Properties

Label 864.2.bh.b.815.3
Level $864$
Weight $2$
Character 864.815
Analytic conductor $6.899$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(47,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bh (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 815.3
Character \(\chi\) \(=\) 864.815
Dual form 864.2.bh.b.335.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59734 + 0.669704i) q^{3} +(-3.00936 + 1.09532i) q^{5} +(-4.58614 + 0.808660i) q^{7} +(2.10299 - 2.13949i) q^{9} +(0.303411 - 0.833616i) q^{11} +(-1.22056 + 1.45461i) q^{13} +(4.07344 - 3.76498i) q^{15} +(-4.03247 - 2.32815i) q^{17} +(0.171350 + 0.296787i) q^{19} +(6.78406 - 4.36306i) q^{21} +(-1.00156 + 5.68012i) q^{23} +(4.02633 - 3.37849i) q^{25} +(-1.92637 + 4.82588i) q^{27} +(4.16935 - 3.49850i) q^{29} +(7.80815 + 1.37679i) q^{31} +(0.0736241 + 1.53476i) q^{33} +(12.9156 - 7.45683i) q^{35} +(2.31812 + 1.33837i) q^{37} +(0.975496 - 3.14092i) q^{39} +(0.0346849 - 0.0413359i) q^{41} +(2.85915 + 1.04064i) q^{43} +(-3.98525 + 8.74195i) q^{45} +(-1.90179 - 10.7856i) q^{47} +(13.8009 - 5.02311i) q^{49} +(8.00039 + 1.01828i) q^{51} -1.27415 q^{53} +2.84099i q^{55} +(-0.472464 - 0.359316i) q^{57} +(-2.43399 - 6.68734i) q^{59} +(-8.19039 + 1.44419i) q^{61} +(-7.91450 + 11.5126i) q^{63} +(2.07985 - 5.71435i) q^{65} +(6.31205 + 5.29644i) q^{67} +(-2.20417 - 9.74384i) q^{69} +(-0.186788 + 0.323526i) q^{71} +(6.29550 + 10.9041i) q^{73} +(-4.16883 + 8.09304i) q^{75} +(-0.717374 + 4.06843i) q^{77} +(-2.54509 - 3.03312i) q^{79} +(-0.154829 - 8.99867i) q^{81} +(-8.90996 - 10.6185i) q^{83} +(14.6852 + 2.58940i) q^{85} +(-4.31692 + 8.38053i) q^{87} +(-6.35012 + 3.66624i) q^{89} +(4.42138 - 7.65805i) q^{91} +(-13.3943 + 3.02994i) q^{93} +(-0.840731 - 0.705457i) q^{95} +(-0.833364 - 0.303320i) q^{97} +(-1.14544 - 2.40223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{3} - 12 q^{9} + 30 q^{11} - 18 q^{17} + 6 q^{19} - 12 q^{25} - 18 q^{27} - 30 q^{33} + 18 q^{35} + 18 q^{41} + 42 q^{43} - 12 q^{49} + 18 q^{51} - 36 q^{57} + 84 q^{59} - 12 q^{65} - 30 q^{67}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.59734 + 0.669704i −0.922225 + 0.386654i
\(4\) 0 0
\(5\) −3.00936 + 1.09532i −1.34583 + 0.489842i −0.911643 0.410982i \(-0.865186\pi\)
−0.434185 + 0.900824i \(0.642964\pi\)
\(6\) 0 0
\(7\) −4.58614 + 0.808660i −1.73340 + 0.305645i −0.949155 0.314810i \(-0.898059\pi\)
−0.784242 + 0.620455i \(0.786948\pi\)
\(8\) 0 0
\(9\) 2.10299 2.13949i 0.700998 0.713163i
\(10\) 0 0
\(11\) 0.303411 0.833616i 0.0914819 0.251345i −0.885510 0.464620i \(-0.846191\pi\)
0.976992 + 0.213275i \(0.0684132\pi\)
\(12\) 0 0
\(13\) −1.22056 + 1.45461i −0.338523 + 0.403436i −0.908270 0.418384i \(-0.862597\pi\)
0.569747 + 0.821820i \(0.307041\pi\)
\(14\) 0 0
\(15\) 4.07344 3.76498i 1.05176 0.972113i
\(16\) 0 0
\(17\) −4.03247 2.32815i −0.978017 0.564658i −0.0763460 0.997081i \(-0.524325\pi\)
−0.901671 + 0.432423i \(0.857659\pi\)
\(18\) 0 0
\(19\) 0.171350 + 0.296787i 0.0393104 + 0.0680876i 0.885011 0.465570i \(-0.154151\pi\)
−0.845701 + 0.533657i \(0.820817\pi\)
\(20\) 0 0
\(21\) 6.78406 4.36306i 1.48040 0.952097i
\(22\) 0 0
\(23\) −1.00156 + 5.68012i −0.208839 + 1.18439i 0.682443 + 0.730939i \(0.260918\pi\)
−0.891282 + 0.453449i \(0.850194\pi\)
\(24\) 0 0
\(25\) 4.02633 3.37849i 0.805265 0.675698i
\(26\) 0 0
\(27\) −1.92637 + 4.82588i −0.370731 + 0.928740i
\(28\) 0 0
\(29\) 4.16935 3.49850i 0.774229 0.649655i −0.167559 0.985862i \(-0.553589\pi\)
0.941788 + 0.336207i \(0.109144\pi\)
\(30\) 0 0
\(31\) 7.80815 + 1.37679i 1.40238 + 0.247278i 0.823123 0.567864i \(-0.192230\pi\)
0.579262 + 0.815142i \(0.303341\pi\)
\(32\) 0 0
\(33\) 0.0736241 + 1.53476i 0.0128163 + 0.267168i
\(34\) 0 0
\(35\) 12.9156 7.45683i 2.18314 1.26044i
\(36\) 0 0
\(37\) 2.31812 + 1.33837i 0.381097 + 0.220026i 0.678295 0.734789i \(-0.262719\pi\)
−0.297199 + 0.954816i \(0.596052\pi\)
\(38\) 0 0
\(39\) 0.975496 3.14092i 0.156204 0.502950i
\(40\) 0 0
\(41\) 0.0346849 0.0413359i 0.00541687 0.00645558i −0.763329 0.646010i \(-0.776437\pi\)
0.768746 + 0.639554i \(0.220881\pi\)
\(42\) 0 0
\(43\) 2.85915 + 1.04064i 0.436016 + 0.158697i 0.550696 0.834706i \(-0.314362\pi\)
−0.114681 + 0.993402i \(0.536584\pi\)
\(44\) 0 0
\(45\) −3.98525 + 8.74195i −0.594086 + 1.30317i
\(46\) 0 0
\(47\) −1.90179 10.7856i −0.277404 1.57324i −0.731219 0.682143i \(-0.761048\pi\)
0.453814 0.891096i \(-0.350063\pi\)
\(48\) 0 0
\(49\) 13.8009 5.02311i 1.97155 0.717587i
\(50\) 0 0
\(51\) 8.00039 + 1.01828i 1.12028 + 0.142588i
\(52\) 0 0
\(53\) −1.27415 −0.175018 −0.0875092 0.996164i \(-0.527891\pi\)
−0.0875092 + 0.996164i \(0.527891\pi\)
\(54\) 0 0
\(55\) 2.84099i 0.383078i
\(56\) 0 0
\(57\) −0.472464 0.359316i −0.0625793 0.0475926i
\(58\) 0 0
\(59\) −2.43399 6.68734i −0.316879 0.870618i −0.991223 0.132201i \(-0.957796\pi\)
0.674344 0.738417i \(-0.264427\pi\)
\(60\) 0 0
\(61\) −8.19039 + 1.44419i −1.04867 + 0.184909i −0.671326 0.741163i \(-0.734275\pi\)
−0.377347 + 0.926072i \(0.623164\pi\)
\(62\) 0 0
\(63\) −7.91450 + 11.5126i −0.997134 + 1.45045i
\(64\) 0 0
\(65\) 2.07985 5.71435i 0.257974 0.708778i
\(66\) 0 0
\(67\) 6.31205 + 5.29644i 0.771139 + 0.647063i 0.941000 0.338405i \(-0.109887\pi\)
−0.169861 + 0.985468i \(0.554332\pi\)
\(68\) 0 0
\(69\) −2.20417 9.74384i −0.265351 1.17302i
\(70\) 0 0
\(71\) −0.186788 + 0.323526i −0.0221676 + 0.0383955i −0.876896 0.480679i \(-0.840390\pi\)
0.854729 + 0.519075i \(0.173723\pi\)
\(72\) 0 0
\(73\) 6.29550 + 10.9041i 0.736832 + 1.27623i 0.953915 + 0.300077i \(0.0970125\pi\)
−0.217083 + 0.976153i \(0.569654\pi\)
\(74\) 0 0
\(75\) −4.16883 + 8.09304i −0.481375 + 0.934504i
\(76\) 0 0
\(77\) −0.717374 + 4.06843i −0.0817524 + 0.463641i
\(78\) 0 0
\(79\) −2.54509 3.03312i −0.286345 0.341252i 0.603628 0.797266i \(-0.293721\pi\)
−0.889973 + 0.456014i \(0.849277\pi\)
\(80\) 0 0
\(81\) −0.154829 8.99867i −0.0172032 0.999852i
\(82\) 0 0
\(83\) −8.90996 10.6185i −0.977996 1.16553i −0.986199 0.165563i \(-0.947056\pi\)
0.00820363 0.999966i \(-0.497389\pi\)
\(84\) 0 0
\(85\) 14.6852 + 2.58940i 1.59284 + 0.280860i
\(86\) 0 0
\(87\) −4.31692 + 8.38053i −0.462822 + 0.898487i
\(88\) 0 0
\(89\) −6.35012 + 3.66624i −0.673111 + 0.388621i −0.797254 0.603644i \(-0.793715\pi\)
0.124143 + 0.992264i \(0.460382\pi\)
\(90\) 0 0
\(91\) 4.42138 7.65805i 0.463487 0.802782i
\(92\) 0 0
\(93\) −13.3943 + 3.02994i −1.38892 + 0.314191i
\(94\) 0 0
\(95\) −0.840731 0.705457i −0.0862572 0.0723783i
\(96\) 0 0
\(97\) −0.833364 0.303320i −0.0846153 0.0307975i 0.299366 0.954138i \(-0.403225\pi\)
−0.383981 + 0.923341i \(0.625447\pi\)
\(98\) 0 0
\(99\) −1.14544 2.40223i −0.115121 0.241434i
\(100\) 0 0
\(101\) −1.09507 6.21046i −0.108964 0.617964i −0.989563 0.144102i \(-0.953971\pi\)
0.880599 0.473862i \(-0.157140\pi\)
\(102\) 0 0
\(103\) −2.99018 8.21544i −0.294631 0.809492i −0.995374 0.0960778i \(-0.969370\pi\)
0.700743 0.713414i \(-0.252852\pi\)
\(104\) 0 0
\(105\) −15.6368 + 20.5607i −1.52599 + 2.00652i
\(106\) 0 0
\(107\) 3.23101i 0.312354i −0.987729 0.156177i \(-0.950083\pi\)
0.987729 0.156177i \(-0.0499170\pi\)
\(108\) 0 0
\(109\) 10.8688i 1.04104i −0.853849 0.520521i \(-0.825738\pi\)
0.853849 0.520521i \(-0.174262\pi\)
\(110\) 0 0
\(111\) −4.59914 0.585375i −0.436531 0.0555614i
\(112\) 0 0
\(113\) 3.71933 + 10.2188i 0.349885 + 0.961301i 0.982406 + 0.186758i \(0.0597979\pi\)
−0.632521 + 0.774543i \(0.717980\pi\)
\(114\) 0 0
\(115\) −3.20749 18.1906i −0.299100 1.69628i
\(116\) 0 0
\(117\) 0.545285 + 5.67041i 0.0504117 + 0.524230i
\(118\) 0 0
\(119\) 20.3761 + 7.41630i 1.86788 + 0.679851i
\(120\) 0 0
\(121\) 7.82363 + 6.56481i 0.711239 + 0.596801i
\(122\) 0 0
\(123\) −0.0277209 + 0.0892561i −0.00249950 + 0.00804795i
\(124\) 0 0
\(125\) −0.409913 + 0.709991i −0.0366638 + 0.0635035i
\(126\) 0 0
\(127\) 12.2372 7.06513i 1.08587 0.626929i 0.153399 0.988164i \(-0.450978\pi\)
0.932475 + 0.361235i \(0.117645\pi\)
\(128\) 0 0
\(129\) −5.26395 + 0.252517i −0.463465 + 0.0222329i
\(130\) 0 0
\(131\) 3.55599 + 0.627016i 0.310688 + 0.0547827i 0.326818 0.945087i \(-0.394024\pi\)
−0.0161302 + 0.999870i \(0.505135\pi\)
\(132\) 0 0
\(133\) −1.02583 1.22254i −0.0889511 0.106008i
\(134\) 0 0
\(135\) 0.511290 16.6328i 0.0440049 1.43152i
\(136\) 0 0
\(137\) −8.46244 10.0851i −0.722995 0.861632i 0.271923 0.962319i \(-0.412340\pi\)
−0.994918 + 0.100687i \(0.967896\pi\)
\(138\) 0 0
\(139\) −2.08259 + 11.8109i −0.176643 + 1.00179i 0.759588 + 0.650405i \(0.225401\pi\)
−0.936230 + 0.351387i \(0.885710\pi\)
\(140\) 0 0
\(141\) 10.2609 + 15.9546i 0.864128 + 1.34362i
\(142\) 0 0
\(143\) 0.842252 + 1.45882i 0.0704327 + 0.121993i
\(144\) 0 0
\(145\) −8.71512 + 15.0950i −0.723751 + 1.25357i
\(146\) 0 0
\(147\) −18.6807 + 17.2661i −1.54076 + 1.42408i
\(148\) 0 0
\(149\) 6.78333 + 5.69189i 0.555712 + 0.466298i 0.876870 0.480728i \(-0.159628\pi\)
−0.321158 + 0.947026i \(0.604072\pi\)
\(150\) 0 0
\(151\) −1.00187 + 2.75261i −0.0815308 + 0.224004i −0.973759 0.227580i \(-0.926919\pi\)
0.892229 + 0.451584i \(0.149141\pi\)
\(152\) 0 0
\(153\) −13.4613 + 3.73134i −1.08828 + 0.301661i
\(154\) 0 0
\(155\) −25.0056 + 4.40916i −2.00850 + 0.354152i
\(156\) 0 0
\(157\) −3.73399 10.2591i −0.298005 0.818762i −0.994833 0.101524i \(-0.967628\pi\)
0.696828 0.717238i \(-0.254594\pi\)
\(158\) 0 0
\(159\) 2.03526 0.853305i 0.161406 0.0676715i
\(160\) 0 0
\(161\) 26.8597i 2.11684i
\(162\) 0 0
\(163\) 0.983434 0.0770285 0.0385143 0.999258i \(-0.487737\pi\)
0.0385143 + 0.999258i \(0.487737\pi\)
\(164\) 0 0
\(165\) −1.90262 4.53802i −0.148119 0.353284i
\(166\) 0 0
\(167\) −1.50427 + 0.547510i −0.116404 + 0.0423676i −0.399565 0.916705i \(-0.630839\pi\)
0.283161 + 0.959072i \(0.408617\pi\)
\(168\) 0 0
\(169\) 1.63131 + 9.25162i 0.125485 + 0.711663i
\(170\) 0 0
\(171\) 0.995320 + 0.257540i 0.0761141 + 0.0196946i
\(172\) 0 0
\(173\) 13.3229 + 4.84914i 1.01292 + 0.368673i 0.794554 0.607193i \(-0.207705\pi\)
0.218367 + 0.975867i \(0.429927\pi\)
\(174\) 0 0
\(175\) −15.7332 + 18.7501i −1.18932 + 1.41738i
\(176\) 0 0
\(177\) 8.36646 + 9.05191i 0.628861 + 0.680383i
\(178\) 0 0
\(179\) 5.27151 + 3.04351i 0.394011 + 0.227483i 0.683897 0.729579i \(-0.260284\pi\)
−0.289885 + 0.957061i \(0.593617\pi\)
\(180\) 0 0
\(181\) −11.4059 + 6.58520i −0.847795 + 0.489474i −0.859906 0.510452i \(-0.829478\pi\)
0.0121116 + 0.999927i \(0.496145\pi\)
\(182\) 0 0
\(183\) 12.1157 7.79200i 0.895616 0.576001i
\(184\) 0 0
\(185\) −8.44201 1.48855i −0.620669 0.109441i
\(186\) 0 0
\(187\) −3.16427 + 2.65514i −0.231395 + 0.194163i
\(188\) 0 0
\(189\) 4.93213 23.6899i 0.358760 1.72319i
\(190\) 0 0
\(191\) −16.3786 + 13.7433i −1.18512 + 0.994431i −0.185185 + 0.982704i \(0.559288\pi\)
−0.999931 + 0.0117270i \(0.996267\pi\)
\(192\) 0 0
\(193\) 3.64547 20.6745i 0.262407 1.48818i −0.513912 0.857843i \(-0.671804\pi\)
0.776319 0.630341i \(-0.217085\pi\)
\(194\) 0 0
\(195\) 0.504686 + 10.5207i 0.0361413 + 0.753399i
\(196\) 0 0
\(197\) −5.23281 9.06349i −0.372822 0.645747i 0.617176 0.786825i \(-0.288277\pi\)
−0.989999 + 0.141078i \(0.954943\pi\)
\(198\) 0 0
\(199\) −14.3685 8.29565i −1.01855 0.588063i −0.104870 0.994486i \(-0.533443\pi\)
−0.913685 + 0.406423i \(0.866776\pi\)
\(200\) 0 0
\(201\) −13.6295 4.23301i −0.961353 0.298574i
\(202\) 0 0
\(203\) −16.2921 + 19.4162i −1.14348 + 1.36275i
\(204\) 0 0
\(205\) −0.0591036 + 0.162386i −0.00412797 + 0.0113415i
\(206\) 0 0
\(207\) 10.0463 + 14.0881i 0.698265 + 0.979190i
\(208\) 0 0
\(209\) 0.299396 0.0527915i 0.0207096 0.00365167i
\(210\) 0 0
\(211\) 8.76523 3.19028i 0.603423 0.219628i −0.0222000 0.999754i \(-0.507067\pi\)
0.625623 + 0.780126i \(0.284845\pi\)
\(212\) 0 0
\(213\) 0.0816973 0.641874i 0.00559781 0.0439805i
\(214\) 0 0
\(215\) −9.74405 −0.664539
\(216\) 0 0
\(217\) −36.9226 −2.50647
\(218\) 0 0
\(219\) −17.3586 13.2015i −1.17298 0.892073i
\(220\) 0 0
\(221\) 8.30841 3.02402i 0.558884 0.203417i
\(222\) 0 0
\(223\) 18.4672 3.25626i 1.23665 0.218055i 0.483172 0.875525i \(-0.339485\pi\)
0.753481 + 0.657470i \(0.228373\pi\)
\(224\) 0 0
\(225\) 1.23910 15.7192i 0.0826067 1.04795i
\(226\) 0 0
\(227\) −1.73323 + 4.76200i −0.115038 + 0.316065i −0.983828 0.179116i \(-0.942676\pi\)
0.868790 + 0.495181i \(0.164898\pi\)
\(228\) 0 0
\(229\) −14.4905 + 17.2691i −0.957559 + 1.14117i 0.0323508 + 0.999477i \(0.489701\pi\)
−0.989910 + 0.141698i \(0.954744\pi\)
\(230\) 0 0
\(231\) −1.57875 6.97910i −0.103874 0.459191i
\(232\) 0 0
\(233\) 4.93700 + 2.85038i 0.323434 + 0.186735i 0.652922 0.757425i \(-0.273543\pi\)
−0.329488 + 0.944160i \(0.606876\pi\)
\(234\) 0 0
\(235\) 17.5368 + 30.3747i 1.14398 + 1.98143i
\(236\) 0 0
\(237\) 6.09666 + 3.14047i 0.396020 + 0.203995i
\(238\) 0 0
\(239\) 3.99952 22.6824i 0.258707 1.46720i −0.527667 0.849451i \(-0.676933\pi\)
0.786374 0.617750i \(-0.211956\pi\)
\(240\) 0 0
\(241\) 16.6164 13.9428i 1.07036 0.898137i 0.0752732 0.997163i \(-0.476017\pi\)
0.995085 + 0.0990259i \(0.0315727\pi\)
\(242\) 0 0
\(243\) 6.27375 + 14.2702i 0.402462 + 0.915437i
\(244\) 0 0
\(245\) −36.0300 + 30.2327i −2.30187 + 1.93150i
\(246\) 0 0
\(247\) −0.640852 0.112999i −0.0407764 0.00718999i
\(248\) 0 0
\(249\) 21.3435 + 10.9943i 1.35259 + 0.696735i
\(250\) 0 0
\(251\) 6.86745 3.96493i 0.433470 0.250264i −0.267354 0.963598i \(-0.586149\pi\)
0.700824 + 0.713334i \(0.252816\pi\)
\(252\) 0 0
\(253\) 4.43115 + 2.55833i 0.278584 + 0.160841i
\(254\) 0 0
\(255\) −25.1914 + 5.69859i −1.57755 + 0.356860i
\(256\) 0 0
\(257\) 0.0798480 0.0951592i 0.00498078 0.00593587i −0.763548 0.645751i \(-0.776545\pi\)
0.768529 + 0.639815i \(0.220989\pi\)
\(258\) 0 0
\(259\) −11.7135 4.26337i −0.727842 0.264913i
\(260\) 0 0
\(261\) 1.28312 16.2776i 0.0794229 1.00756i
\(262\) 0 0
\(263\) −0.961362 5.45215i −0.0592801 0.336194i 0.940715 0.339197i \(-0.110155\pi\)
−0.999995 + 0.00300271i \(0.999044\pi\)
\(264\) 0 0
\(265\) 3.83439 1.39560i 0.235545 0.0857313i
\(266\) 0 0
\(267\) 7.68800 10.1089i 0.470498 0.618657i
\(268\) 0 0
\(269\) 5.59805 0.341319 0.170659 0.985330i \(-0.445410\pi\)
0.170659 + 0.985330i \(0.445410\pi\)
\(270\) 0 0
\(271\) 1.56554i 0.0951000i 0.998869 + 0.0475500i \(0.0151413\pi\)
−0.998869 + 0.0475500i \(0.984859\pi\)
\(272\) 0 0
\(273\) −1.93382 + 15.1935i −0.117040 + 0.919555i
\(274\) 0 0
\(275\) −1.59473 4.38148i −0.0961657 0.264213i
\(276\) 0 0
\(277\) 27.6100 4.86839i 1.65893 0.292513i 0.735854 0.677140i \(-0.236781\pi\)
0.923072 + 0.384627i \(0.125670\pi\)
\(278\) 0 0
\(279\) 19.3661 13.8101i 1.15942 0.826787i
\(280\) 0 0
\(281\) 3.07719 8.45452i 0.183570 0.504354i −0.813438 0.581651i \(-0.802407\pi\)
0.997008 + 0.0772972i \(0.0246290\pi\)
\(282\) 0 0
\(283\) 22.1256 + 18.5656i 1.31523 + 1.10361i 0.987293 + 0.158909i \(0.0507976\pi\)
0.327936 + 0.944700i \(0.393647\pi\)
\(284\) 0 0
\(285\) 1.81538 + 0.563815i 0.107534 + 0.0333975i
\(286\) 0 0
\(287\) −0.125643 + 0.217620i −0.00741648 + 0.0128457i
\(288\) 0 0
\(289\) 2.34052 + 4.05391i 0.137678 + 0.238465i
\(290\) 0 0
\(291\) 1.53430 0.0736019i 0.0899423 0.00431462i
\(292\) 0 0
\(293\) 3.10437 17.6058i 0.181359 1.02854i −0.749185 0.662360i \(-0.769555\pi\)
0.930545 0.366179i \(-0.119334\pi\)
\(294\) 0 0
\(295\) 14.6495 + 17.4587i 0.852930 + 1.01648i
\(296\) 0 0
\(297\) 3.43844 + 3.07008i 0.199519 + 0.178144i
\(298\) 0 0
\(299\) −7.03989 8.38981i −0.407127 0.485196i
\(300\) 0 0
\(301\) −13.9540 2.46046i −0.804293 0.141819i
\(302\) 0 0
\(303\) 5.90837 + 9.18685i 0.339427 + 0.527771i
\(304\) 0 0
\(305\) 23.0660 13.3172i 1.32076 0.762540i
\(306\) 0 0
\(307\) −2.66885 + 4.62258i −0.152319 + 0.263825i −0.932080 0.362253i \(-0.882008\pi\)
0.779760 + 0.626078i \(0.215341\pi\)
\(308\) 0 0
\(309\) 10.2782 + 11.1203i 0.584709 + 0.632613i
\(310\) 0 0
\(311\) 7.48203 + 6.27817i 0.424267 + 0.356002i 0.829783 0.558086i \(-0.188464\pi\)
−0.405517 + 0.914088i \(0.632908\pi\)
\(312\) 0 0
\(313\) −20.9377 7.62069i −1.18347 0.430747i −0.326042 0.945355i \(-0.605715\pi\)
−0.857425 + 0.514608i \(0.827937\pi\)
\(314\) 0 0
\(315\) 11.2077 43.3145i 0.631480 2.44050i
\(316\) 0 0
\(317\) −2.75422 15.6200i −0.154692 0.877304i −0.959067 0.283181i \(-0.908610\pi\)
0.804374 0.594123i \(-0.202501\pi\)
\(318\) 0 0
\(319\) −1.65138 4.53712i −0.0924593 0.254030i
\(320\) 0 0
\(321\) 2.16382 + 5.16103i 0.120773 + 0.288060i
\(322\) 0 0
\(323\) 1.59571i 0.0887877i
\(324\) 0 0
\(325\) 9.98038i 0.553612i
\(326\) 0 0
\(327\) 7.27887 + 17.3612i 0.402522 + 0.960075i
\(328\) 0 0
\(329\) 17.4437 + 47.9263i 0.961704 + 2.64226i
\(330\) 0 0
\(331\) −4.91331 27.8648i −0.270060 1.53159i −0.754229 0.656611i \(-0.771989\pi\)
0.484169 0.874974i \(-0.339122\pi\)
\(332\) 0 0
\(333\) 7.73842 2.14501i 0.424063 0.117546i
\(334\) 0 0
\(335\) −24.7965 9.02520i −1.35478 0.493099i
\(336\) 0 0
\(337\) −2.65131 2.22472i −0.144426 0.121188i 0.567712 0.823227i \(-0.307829\pi\)
−0.712138 + 0.702039i \(0.752273\pi\)
\(338\) 0 0
\(339\) −12.7846 13.8320i −0.694363 0.751251i
\(340\) 0 0
\(341\) 3.51679 6.09126i 0.190445 0.329860i
\(342\) 0 0
\(343\) −30.9999 + 17.8978i −1.67383 + 0.966389i
\(344\) 0 0
\(345\) 17.3058 + 26.9085i 0.931710 + 1.44870i
\(346\) 0 0
\(347\) 21.3082 + 3.75721i 1.14388 + 0.201698i 0.713304 0.700854i \(-0.247198\pi\)
0.430581 + 0.902552i \(0.358309\pi\)
\(348\) 0 0
\(349\) 13.6098 + 16.2195i 0.728514 + 0.868209i 0.995428 0.0955113i \(-0.0304486\pi\)
−0.266915 + 0.963720i \(0.586004\pi\)
\(350\) 0 0
\(351\) −4.66850 8.69240i −0.249186 0.463966i
\(352\) 0 0
\(353\) −10.0326 11.9564i −0.533980 0.636373i 0.429847 0.902902i \(-0.358568\pi\)
−0.963827 + 0.266529i \(0.914123\pi\)
\(354\) 0 0
\(355\) 0.207748 1.17820i 0.0110261 0.0625324i
\(356\) 0 0
\(357\) −37.5143 + 1.79960i −1.98547 + 0.0952449i
\(358\) 0 0
\(359\) −2.44114 4.22817i −0.128838 0.223154i 0.794389 0.607410i \(-0.207791\pi\)
−0.923227 + 0.384256i \(0.874458\pi\)
\(360\) 0 0
\(361\) 9.44128 16.3528i 0.496909 0.860672i
\(362\) 0 0
\(363\) −16.8935 5.24672i −0.886678 0.275381i
\(364\) 0 0
\(365\) −30.8889 25.9189i −1.61680 1.35666i
\(366\) 0 0
\(367\) 3.44230 9.45764i 0.179687 0.493685i −0.816849 0.576852i \(-0.804281\pi\)
0.996536 + 0.0831666i \(0.0265033\pi\)
\(368\) 0 0
\(369\) −0.0154955 0.161137i −0.000806662 0.00838846i
\(370\) 0 0
\(371\) 5.84344 1.03036i 0.303376 0.0534935i
\(372\) 0 0
\(373\) −0.511543 1.40545i −0.0264867 0.0727717i 0.925745 0.378149i \(-0.123439\pi\)
−0.952231 + 0.305378i \(0.901217\pi\)
\(374\) 0 0
\(375\) 0.179288 1.40862i 0.00925839 0.0727407i
\(376\) 0 0
\(377\) 10.3349i 0.532275i
\(378\) 0 0
\(379\) −26.4034 −1.35625 −0.678126 0.734945i \(-0.737208\pi\)
−0.678126 + 0.734945i \(0.737208\pi\)
\(380\) 0 0
\(381\) −14.8154 + 19.4807i −0.759015 + 0.998027i
\(382\) 0 0
\(383\) 14.7665 5.37456i 0.754532 0.274627i 0.0640204 0.997949i \(-0.479608\pi\)
0.690511 + 0.723321i \(0.257386\pi\)
\(384\) 0 0
\(385\) −2.29739 13.0291i −0.117086 0.664027i
\(386\) 0 0
\(387\) 8.23922 3.92864i 0.418823 0.199704i
\(388\) 0 0
\(389\) 19.0208 + 6.92300i 0.964393 + 0.351010i 0.775753 0.631036i \(-0.217370\pi\)
0.188639 + 0.982046i \(0.439592\pi\)
\(390\) 0 0
\(391\) 17.2629 20.5731i 0.873023 1.04043i
\(392\) 0 0
\(393\) −6.10004 + 1.37990i −0.307706 + 0.0696066i
\(394\) 0 0
\(395\) 10.9813 + 6.34007i 0.552530 + 0.319003i
\(396\) 0 0
\(397\) 23.8679 13.7801i 1.19789 0.691604i 0.237808 0.971312i \(-0.423571\pi\)
0.960085 + 0.279708i \(0.0902376\pi\)
\(398\) 0 0
\(399\) 2.45735 + 1.26581i 0.123021 + 0.0633698i
\(400\) 0 0
\(401\) −6.68368 1.17851i −0.333767 0.0588521i 0.00425323 0.999991i \(-0.498646\pi\)
−0.338020 + 0.941139i \(0.609757\pi\)
\(402\) 0 0
\(403\) −11.5330 + 9.67734i −0.574500 + 0.482063i
\(404\) 0 0
\(405\) 10.3223 + 26.9107i 0.512922 + 1.33720i
\(406\) 0 0
\(407\) 1.81903 1.52635i 0.0901659 0.0756581i
\(408\) 0 0
\(409\) −2.97274 + 16.8592i −0.146992 + 0.833636i 0.818753 + 0.574145i \(0.194666\pi\)
−0.965746 + 0.259490i \(0.916445\pi\)
\(410\) 0 0
\(411\) 20.2715 + 10.4421i 0.999917 + 0.515070i
\(412\) 0 0
\(413\) 16.5704 + 28.7008i 0.815377 + 1.41227i
\(414\) 0 0
\(415\) 38.4439 + 22.1956i 1.88714 + 1.08954i
\(416\) 0 0
\(417\) −4.58323 20.2608i −0.224442 0.992177i
\(418\) 0 0
\(419\) −0.999049 + 1.19062i −0.0488067 + 0.0581656i −0.789896 0.613241i \(-0.789865\pi\)
0.741089 + 0.671407i \(0.234310\pi\)
\(420\) 0 0
\(421\) 4.61578 12.6818i 0.224959 0.618071i −0.774943 0.632031i \(-0.782222\pi\)
0.999903 + 0.0139601i \(0.00444380\pi\)
\(422\) 0 0
\(423\) −27.0751 18.6132i −1.31644 0.905003i
\(424\) 0 0
\(425\) −24.1016 + 4.24977i −1.16910 + 0.206144i
\(426\) 0 0
\(427\) 36.3944 13.2465i 1.76125 0.641042i
\(428\) 0 0
\(429\) −2.32234 1.76618i −0.112124 0.0852719i
\(430\) 0 0
\(431\) 32.6219 1.57134 0.785671 0.618644i \(-0.212318\pi\)
0.785671 + 0.618644i \(0.212318\pi\)
\(432\) 0 0
\(433\) −20.4173 −0.981192 −0.490596 0.871387i \(-0.663221\pi\)
−0.490596 + 0.871387i \(0.663221\pi\)
\(434\) 0 0
\(435\) 3.81182 29.9485i 0.182763 1.43592i
\(436\) 0 0
\(437\) −1.85740 + 0.676039i −0.0888516 + 0.0323393i
\(438\) 0 0
\(439\) −5.01912 + 0.885007i −0.239550 + 0.0422391i −0.292134 0.956377i \(-0.594365\pi\)
0.0525843 + 0.998616i \(0.483254\pi\)
\(440\) 0 0
\(441\) 18.2763 40.0904i 0.870299 1.90907i
\(442\) 0 0
\(443\) −6.33577 + 17.4074i −0.301022 + 0.827050i 0.693301 + 0.720648i \(0.256155\pi\)
−0.994323 + 0.106403i \(0.966067\pi\)
\(444\) 0 0
\(445\) 15.0941 17.9885i 0.715529 0.852735i
\(446\) 0 0
\(447\) −14.6472 4.54907i −0.692787 0.215163i
\(448\) 0 0
\(449\) 16.4019 + 9.46962i 0.774052 + 0.446899i 0.834318 0.551283i \(-0.185862\pi\)
−0.0602665 + 0.998182i \(0.519195\pi\)
\(450\) 0 0
\(451\) −0.0239344 0.0414557i −0.00112703 0.00195207i
\(452\) 0 0
\(453\) −0.243108 5.06781i −0.0114222 0.238106i
\(454\) 0 0
\(455\) −4.91753 + 27.8887i −0.230537 + 1.30744i
\(456\) 0 0
\(457\) −8.02025 + 6.72979i −0.375172 + 0.314806i −0.810803 0.585319i \(-0.800969\pi\)
0.435632 + 0.900125i \(0.356525\pi\)
\(458\) 0 0
\(459\) 19.0034 14.9753i 0.887002 0.698987i
\(460\) 0 0
\(461\) 18.6832 15.6771i 0.870163 0.730153i −0.0939698 0.995575i \(-0.529956\pi\)
0.964132 + 0.265422i \(0.0855113\pi\)
\(462\) 0 0
\(463\) −15.5149 2.73570i −0.721039 0.127139i −0.198925 0.980015i \(-0.563745\pi\)
−0.522113 + 0.852876i \(0.674856\pi\)
\(464\) 0 0
\(465\) 36.9896 23.7892i 1.71535 1.10320i
\(466\) 0 0
\(467\) 6.64718 3.83775i 0.307595 0.177590i −0.338255 0.941055i \(-0.609837\pi\)
0.645850 + 0.763465i \(0.276503\pi\)
\(468\) 0 0
\(469\) −33.2309 19.1859i −1.53446 0.885922i
\(470\) 0 0
\(471\) 12.8350 + 13.8865i 0.591405 + 0.639858i
\(472\) 0 0
\(473\) 1.73499 2.06769i 0.0797751 0.0950723i
\(474\) 0 0
\(475\) 1.69260 + 0.616057i 0.0776619 + 0.0282666i
\(476\) 0 0
\(477\) −2.67954 + 2.72604i −0.122688 + 0.124817i
\(478\) 0 0
\(479\) 5.41592 + 30.7152i 0.247460 + 1.40341i 0.814710 + 0.579869i \(0.196896\pi\)
−0.567250 + 0.823545i \(0.691993\pi\)
\(480\) 0 0
\(481\) −4.77621 + 1.73840i −0.217776 + 0.0792641i
\(482\) 0 0
\(483\) 17.9881 + 42.9042i 0.818485 + 1.95221i
\(484\) 0 0
\(485\) 2.84013 0.128964
\(486\) 0 0
\(487\) 14.2176i 0.644263i −0.946695 0.322131i \(-0.895601\pi\)
0.946695 0.322131i \(-0.104399\pi\)
\(488\) 0 0
\(489\) −1.57088 + 0.658609i −0.0710376 + 0.0297833i
\(490\) 0 0
\(491\) −0.483056 1.32718i −0.0218000 0.0598950i 0.928315 0.371794i \(-0.121257\pi\)
−0.950115 + 0.311899i \(0.899035\pi\)
\(492\) 0 0
\(493\) −24.9578 + 4.40073i −1.12404 + 0.198199i
\(494\) 0 0
\(495\) 6.07826 + 5.97458i 0.273197 + 0.268537i
\(496\) 0 0
\(497\) 0.595012 1.63478i 0.0266899 0.0733300i
\(498\) 0 0
\(499\) −22.9472 19.2550i −1.02726 0.861971i −0.0367345 0.999325i \(-0.511696\pi\)
−0.990522 + 0.137355i \(0.956140\pi\)
\(500\) 0 0
\(501\) 2.03616 1.88198i 0.0909691 0.0840805i
\(502\) 0 0
\(503\) 4.40212 7.62469i 0.196281 0.339968i −0.751039 0.660258i \(-0.770447\pi\)
0.947320 + 0.320290i \(0.103780\pi\)
\(504\) 0 0
\(505\) 10.0979 + 17.4901i 0.449351 + 0.778299i
\(506\) 0 0
\(507\) −8.80160 13.6855i −0.390893 0.607794i
\(508\) 0 0
\(509\) −3.62638 + 20.5662i −0.160737 + 0.911582i 0.792616 + 0.609722i \(0.208719\pi\)
−0.953352 + 0.301860i \(0.902392\pi\)
\(510\) 0 0
\(511\) −37.6897 44.9169i −1.66730 1.98701i
\(512\) 0 0
\(513\) −1.76234 + 0.255191i −0.0778093 + 0.0112670i
\(514\) 0 0
\(515\) 17.9971 + 21.4481i 0.793045 + 0.945114i
\(516\) 0 0
\(517\) −9.56806 1.68711i −0.420803 0.0741988i
\(518\) 0 0
\(519\) −24.5287 + 1.17667i −1.07669 + 0.0516499i
\(520\) 0 0
\(521\) 18.8404 10.8775i 0.825413 0.476552i −0.0268665 0.999639i \(-0.508553\pi\)
0.852280 + 0.523087i \(0.175220\pi\)
\(522\) 0 0
\(523\) −2.21522 + 3.83687i −0.0968647 + 0.167775i −0.910385 0.413761i \(-0.864215\pi\)
0.813521 + 0.581536i \(0.197548\pi\)
\(524\) 0 0
\(525\) 12.5743 40.4870i 0.548788 1.76700i
\(526\) 0 0
\(527\) −28.2807 23.7303i −1.23193 1.03371i
\(528\) 0 0
\(529\) −9.64774 3.51149i −0.419467 0.152673i
\(530\) 0 0
\(531\) −19.4262 8.85594i −0.843024 0.384315i
\(532\) 0 0
\(533\) 0.0177924 + 0.100906i 0.000770676 + 0.00437072i
\(534\) 0 0
\(535\) 3.53899 + 9.72329i 0.153004 + 0.420375i
\(536\) 0 0
\(537\) −10.4586 1.33117i −0.451324 0.0574442i
\(538\) 0 0
\(539\) 13.0287i 0.561186i
\(540\) 0 0
\(541\) 37.3027i 1.60377i 0.597479 + 0.801884i \(0.296169\pi\)
−0.597479 + 0.801884i \(0.703831\pi\)
\(542\) 0 0
\(543\) 13.8090 18.1574i 0.592600 0.779208i
\(544\) 0 0
\(545\) 11.9048 + 32.7082i 0.509945 + 1.40106i
\(546\) 0 0
\(547\) −3.56925 20.2422i −0.152610 0.865496i −0.960938 0.276763i \(-0.910738\pi\)
0.808328 0.588733i \(-0.200373\pi\)
\(548\) 0 0
\(549\) −14.1345 + 20.5604i −0.603247 + 0.877496i
\(550\) 0 0
\(551\) 1.75273 + 0.637941i 0.0746687 + 0.0271772i
\(552\) 0 0
\(553\) 14.1249 + 11.8522i 0.600651 + 0.504006i
\(554\) 0 0
\(555\) 14.4816 3.27591i 0.614712 0.139055i
\(556\) 0 0
\(557\) −13.7564 + 23.8268i −0.582877 + 1.00957i 0.412259 + 0.911067i \(0.364740\pi\)
−0.995136 + 0.0985064i \(0.968593\pi\)
\(558\) 0 0
\(559\) −5.00349 + 2.88877i −0.211625 + 0.122182i
\(560\) 0 0
\(561\) 3.27627 6.36029i 0.138324 0.268532i
\(562\) 0 0
\(563\) 28.2129 + 4.97470i 1.18903 + 0.209658i 0.732952 0.680280i \(-0.238142\pi\)
0.456080 + 0.889939i \(0.349253\pi\)
\(564\) 0 0
\(565\) −22.3856 26.6781i −0.941770 1.12236i
\(566\) 0 0
\(567\) 7.98693 + 41.1439i 0.335419 + 1.72788i
\(568\) 0 0
\(569\) −4.16772 4.96689i −0.174720 0.208223i 0.671577 0.740935i \(-0.265617\pi\)
−0.846297 + 0.532712i \(0.821173\pi\)
\(570\) 0 0
\(571\) 4.13866 23.4715i 0.173197 0.982252i −0.767006 0.641639i \(-0.778255\pi\)
0.940204 0.340612i \(-0.110634\pi\)
\(572\) 0 0
\(573\) 16.9583 32.9216i 0.708444 1.37532i
\(574\) 0 0
\(575\) 15.1576 + 26.2538i 0.632117 + 1.09486i
\(576\) 0 0
\(577\) 9.82303 17.0140i 0.408938 0.708302i −0.585833 0.810432i \(-0.699232\pi\)
0.994771 + 0.102130i \(0.0325658\pi\)
\(578\) 0 0
\(579\) 8.02273 + 35.4656i 0.333413 + 1.47390i
\(580\) 0 0
\(581\) 49.4491 + 41.4927i 2.05149 + 1.72141i
\(582\) 0 0
\(583\) −0.386593 + 1.06215i −0.0160110 + 0.0439899i
\(584\) 0 0
\(585\) −7.85187 16.4671i −0.324635 0.680830i
\(586\) 0 0
\(587\) 0.851961 0.150224i 0.0351642 0.00620040i −0.156038 0.987751i \(-0.549872\pi\)
0.191203 + 0.981551i \(0.438761\pi\)
\(588\) 0 0
\(589\) 0.929313 + 2.55327i 0.0382917 + 0.105206i
\(590\) 0 0
\(591\) 14.4284 + 10.9731i 0.593507 + 0.451371i
\(592\) 0 0
\(593\) 14.5405i 0.597108i 0.954393 + 0.298554i \(0.0965044\pi\)
−0.954393 + 0.298554i \(0.903496\pi\)
\(594\) 0 0
\(595\) −69.4424 −2.84686
\(596\) 0 0
\(597\) 28.5070 + 3.62835i 1.16671 + 0.148499i
\(598\) 0 0
\(599\) −19.6014 + 7.13433i −0.800892 + 0.291501i −0.709856 0.704347i \(-0.751240\pi\)
−0.0910360 + 0.995848i \(0.529018\pi\)
\(600\) 0 0
\(601\) −3.10434 17.6056i −0.126629 0.718147i −0.980327 0.197379i \(-0.936757\pi\)
0.853699 0.520768i \(-0.174354\pi\)
\(602\) 0 0
\(603\) 24.6059 2.36618i 1.00203 0.0963583i
\(604\) 0 0
\(605\) −30.7347 11.1865i −1.24954 0.454797i
\(606\) 0 0
\(607\) 11.4075 13.5950i 0.463017 0.551803i −0.483126 0.875551i \(-0.660499\pi\)
0.946143 + 0.323748i \(0.104943\pi\)
\(608\) 0 0
\(609\) 13.0210 41.9252i 0.527636 1.69889i
\(610\) 0 0
\(611\) 18.0101 + 10.3981i 0.728609 + 0.420662i
\(612\) 0 0
\(613\) −6.61359 + 3.81836i −0.267120 + 0.154222i −0.627578 0.778554i \(-0.715954\pi\)
0.360458 + 0.932775i \(0.382620\pi\)
\(614\) 0 0
\(615\) −0.0143418 0.298967i −0.000578315 0.0120555i
\(616\) 0 0
\(617\) 1.20638 + 0.212717i 0.0485669 + 0.00856365i 0.197879 0.980226i \(-0.436595\pi\)
−0.149312 + 0.988790i \(0.547706\pi\)
\(618\) 0 0
\(619\) 4.70712 3.94975i 0.189195 0.158754i −0.543270 0.839558i \(-0.682814\pi\)
0.732465 + 0.680804i \(0.238370\pi\)
\(620\) 0 0
\(621\) −25.4822 15.7754i −1.02256 0.633047i
\(622\) 0 0
\(623\) 26.1578 21.9490i 1.04799 0.879367i
\(624\) 0 0
\(625\) −4.10756 + 23.2951i −0.164302 + 0.931805i
\(626\) 0 0
\(627\) −0.442882 + 0.284832i −0.0176870 + 0.0113751i
\(628\) 0 0
\(629\) −6.23183 10.7938i −0.248479 0.430379i
\(630\) 0 0
\(631\) −4.14675 2.39413i −0.165080 0.0953088i 0.415184 0.909737i \(-0.363717\pi\)
−0.580264 + 0.814429i \(0.697051\pi\)
\(632\) 0 0
\(633\) −11.8645 + 10.9661i −0.471572 + 0.435862i
\(634\) 0 0
\(635\) −29.0875 + 34.6652i −1.15430 + 1.37565i
\(636\) 0 0
\(637\) −9.53816 + 26.2059i −0.377916 + 1.03832i
\(638\) 0 0
\(639\) 0.299367 + 1.08000i 0.0118428 + 0.0427243i
\(640\) 0 0
\(641\) 7.66053 1.35076i 0.302573 0.0533517i −0.0203006 0.999794i \(-0.506462\pi\)
0.322873 + 0.946442i \(0.395351\pi\)
\(642\) 0 0
\(643\) −22.0412 + 8.02234i −0.869220 + 0.316370i −0.737851 0.674964i \(-0.764159\pi\)
−0.131369 + 0.991334i \(0.541937\pi\)
\(644\) 0 0
\(645\) 15.5646 6.52563i 0.612854 0.256946i
\(646\) 0 0
\(647\) −11.2669 −0.442948 −0.221474 0.975166i \(-0.571087\pi\)
−0.221474 + 0.975166i \(0.571087\pi\)
\(648\) 0 0
\(649\) −6.31318 −0.247814
\(650\) 0 0
\(651\) 58.9779 24.7272i 2.31153 0.969135i
\(652\) 0 0
\(653\) −36.3675 + 13.2367i −1.42317 + 0.517991i −0.934965 0.354739i \(-0.884570\pi\)
−0.488203 + 0.872730i \(0.662347\pi\)
\(654\) 0 0
\(655\) −11.3880 + 2.00802i −0.444968 + 0.0784598i
\(656\) 0 0
\(657\) 36.5686 + 9.46215i 1.42668 + 0.369154i
\(658\) 0 0
\(659\) 11.6740 32.0740i 0.454753 1.24942i −0.474590 0.880207i \(-0.657404\pi\)
0.929343 0.369217i \(-0.120374\pi\)
\(660\) 0 0
\(661\) 32.5831 38.8310i 1.26734 1.51035i 0.505083 0.863071i \(-0.331462\pi\)
0.762252 0.647281i \(-0.224094\pi\)
\(662\) 0 0
\(663\) −11.2462 + 10.3946i −0.436765 + 0.403691i
\(664\) 0 0
\(665\) 4.42618 + 2.55546i 0.171640 + 0.0990964i
\(666\) 0 0
\(667\) 15.6961 + 27.1864i 0.607754 + 1.05266i
\(668\) 0 0
\(669\) −27.3176 + 17.5689i −1.05616 + 0.679252i
\(670\) 0 0
\(671\) −1.28116 + 7.26582i −0.0494587 + 0.280494i
\(672\) 0 0
\(673\) 17.6716 14.8283i 0.681191 0.571587i −0.235163 0.971956i \(-0.575562\pi\)
0.916354 + 0.400369i \(0.131118\pi\)
\(674\) 0 0
\(675\) 8.54795 + 25.9388i 0.329011 + 0.998384i
\(676\) 0 0
\(677\) 32.2459 27.0575i 1.23931 1.03991i 0.241733 0.970343i \(-0.422284\pi\)
0.997578 0.0695623i \(-0.0221603\pi\)
\(678\) 0 0
\(679\) 4.06720 + 0.717158i 0.156085 + 0.0275220i
\(680\) 0 0
\(681\) −0.420576 8.76729i −0.0161165 0.335963i
\(682\) 0 0
\(683\) −34.0757 + 19.6736i −1.30387 + 0.752789i −0.981065 0.193676i \(-0.937959\pi\)
−0.322804 + 0.946466i \(0.604625\pi\)
\(684\) 0 0
\(685\) 36.5130 + 21.0808i 1.39509 + 0.805456i
\(686\) 0 0
\(687\) 11.5811 37.2890i 0.441846 1.42266i
\(688\) 0 0
\(689\) 1.55518 1.85340i 0.0592478 0.0706087i
\(690\) 0 0
\(691\) −34.6497 12.6115i −1.31814 0.479762i −0.415276 0.909696i \(-0.636315\pi\)
−0.902861 + 0.429933i \(0.858537\pi\)
\(692\) 0 0
\(693\) 7.19573 + 10.0907i 0.273343 + 0.383314i
\(694\) 0 0
\(695\) −6.66949 37.8245i −0.252988 1.43477i
\(696\) 0 0
\(697\) −0.236102 + 0.0859340i −0.00894299 + 0.00325498i
\(698\) 0 0
\(699\) −9.79498 1.24670i −0.370480 0.0471545i
\(700\) 0 0
\(701\) −6.58502 −0.248713 −0.124356 0.992238i \(-0.539687\pi\)
−0.124356 + 0.992238i \(0.539687\pi\)
\(702\) 0 0
\(703\) 0.917317i 0.0345973i
\(704\) 0 0
\(705\) −48.3543 36.7742i −1.82113 1.38500i
\(706\) 0 0
\(707\) 10.0443 + 27.5965i 0.377755 + 1.03787i
\(708\) 0 0
\(709\) −11.2866 + 1.99013i −0.423876 + 0.0747408i −0.381517 0.924362i \(-0.624598\pi\)
−0.0423588 + 0.999102i \(0.513487\pi\)
\(710\) 0 0
\(711\) −11.8416 0.933440i −0.444095 0.0350067i
\(712\) 0 0
\(713\) −15.6406 + 42.9723i −0.585746 + 1.60932i
\(714\) 0 0
\(715\) −4.13252 3.46760i −0.154548 0.129681i
\(716\) 0 0
\(717\) 8.80188 + 38.9100i 0.328712 + 1.45312i
\(718\) 0 0
\(719\) −14.6250 + 25.3313i −0.545421 + 0.944697i 0.453159 + 0.891430i \(0.350297\pi\)
−0.998580 + 0.0532673i \(0.983036\pi\)
\(720\) 0 0
\(721\) 20.3569 + 35.2591i 0.758129 + 1.31312i
\(722\) 0 0
\(723\) −17.2045 + 33.3995i −0.639843 + 1.24214i
\(724\) 0 0
\(725\) 4.96752 28.1722i 0.184489 1.04629i
\(726\) 0 0
\(727\) 32.7533 + 39.0339i 1.21475 + 1.44769i 0.858125 + 0.513440i \(0.171629\pi\)
0.356628 + 0.934246i \(0.383926\pi\)
\(728\) 0 0
\(729\) −19.5782 18.5929i −0.725117 0.688626i
\(730\) 0 0
\(731\) −9.10664 10.8529i −0.336821 0.401408i
\(732\) 0 0
\(733\) 2.54100 + 0.448046i 0.0938538 + 0.0165490i 0.220378 0.975415i \(-0.429271\pi\)
−0.126524 + 0.991964i \(0.540382\pi\)
\(734\) 0 0
\(735\) 37.3052 72.4213i 1.37602 2.67130i
\(736\) 0 0
\(737\) 6.33034 3.65482i 0.233181 0.134627i
\(738\) 0 0
\(739\) −3.86165 + 6.68857i −0.142053 + 0.246043i −0.928270 0.371908i \(-0.878704\pi\)
0.786217 + 0.617951i \(0.212037\pi\)
\(740\) 0 0
\(741\) 1.09934 0.248682i 0.0403851 0.00913557i
\(742\) 0 0
\(743\) 9.80501 + 8.22738i 0.359711 + 0.301833i 0.804676 0.593715i \(-0.202339\pi\)
−0.444965 + 0.895548i \(0.646784\pi\)
\(744\) 0 0
\(745\) −26.6479 9.69906i −0.976305 0.355346i
\(746\) 0 0
\(747\) −41.4557 3.26783i −1.51679 0.119564i
\(748\) 0 0
\(749\) 2.61279 + 14.8179i 0.0954693 + 0.541433i
\(750\) 0 0
\(751\) 15.0834 + 41.4413i 0.550401 + 1.51221i 0.833165 + 0.553025i \(0.186527\pi\)
−0.282763 + 0.959190i \(0.591251\pi\)
\(752\) 0 0
\(753\) −8.31434 + 10.9325i −0.302991 + 0.398402i
\(754\) 0 0
\(755\) 9.38096i 0.341408i
\(756\) 0 0
\(757\) 27.9094i 1.01438i −0.861833 0.507192i \(-0.830684\pi\)
0.861833 0.507192i \(-0.169316\pi\)
\(758\) 0 0
\(759\) −8.79138 1.11896i −0.319107 0.0406157i
\(760\) 0 0
\(761\) −7.20399 19.7928i −0.261145 0.717489i −0.999091 0.0426294i \(-0.986427\pi\)
0.737946 0.674859i \(-0.235796\pi\)
\(762\) 0 0
\(763\) 8.78916 + 49.8458i 0.318189 + 1.80454i
\(764\) 0 0
\(765\) 36.4229 25.9734i 1.31687 0.939070i
\(766\) 0 0
\(767\) 12.6983 + 4.62181i 0.458509 + 0.166884i
\(768\) 0 0
\(769\) −9.76794 8.19627i −0.352241 0.295565i 0.449448 0.893306i \(-0.351621\pi\)
−0.801689 + 0.597741i \(0.796065\pi\)
\(770\) 0 0
\(771\) −0.0638161 + 0.205476i −0.00229828 + 0.00740004i
\(772\) 0 0
\(773\) 24.3894 42.2437i 0.877226 1.51940i 0.0228536 0.999739i \(-0.492725\pi\)
0.854372 0.519661i \(-0.173942\pi\)
\(774\) 0 0
\(775\) 36.0896 20.8363i 1.29638 0.748463i
\(776\) 0 0
\(777\) 21.5656 1.03453i 0.773663 0.0371134i
\(778\) 0 0
\(779\) 0.0182112 + 0.00321113i 0.000652484 + 0.000115051i
\(780\) 0 0
\(781\) 0.213023 + 0.253871i 0.00762256 + 0.00908421i
\(782\) 0 0
\(783\) 8.85160 + 26.8602i 0.316330 + 0.959905i
\(784\) 0 0
\(785\) 22.4739 + 26.7833i 0.802127 + 0.955938i
\(786\) 0 0
\(787\) 4.56672 25.8991i 0.162786 0.923205i −0.788532 0.614994i \(-0.789159\pi\)
0.951318 0.308211i \(-0.0997304\pi\)
\(788\) 0 0
\(789\) 5.18695 + 8.06512i 0.184660 + 0.287126i
\(790\) 0 0
\(791\) −25.3209 43.8570i −0.900306 1.55938i
\(792\) 0 0
\(793\) 7.89615 13.6765i 0.280401 0.485668i
\(794\) 0 0
\(795\) −5.19019 + 4.79716i −0.184077 + 0.170138i
\(796\) 0 0
\(797\) −27.3124 22.9179i −0.967456 0.811792i 0.0146935 0.999892i \(-0.495323\pi\)
−0.982150 + 0.188100i \(0.939767\pi\)
\(798\) 0 0
\(799\) −17.4415 + 47.9201i −0.617036 + 1.69529i
\(800\) 0 0
\(801\) −5.51037 + 21.2961i −0.194700 + 0.752460i
\(802\) 0 0
\(803\) 11.0000 1.93959i 0.388180 0.0684467i
\(804\) 0 0
\(805\) 29.4200 + 80.8307i 1.03692 + 2.84891i
\(806\) 0 0
\(807\) −8.94199 + 3.74903i −0.314773 + 0.131972i
\(808\) 0 0
\(809\) 41.4917i 1.45877i 0.684103 + 0.729385i \(0.260194\pi\)
−0.684103 + 0.729385i \(0.739806\pi\)
\(810\) 0 0
\(811\) −29.0442 −1.01988 −0.509940 0.860210i \(-0.670333\pi\)
−0.509940 + 0.860210i \(0.670333\pi\)
\(812\) 0 0
\(813\) −1.04845 2.50071i −0.0367708 0.0877036i
\(814\) 0 0
\(815\) −2.95951 + 1.07717i −0.103667 + 0.0377318i
\(816\) 0 0
\(817\) 0.181065 + 1.02687i 0.00633467 + 0.0359257i
\(818\) 0 0
\(819\) −7.08619 25.5643i −0.247611 0.893290i
\(820\) 0 0
\(821\) −47.7187 17.3682i −1.66539 0.606153i −0.674196 0.738552i \(-0.735510\pi\)
−0.991197 + 0.132399i \(0.957732\pi\)
\(822\) 0 0
\(823\) 10.2372 12.2002i 0.356847 0.425274i −0.557518 0.830165i \(-0.688246\pi\)
0.914365 + 0.404891i \(0.132691\pi\)
\(824\) 0 0
\(825\) 5.48162 + 5.93072i 0.190845 + 0.206481i
\(826\) 0 0
\(827\) −26.8166 15.4826i −0.932504 0.538381i −0.0449012 0.998991i \(-0.514297\pi\)
−0.887603 + 0.460610i \(0.847631\pi\)
\(828\) 0 0
\(829\) −5.02207 + 2.89949i −0.174424 + 0.100704i −0.584670 0.811271i \(-0.698776\pi\)
0.410246 + 0.911975i \(0.365443\pi\)
\(830\) 0 0
\(831\) −40.8422 + 26.2670i −1.41680 + 0.911193i
\(832\) 0 0
\(833\) −67.3461 11.8749i −2.33340 0.411442i
\(834\) 0 0
\(835\) 3.92720 3.29531i 0.135906 0.114039i
\(836\) 0 0
\(837\) −21.6856 + 35.0289i −0.749565 + 1.21078i
\(838\) 0 0
\(839\) 11.9037 9.98841i 0.410962 0.344838i −0.413750 0.910390i \(-0.635781\pi\)
0.824712 + 0.565552i \(0.191337\pi\)
\(840\) 0 0
\(841\) 0.108181 0.613526i 0.00373038 0.0211561i
\(842\) 0 0
\(843\) 0.746695 + 15.5655i 0.0257175 + 0.536106i
\(844\) 0 0
\(845\) −15.0427 26.0547i −0.517484 0.896309i
\(846\) 0 0
\(847\) −41.1889 23.7804i −1.41527 0.817106i
\(848\) 0 0
\(849\) −47.7755 14.8380i −1.63965 0.509237i
\(850\) 0 0
\(851\) −9.92382 + 11.8268i −0.340184 + 0.405416i
\(852\) 0 0
\(853\) 5.27000 14.4792i 0.180441 0.495758i −0.816189 0.577785i \(-0.803917\pi\)
0.996630 + 0.0820269i \(0.0261393\pi\)
\(854\) 0 0
\(855\) −3.27737 + 0.315163i −0.112084 + 0.0107783i
\(856\) 0 0
\(857\) −43.4090 + 7.65418i −1.48282 + 0.261462i −0.855706 0.517463i \(-0.826877\pi\)
−0.627118 + 0.778924i \(0.715766\pi\)
\(858\) 0 0
\(859\) −49.6251 + 18.0621i −1.69319 + 0.616270i −0.995021 0.0996665i \(-0.968222\pi\)
−0.698166 + 0.715936i \(0.746000\pi\)
\(860\) 0 0
\(861\) 0.0549538 0.431757i 0.00187282 0.0147143i
\(862\) 0 0
\(863\) −51.1622 −1.74158 −0.870791 0.491653i \(-0.836393\pi\)
−0.870791 + 0.491653i \(0.836393\pi\)
\(864\) 0 0
\(865\) −45.4048 −1.54381
\(866\) 0 0
\(867\) −6.45353 4.90801i −0.219173 0.166685i
\(868\) 0 0
\(869\) −3.30066 + 1.20134i −0.111967 + 0.0407527i
\(870\) 0 0
\(871\) −15.4085 + 2.71693i −0.522097 + 0.0920597i
\(872\) 0 0
\(873\) −2.40151 + 1.14509i −0.0812788 + 0.0387556i
\(874\) 0 0
\(875\) 1.30578 3.58759i 0.0441433 0.121283i
\(876\) 0 0
\(877\) −21.3535 + 25.4481i −0.721055 + 0.859320i −0.994733 0.102501i \(-0.967315\pi\)
0.273678 + 0.961822i \(0.411760\pi\)
\(878\) 0 0
\(879\) 6.83190 + 30.2014i 0.230434 + 1.01867i
\(880\) 0 0
\(881\) −24.0135 13.8642i −0.809034 0.467096i 0.0375862 0.999293i \(-0.488033\pi\)
−0.846620 + 0.532197i \(0.821366\pi\)
\(882\) 0 0
\(883\) −7.38127 12.7847i −0.248400 0.430241i 0.714682 0.699449i \(-0.246571\pi\)
−0.963082 + 0.269208i \(0.913238\pi\)
\(884\) 0 0
\(885\) −35.0924 18.0766i −1.17962 0.607637i
\(886\) 0 0
\(887\) 3.08832 17.5147i 0.103695 0.588086i −0.888038 0.459770i \(-0.847932\pi\)
0.991733 0.128316i \(-0.0409572\pi\)
\(888\) 0 0
\(889\) −50.4081 + 42.2974i −1.69063 + 1.41861i
\(890\) 0 0
\(891\) −7.54841 2.60123i −0.252881 0.0871445i
\(892\) 0 0
\(893\) 2.87515 2.41254i 0.0962132 0.0807324i
\(894\) 0 0
\(895\) −19.1975 3.38504i −0.641702 0.113149i
\(896\) 0 0
\(897\) 16.8638 + 8.68675i 0.563066 + 0.290042i
\(898\) 0 0
\(899\) 37.3716 21.5765i 1.24641 0.719616i
\(900\) 0 0
\(901\) 5.13798 + 2.96642i 0.171171 + 0.0988256i
\(902\) 0 0
\(903\) 23.9370 5.41483i 0.796574 0.180194i
\(904\) 0 0
\(905\) 27.1116 32.3104i 0.901221 1.07403i
\(906\) 0 0
\(907\) 33.8368 + 12.3156i 1.12353 + 0.408932i 0.835940 0.548821i \(-0.184923\pi\)
0.287591 + 0.957753i \(0.407146\pi\)
\(908\) 0 0
\(909\) −15.5901 10.7177i −0.517093 0.355483i
\(910\) 0 0
\(911\) −0.0484884 0.274992i −0.00160649 0.00911088i 0.983994 0.178202i \(-0.0570280\pi\)
−0.985600 + 0.169091i \(0.945917\pi\)
\(912\) 0 0
\(913\) −11.5551 + 4.20572i −0.382418 + 0.139189i
\(914\) 0 0
\(915\) −27.9258 + 36.7195i −0.923197 + 1.21391i
\(916\) 0 0
\(917\) −16.8153 −0.555290
\(918\) 0 0
\(919\) 19.5234i 0.644017i −0.946737 0.322008i \(-0.895642\pi\)
0.946737 0.322008i \(-0.104358\pi\)
\(920\) 0 0
\(921\) 1.16730 9.17118i 0.0384639 0.302201i
\(922\) 0 0
\(923\) −0.242618 0.666587i −0.00798586 0.0219410i
\(924\) 0 0
\(925\) 13.8552 2.44304i 0.455555 0.0803267i
\(926\) 0 0
\(927\) −23.8652 10.8796i −0.783835 0.357332i
\(928\) 0 0
\(929\) −12.7507 + 35.0323i −0.418338 + 1.14937i 0.534308 + 0.845290i \(0.320572\pi\)
−0.952645 + 0.304083i \(0.901650\pi\)
\(930\) 0 0
\(931\) 3.85557 + 3.23521i 0.126361 + 0.106030i
\(932\) 0 0
\(933\) −16.1559 5.01763i −0.528919 0.164270i
\(934\) 0 0
\(935\) 6.61423 11.4562i 0.216308 0.374657i
\(936\) 0 0
\(937\) −1.65449 2.86566i −0.0540499 0.0936171i 0.837735 0.546078i \(-0.183880\pi\)
−0.891784 + 0.452461i \(0.850546\pi\)
\(938\) 0 0
\(939\) 38.5482 1.84920i 1.25797 0.0603462i
\(940\) 0 0
\(941\) −8.25196 + 46.7992i −0.269006 + 1.52561i 0.488373 + 0.872635i \(0.337591\pi\)
−0.757379 + 0.652975i \(0.773521\pi\)
\(942\) 0 0
\(943\) 0.200054 + 0.238415i 0.00651465 + 0.00776386i
\(944\) 0 0
\(945\) 11.1054 + 76.6938i 0.361260 + 2.49485i
\(946\) 0 0
\(947\) −15.7887 18.8162i −0.513063 0.611444i 0.445863 0.895101i \(-0.352897\pi\)
−0.958926 + 0.283657i \(0.908452\pi\)
\(948\) 0 0
\(949\) −23.5453 4.15167i −0.764312 0.134769i
\(950\) 0 0
\(951\) 14.8602 + 23.1059i 0.481874 + 0.749259i
\(952\) 0 0
\(953\) −5.53399 + 3.19505i −0.179264 + 0.103498i −0.586947 0.809626i \(-0.699670\pi\)
0.407683 + 0.913124i \(0.366337\pi\)
\(954\) 0 0
\(955\) 34.2360 59.2984i 1.10785 1.91885i
\(956\) 0 0
\(957\) 5.67634 + 6.14139i 0.183490 + 0.198523i
\(958\) 0 0
\(959\) 46.9654 + 39.4086i 1.51659 + 1.27257i
\(960\) 0 0
\(961\) 29.9411 + 10.8977i 0.965843 + 0.351538i
\(962\) 0 0
\(963\) −6.91272 6.79480i −0.222759 0.218959i
\(964\) 0 0
\(965\) 11.6746 + 66.2101i 0.375819 + 2.13138i
\(966\) 0 0
\(967\) 7.29798 + 20.0510i 0.234687 + 0.644798i 0.999999 + 0.00113855i \(0.000362411\pi\)
−0.765312 + 0.643659i \(0.777415\pi\)
\(968\) 0 0
\(969\) 1.06865 + 2.54889i 0.0343301 + 0.0818823i
\(970\) 0 0
\(971\) 18.8858i 0.606074i 0.952979 + 0.303037i \(0.0980006\pi\)
−0.952979 + 0.303037i \(0.901999\pi\)
\(972\) 0 0
\(973\) 55.8507i 1.79049i
\(974\) 0 0
\(975\) −6.68390 15.9421i −0.214056 0.510555i
\(976\) 0 0
\(977\) −12.8528 35.3129i −0.411199 1.12976i −0.956554 0.291555i \(-0.905827\pi\)
0.545355 0.838205i \(-0.316395\pi\)
\(978\) 0 0
\(979\) 1.12954 + 6.40593i 0.0361002 + 0.204735i
\(980\) 0 0
\(981\) −23.2537 22.8570i −0.742432 0.729768i
\(982\) 0 0
\(983\) 0.0615360 + 0.0223973i 0.00196269 + 0.000714362i 0.343001 0.939335i \(-0.388556\pi\)
−0.341039 + 0.940049i \(0.610779\pi\)
\(984\) 0 0
\(985\) 25.6749 + 21.5438i 0.818069 + 0.686441i
\(986\) 0 0
\(987\) −59.9600 64.8724i −1.90855 2.06491i
\(988\) 0 0
\(989\) −8.77459 + 15.1980i −0.279016 + 0.483269i
\(990\) 0 0
\(991\) −2.32285 + 1.34110i −0.0737876 + 0.0426013i −0.536440 0.843939i \(-0.680231\pi\)
0.462652 + 0.886540i \(0.346898\pi\)
\(992\) 0 0
\(993\) 26.5094 + 41.2191i 0.841249 + 1.30805i
\(994\) 0 0
\(995\) 52.3264 + 9.22655i 1.65886 + 0.292501i
\(996\) 0 0
\(997\) 6.81445 + 8.12114i 0.215816 + 0.257199i 0.863081 0.505066i \(-0.168532\pi\)
−0.647265 + 0.762265i \(0.724087\pi\)
\(998\) 0 0
\(999\) −10.9244 + 8.60876i −0.345632 + 0.272369i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bh.b.815.3 192
4.3 odd 2 216.2.v.b.59.25 yes 192
8.3 odd 2 inner 864.2.bh.b.815.4 192
8.5 even 2 216.2.v.b.59.24 yes 192
12.11 even 2 648.2.v.b.611.8 192
24.5 odd 2 648.2.v.b.611.9 192
27.11 odd 18 inner 864.2.bh.b.335.4 192
108.11 even 18 216.2.v.b.11.24 192
108.43 odd 18 648.2.v.b.35.9 192
216.11 even 18 inner 864.2.bh.b.335.3 192
216.173 odd 18 216.2.v.b.11.25 yes 192
216.205 even 18 648.2.v.b.35.8 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.24 192 108.11 even 18
216.2.v.b.11.25 yes 192 216.173 odd 18
216.2.v.b.59.24 yes 192 8.5 even 2
216.2.v.b.59.25 yes 192 4.3 odd 2
648.2.v.b.35.8 192 216.205 even 18
648.2.v.b.35.9 192 108.43 odd 18
648.2.v.b.611.8 192 12.11 even 2
648.2.v.b.611.9 192 24.5 odd 2
864.2.bh.b.335.3 192 216.11 even 18 inner
864.2.bh.b.335.4 192 27.11 odd 18 inner
864.2.bh.b.815.3 192 1.1 even 1 trivial
864.2.bh.b.815.4 192 8.3 odd 2 inner