00710300 0.422475i
\(790\) 0 0
\(791\) −17.5607 + 30.4161i −0.624388 + 1.08147i
\(792\) 0 0
\(793\) −11.3750 19.7021i −0.403938 0.699641i
\(794\) 0 0
\(795\) 10.7043 + 2.07357i 0.379642 + 0.0735420i
\(796\) 0 0
\(797\) 9.94374 + 11.8505i 0.352225 + 0.419766i 0.912844 0.408308i \(-0.133881\pi\)
−0.560619 + 0.828074i \(0.689437\pi\)
\(798\) 0 0
\(799\) −7.70143 21.1595i −0.272457 0.748570i
\(800\) 0 0
\(801\) 18.2192 + 3.84816i 0.643743 + 0.135968i
\(802\) 0 0
\(803\) −1.09605 + 6.21603i −0.0386789 + 0.219359i
\(804\) 0 0
\(805\) −28.1645 10.2510i −0.992667 0.361301i
\(806\) 0 0
\(807\) 8.63574 + 54.2983i 0.303993 + 1.91139i
\(808\) 0 0
\(809\) 20.4367i 0.718516i 0.933238 + 0.359258i \(0.116970\pi\)
−0.933238 + 0.359258i \(0.883030\pi\)
\(810\) 0 0
\(811\) 29.0699i 1.02078i −0.859943 0.510391i \(-0.829501\pi\)
0.859943 0.510391i \(-0.170499\pi\)
\(812\) 0 0
\(813\) 1.16506 + 7.32548i 0.0408606 + 0.256916i
\(814\) 0 0
\(815\) 8.11357 + 2.95310i 0.284206 + 0.103443i
\(816\) 0 0
\(817\) 7.38816 41.9003i 0.258479 1.46591i
\(818\) 0 0
\(819\) −35.2993 + 39.3052i −1.23346 + 1.37343i
\(820\) 0 0
\(821\) −11.9380 32.7995i −0.416640 1.14471i −0.953593 0.301097i \(-0.902647\pi\)
0.536953 0.843612i \(-0.319575\pi\)
\(822\) 0 0
\(823\) −11.6062 13.8317i −0.404567 0.482144i 0.524840 0.851201i \(-0.324125\pi\)
−0.929407 + 0.369057i \(0.879681\pi\)
\(824\) 0 0
\(825\) −16.5033 3.19692i −0.574572 0.111303i
\(826\) 0 0
\(827\) 5.11628 + 8.86165i 0.177910 + 0.308150i 0.941165 0.337948i \(-0.109733\pi\)
−0.763254 + 0.646098i \(0.776400\pi\)
\(828\) 0 0
\(829\) 16.8214 29.1355i 0.584231 1.01192i −0.410740 0.911752i \(-0.634730\pi\)
0.994971 0.100165i \(-0.0319370\pi\)
\(830\) 0 0
\(831\) −0.462064 + 27.4828i −0.0160288 + 0.953368i
\(832\) 0 0
\(833\) 48.6377 8.57613i 1.68519 0.297145i
\(834\) 0 0
\(835\) −16.4913 + 19.6536i −0.570705 + 0.680140i
\(836\) 0 0
\(837\) −43.2159 + 32.6962i −1.49376 + 1.13015i
\(838\) 0 0
\(839\) 42.8076 + 35.9198i 1.47788 + 1.24009i 0.908411 + 0.418078i \(0.137296\pi\)
0.569470 + 0.822012i \(0.307148\pi\)
\(840\) 0 0
\(841\) −5.89811 33.4498i −0.203383 1.15344i
\(842\) 0 0
\(843\) 24.4598 + 44.0599i 0.842440 + 1.51750i
\(844\) 0 0
\(845\) −0.890282 0.514004i −0.0306266 0.0176823i
\(846\) 0 0
\(847\) −19.8919 + 11.4846i −0.683492 + 0.394614i
\(848\) 0 0
\(849\) −23.9794 20.8179i −0.822970 0.714470i
\(850\) 0 0
\(851\) 0.286208 0.240157i 0.00981108 0.00823247i
\(852\) 0 0
\(853\) 2.16235 0.787030i 0.0740373 0.0269474i −0.304736 0.952437i \(-0.598568\pi\)
0.378773 + 0.925489i \(0.376346\pi\)
\(854\) 0 0
\(855\) 6.50882 10.4461i 0.222597 0.357249i
\(856\) 0 0
\(857\) −52.9090 9.32928i −1.80734 0.318682i −0.834646 0.550787i \(-0.814328\pi\)
−0.972691 + 0.232105i \(0.925439\pi\)
\(858\) 0 0
\(859\) −8.64745 + 23.7587i −0.295047 + 0.810636i 0.700262 + 0.713886i \(0.253067\pi\)
−0.995309 + 0.0967492i \(0.969156\pi\)
\(860\) 0 0
\(861\) −34.0921 42.0451i −1.16186 1.43289i
\(862\) 0 0
\(863\) −9.84682 −0.335190 −0.167595 0.985856i \(-0.553600\pi\)
−0.167595 + 0.985856i \(0.553600\pi\)
\(864\) 0 0
\(865\) −14.8569 −0.505150
\(866\) 0 0
\(867\) −3.96244 + 10.3423i −0.134571 + 0.351244i
\(868\) 0 0
\(869\) −3.03154 + 8.32908i −0.102838 + 0.282545i
\(870\) 0 0
\(871\) 3.98466 + 0.702602i 0.135015 + 0.0238068i
\(872\) 0 0
\(873\) −2.88549 + 2.26037i −0.0976591 + 0.0765018i
\(874\) 0 0
\(875\) 40.9716 14.9124i 1.38509 0.504132i
\(876\) 0 0
\(877\) 22.3672 18.7683i 0.755286 0.633760i −0.181609 0.983371i \(-0.558131\pi\)
0.936895 + 0.349611i \(0.113686\pi\)
\(878\) 0 0
\(879\) −3.41556 + 1.17852i −0.115204 + 0.0397506i
\(880\) 0 0
\(881\) 23.3146 13.4607i 0.785487 0.453501i −0.0528841 0.998601i \(-0.516841\pi\)
0.838371 + 0.545099i \(0.183508\pi\)
\(882\) 0 0
\(883\) 26.4888 + 15.2933i 0.891418 + 0.514660i 0.874406 0.485195i \(-0.161251\pi\)
0.0170120 + 0.999855i \(0.494585\pi\)
\(884\) 0 0
\(885\) 8.85670 14.7615i 0.297715 0.496202i
\(886\) 0 0
\(887\) 7.45008 + 42.2515i 0.250149 + 1.41867i 0.808224 + 0.588875i \(0.200429\pi\)
−0.558075 + 0.829791i \(0.688460\pi\)
\(888\) 0 0
\(889\) 21.6128 + 18.1353i 0.724869 + 0.608237i
\(890\) 0 0
\(891\) −12.4041 + 18.4922i −0.415554 + 0.619511i
\(892\) 0 0
\(893\) 17.5680 20.9368i 0.587892 0.700623i
\(894\) 0 0
\(895\) −10.7929 + 1.90308i −0.360767 + 0.0636130i
\(896\) 0 0
\(897\) 34.0743 + 20.4441i 1.13771 + 0.682610i
\(898\) 0 0
\(899\) 41.3778 71.6685i 1.38003 2.39028i
\(900\) 0 0
\(901\) 9.87582 + 17.1054i 0.329011 + 0.569864i
\(902\) 0 0
\(903\) −28.6294 82.9726i −0.952725 2.76115i
\(904\) 0 0
\(905\) 4.43443 + 5.28474i 0.147405 + 0.175671i
\(906\) 0 0
\(907\) 4.73257 + 13.0026i 0.157142 + 0.431745i 0.993132 0.117000i \(-0.0373278\pi\)
−0.835989 + 0.548746i \(0.815106\pi\)
\(908\) 0 0
\(909\) −3.64033 + 0.516383i −0.120742 + 0.0171274i
\(910\) 0 0
\(911\) −3.91731 + 22.2162i −0.129786 + 0.736055i 0.848563 + 0.529094i \(0.177468\pi\)
−0.978349 + 0.206960i \(0.933643\pi\)
\(912\) 0 0
\(913\) 17.8299 + 6.48957i 0.590085 + 0.214773i
\(914\) 0 0
\(915\) 10.2105 + 3.91191i 0.337548 + 0.129324i
\(916\) 0 0
\(917\) 37.6843i 1.24445i
\(918\) 0 0
\(919\) 51.1914i 1.68865i −0.535833 0.844324i \(-0.680003\pi\)
0.535833 0.844324i \(-0.319997\pi\)
\(920\) 0 0
\(921\) −5.78605 + 4.69160i −0.190657 + 0.154594i
\(922\) 0 0
\(923\) 22.7979 + 8.29774i 0.750401 + 0.273124i
\(924\) 0 0
\(925\) −0.0414925 + 0.235316i −0.00136427 + 0.00773714i
\(926\) 0 0
\(927\) −0.00867133 + 0.257806i −0.000284804 + 0.00846745i
\(928\) 0 0
\(929\) −12.8844 35.3996i −0.422723 1.16142i −0.950142 0.311817i \(-0.899063\pi\)
0.527419 0.849605i \(-0.323160\pi\)
\(930\) 0 0
\(931\) 38.5323 + 45.9210i 1.26284 + 1.50500i
\(932\) 0 0
\(933\) −1.34578 + 1.55015i −0.0440588 + 0.0507496i
\(934\) 0 0
\(935\) 4.18138 + 7.24236i 0.136746 + 0.236850i
\(936\) 0 0
\(937\) 1.91697 3.32029i 0.0626247 0.108469i −0.833013 0.553253i \(-0.813386\pi\)
0.895638 + 0.444784i \(0.146720\pi\)
\(938\) 0 0
\(939\) 46.3995 25.7586i 1.51419 0.840601i
\(940\) 0 0
\(941\) 1.49218 0.263112i 0.0486438 0.00857721i −0.149273 0.988796i \(-0.547693\pi\)
0.197917 + 0.980219i \(0.436582\pi\)
\(942\) 0 0
\(943\) −26.1713 + 31.1897i −0.852253 + 1.01568i
\(944\) 0 0
\(945\) 1.28002 25.3588i 0.0416391 0.824921i
\(946\) 0 0
\(947\) −23.4786 19.7009i −0.762952 0.640193i 0.175941 0.984401i \(-0.443703\pi\)
−0.938893 + 0.344208i \(0.888148\pi\)
\(948\) 0 0
\(949\) 1.65702 + 9.39742i 0.0537891 + 0.305053i
\(950\) 0 0
\(951\) 26.9252 + 0.452689i 0.873110 + 0.0146794i
\(952\) 0 0
\(953\) −16.5100 9.53205i −0.534811 0.308773i 0.208162 0.978094i \(-0.433252\pi\)
−0.742973 + 0.669321i \(0.766585\pi\)
\(954\) 0 0
\(955\) 8.37631 4.83607i 0.271051 0.156491i
\(956\) 0 0
\(957\) 6.46689 33.3837i 0.209045 1.07914i
\(958\) 0 0
\(959\) −52.1007 + 43.7177i −1.68242 + 1.41172i
\(960\) 0 0
\(961\) 73.0753 26.5972i 2.35727 0.857975i
\(962\) 0 0
\(963\) −15.6629 + 5.11143i −0.504730 + 0.164714i
\(964\) 0 0
\(965\) −18.7658 3.30891i −0.604092 0.106518i
\(966\) 0 0
\(967\) −11.0559 + 30.3760i −0.355535 + 0.976825i 0.625025 + 0.780605i \(0.285089\pi\)
−0.980560 + 0.196220i \(0.937133\pi\)
\(968\) 0 0
\(969\) 22.0195 3.50204i 0.707369 0.112502i
\(970\) 0 0
\(971\) 21.3765 0.686005 0.343003 0.939334i \(-0.388556\pi\)
0.343003 + 0.939334i \(0.388556\pi\)
\(972\) 0 0
\(973\) −83.1799 −2.66662
\(974\) 0 0
\(975\) −25.0981 + 3.99167i −0.803783 + 0.127836i
\(976\) 0 0
\(977\) 15.0358 41.3104i 0.481037 1.32164i −0.427569 0.903983i \(-0.640630\pi\)
0.908606 0.417655i \(-0.137148\pi\)
\(978\) 0 0
\(979\) −15.1237 2.66671i −0.483355 0.0852285i
\(980\) 0 0
\(981\) 6.56323 2.14184i 0.209548 0.0683838i
\(982\) 0 0
\(983\) −1.12861 + 0.410780i −0.0359970 + 0.0131018i −0.359956 0.932969i \(-0.617208\pi\)
0.323959 + 0.946071i \(0.394986\pi\)
\(984\) 0 0
\(985\) −13.3166 + 11.1740i −0.424302 + 0.356032i
\(986\) 0 0
\(987\) 10.7229 55.3543i 0.341314 1.76195i
\(988\) 0 0
\(989\) −57.1755 + 33.0103i −1.81808 + 1.04967i
\(990\) 0 0
\(991\) −4.22942 2.44186i −0.134352 0.0775682i 0.431318 0.902200i \(-0.358049\pi\)
−0.565670 + 0.824632i \(0.691382\pi\)
\(992\) 0 0
\(993\) 19.1965 + 0.322748i 0.609183 + 0.0102421i
\(994\) 0 0
\(995\) 2.03502 + 11.5412i 0.0645144 + 0.365880i
\(996\) 0 0
\(997\) −9.25562 7.76639i −0.293128 0.245964i 0.484349 0.874875i \(-0.339057\pi\)
−0.777477 + 0.628911i \(0.783501\pi\)
\(998\) 0 0
\(999\) 0.265782 + 0.171874i 0.00840898 + 0.00543785i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bi.a.767.35 yes 216
4.3 odd 2 inner 864.2.bi.a.767.2 yes 216
27.5 odd 18 inner 864.2.bi.a.383.2 216
108.59 even 18 inner 864.2.bi.a.383.35 yes 216
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.2.bi.a.383.2 216 27.5 odd 18 inner
864.2.bi.a.383.35 yes 216 108.59 even 18 inner
864.2.bi.a.767.2 yes 216 4.3 odd 2 inner
864.2.bi.a.767.35 yes 216 1.1 even 1 trivial