Properties

Label 864.2.bh.b.815.2
Level $864$
Weight $2$
Character 864.815
Analytic conductor $6.899$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(47,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bh (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 815.2
Character \(\chi\) \(=\) 864.815
Dual form 864.2.bh.b.335.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73063 - 0.0701536i) q^{3} +(0.426624 - 0.155279i) q^{5} +(1.28150 - 0.225962i) q^{7} +(2.99016 + 0.242820i) q^{9} +(-0.00602720 + 0.0165596i) q^{11} +(-1.43581 + 1.71113i) q^{13} +(-0.749222 + 0.238801i) q^{15} +(1.27216 + 0.734483i) q^{17} +(-0.677841 - 1.17406i) q^{19} +(-2.23365 + 0.301155i) q^{21} +(0.369486 - 2.09546i) q^{23} +(-3.67233 + 3.08145i) q^{25} +(-5.15782 - 0.630001i) q^{27} +(5.56933 - 4.67322i) q^{29} +(8.87753 + 1.56535i) q^{31} +(0.0115926 - 0.0282357i) q^{33} +(0.511630 - 0.295390i) q^{35} +(4.58718 + 2.64841i) q^{37} +(2.60490 - 2.86061i) q^{39} +(1.56527 - 1.86542i) q^{41} +(10.1956 + 3.71089i) q^{43} +(1.31338 - 0.360715i) q^{45} +(-0.791397 - 4.48824i) q^{47} +(-4.98668 + 1.81500i) q^{49} +(-2.15011 - 1.36036i) q^{51} +10.4085 q^{53} +0.00800062i q^{55} +(1.09073 + 2.07941i) q^{57} +(3.75319 + 10.3118i) q^{59} +(8.87057 - 1.56412i) q^{61} +(3.88674 - 0.364490i) q^{63} +(-0.346849 + 0.952961i) q^{65} +(-3.70041 - 3.10502i) q^{67} +(-0.786447 + 3.60054i) q^{69} +(5.03714 - 8.72458i) q^{71} +(-0.339460 - 0.587962i) q^{73} +(6.57161 - 5.07522i) q^{75} +(-0.00398198 + 0.0225829i) q^{77} +(5.19665 + 6.19313i) q^{79} +(8.88208 + 1.45214i) q^{81} +(-1.29122 - 1.53881i) q^{83} +(0.656785 + 0.115809i) q^{85} +(-9.96629 + 7.69691i) q^{87} +(-0.103744 + 0.0598964i) q^{89} +(-1.45333 + 2.51724i) q^{91} +(-15.2539 - 3.33183i) q^{93} +(-0.471489 - 0.395626i) q^{95} +(-10.4801 - 3.81446i) q^{97} +(-0.0220433 + 0.0480522i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{3} - 12 q^{9} + 30 q^{11} - 18 q^{17} + 6 q^{19} - 12 q^{25} - 18 q^{27} - 30 q^{33} + 18 q^{35} + 18 q^{41} + 42 q^{43} - 12 q^{49} + 18 q^{51} - 36 q^{57} + 84 q^{59} - 12 q^{65} - 30 q^{67}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73063 0.0701536i −0.999179 0.0405032i
\(4\) 0 0
\(5\) 0.426624 0.155279i 0.190792 0.0694427i −0.244857 0.969559i \(-0.578741\pi\)
0.435649 + 0.900116i \(0.356519\pi\)
\(6\) 0 0
\(7\) 1.28150 0.225962i 0.484360 0.0854057i 0.0738642 0.997268i \(-0.476467\pi\)
0.410495 + 0.911863i \(0.365356\pi\)
\(8\) 0 0
\(9\) 2.99016 + 0.242820i 0.996719 + 0.0809399i
\(10\) 0 0
\(11\) −0.00602720 + 0.0165596i −0.00181727 + 0.00499290i −0.940598 0.339522i \(-0.889735\pi\)
0.938781 + 0.344515i \(0.111957\pi\)
\(12\) 0 0
\(13\) −1.43581 + 1.71113i −0.398222 + 0.474582i −0.927477 0.373881i \(-0.878027\pi\)
0.529255 + 0.848463i \(0.322471\pi\)
\(14\) 0 0
\(15\) −0.749222 + 0.238801i −0.193448 + 0.0616580i
\(16\) 0 0
\(17\) 1.27216 + 0.734483i 0.308545 + 0.178138i 0.646275 0.763105i \(-0.276326\pi\)
−0.337730 + 0.941243i \(0.609659\pi\)
\(18\) 0 0
\(19\) −0.677841 1.17406i −0.155507 0.269347i 0.777736 0.628591i \(-0.216368\pi\)
−0.933244 + 0.359244i \(0.883035\pi\)
\(20\) 0 0
\(21\) −2.23365 + 0.301155i −0.487421 + 0.0657175i
\(22\) 0 0
\(23\) 0.369486 2.09546i 0.0770432 0.436933i −0.921748 0.387788i \(-0.873239\pi\)
0.998792 0.0491452i \(-0.0156497\pi\)
\(24\) 0 0
\(25\) −3.67233 + 3.08145i −0.734465 + 0.616289i
\(26\) 0 0
\(27\) −5.15782 0.630001i −0.992623 0.121244i
\(28\) 0 0
\(29\) 5.56933 4.67322i 1.03420 0.867796i 0.0428540 0.999081i \(-0.486355\pi\)
0.991345 + 0.131286i \(0.0419105\pi\)
\(30\) 0 0
\(31\) 8.87753 + 1.56535i 1.59445 + 0.281145i 0.899172 0.437595i \(-0.144170\pi\)
0.695279 + 0.718740i \(0.255281\pi\)
\(32\) 0 0
\(33\) 0.0115926 0.0282357i 0.00201801 0.00491520i
\(34\) 0 0
\(35\) 0.511630 0.295390i 0.0864813 0.0499300i
\(36\) 0 0
\(37\) 4.58718 + 2.64841i 0.754128 + 0.435396i 0.827183 0.561932i \(-0.189942\pi\)
−0.0730557 + 0.997328i \(0.523275\pi\)
\(38\) 0 0
\(39\) 2.60490 2.86061i 0.417117 0.458064i
\(40\) 0 0
\(41\) 1.56527 1.86542i 0.244454 0.291329i −0.629841 0.776724i \(-0.716880\pi\)
0.874295 + 0.485395i \(0.161324\pi\)
\(42\) 0 0
\(43\) 10.1956 + 3.71089i 1.55481 + 0.565906i 0.969541 0.244930i \(-0.0787649\pi\)
0.585273 + 0.810836i \(0.300987\pi\)
\(44\) 0 0
\(45\) 1.31338 0.360715i 0.195787 0.0537722i
\(46\) 0 0
\(47\) −0.791397 4.48824i −0.115437 0.654676i −0.986533 0.163563i \(-0.947701\pi\)
0.871096 0.491113i \(-0.163410\pi\)
\(48\) 0 0
\(49\) −4.98668 + 1.81500i −0.712382 + 0.259286i
\(50\) 0 0
\(51\) −2.15011 1.36036i −0.301076 0.190489i
\(52\) 0 0
\(53\) 10.4085 1.42972 0.714860 0.699267i \(-0.246490\pi\)
0.714860 + 0.699267i \(0.246490\pi\)
\(54\) 0 0
\(55\) 0.00800062i 0.00107880i
\(56\) 0 0
\(57\) 1.09073 + 2.07941i 0.144470 + 0.275424i
\(58\) 0 0
\(59\) 3.75319 + 10.3118i 0.488624 + 1.34248i 0.901926 + 0.431890i \(0.142153\pi\)
−0.413302 + 0.910594i \(0.635625\pi\)
\(60\) 0 0
\(61\) 8.87057 1.56412i 1.13576 0.200265i 0.426010 0.904718i \(-0.359919\pi\)
0.709750 + 0.704453i \(0.248808\pi\)
\(62\) 0 0
\(63\) 3.88674 0.364490i 0.489683 0.0459214i
\(64\) 0 0
\(65\) −0.346849 + 0.952961i −0.0430214 + 0.118200i
\(66\) 0 0
\(67\) −3.70041 3.10502i −0.452078 0.379338i 0.388129 0.921605i \(-0.373122\pi\)
−0.840206 + 0.542267i \(0.817566\pi\)
\(68\) 0 0
\(69\) −0.786447 + 3.60054i −0.0946771 + 0.433454i
\(70\) 0 0
\(71\) 5.03714 8.72458i 0.597799 1.03542i −0.395347 0.918532i \(-0.629376\pi\)
0.993145 0.116886i \(-0.0372911\pi\)
\(72\) 0 0
\(73\) −0.339460 0.587962i −0.0397308 0.0688158i 0.845476 0.534013i \(-0.179317\pi\)
−0.885207 + 0.465197i \(0.845983\pi\)
\(74\) 0 0
\(75\) 6.57161 5.07522i 0.758824 0.586035i
\(76\) 0 0
\(77\) −0.00398198 + 0.0225829i −0.000453789 + 0.00257357i
\(78\) 0 0
\(79\) 5.19665 + 6.19313i 0.584669 + 0.696782i 0.974572 0.224074i \(-0.0719358\pi\)
−0.389903 + 0.920856i \(0.627491\pi\)
\(80\) 0 0
\(81\) 8.88208 + 1.45214i 0.986897 + 0.161349i
\(82\) 0 0
\(83\) −1.29122 1.53881i −0.141729 0.168907i 0.690510 0.723323i \(-0.257386\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(84\) 0 0
\(85\) 0.656785 + 0.115809i 0.0712383 + 0.0125612i
\(86\) 0 0
\(87\) −9.96629 + 7.69691i −1.06850 + 0.825195i
\(88\) 0 0
\(89\) −0.103744 + 0.0598964i −0.0109968 + 0.00634901i −0.505488 0.862833i \(-0.668688\pi\)
0.494492 + 0.869182i \(0.335354\pi\)
\(90\) 0 0
\(91\) −1.45333 + 2.51724i −0.152351 + 0.263879i
\(92\) 0 0
\(93\) −15.2539 3.33183i −1.58176 0.345495i
\(94\) 0 0
\(95\) −0.471489 0.395626i −0.0483738 0.0405904i
\(96\) 0 0
\(97\) −10.4801 3.81446i −1.06410 0.387299i −0.250130 0.968212i \(-0.580474\pi\)
−0.813966 + 0.580913i \(0.802696\pi\)
\(98\) 0 0
\(99\) −0.0220433 + 0.0480522i −0.00221543 + 0.00482943i
\(100\) 0 0
\(101\) −2.89743 16.4321i −0.288305 1.63506i −0.693237 0.720710i \(-0.743816\pi\)
0.404932 0.914347i \(-0.367295\pi\)
\(102\) 0 0
\(103\) 5.45676 + 14.9923i 0.537670 + 1.47724i 0.849753 + 0.527182i \(0.176751\pi\)
−0.312082 + 0.950055i \(0.601026\pi\)
\(104\) 0 0
\(105\) −0.906165 + 0.475318i −0.0884326 + 0.0463862i
\(106\) 0 0
\(107\) 6.73607i 0.651200i 0.945508 + 0.325600i \(0.105566\pi\)
−0.945508 + 0.325600i \(0.894434\pi\)
\(108\) 0 0
\(109\) 2.91699i 0.279397i −0.990194 0.139699i \(-0.955387\pi\)
0.990194 0.139699i \(-0.0446134\pi\)
\(110\) 0 0
\(111\) −7.75291 4.90522i −0.735874 0.465583i
\(112\) 0 0
\(113\) −6.67148 18.3297i −0.627600 1.72432i −0.687572 0.726116i \(-0.741323\pi\)
0.0599724 0.998200i \(-0.480899\pi\)
\(114\) 0 0
\(115\) −0.167748 0.951347i −0.0156426 0.0887136i
\(116\) 0 0
\(117\) −4.70879 + 4.76791i −0.435328 + 0.440793i
\(118\) 0 0
\(119\) 1.79623 + 0.653776i 0.164661 + 0.0599315i
\(120\) 0 0
\(121\) 8.42625 + 7.07046i 0.766023 + 0.642769i
\(122\) 0 0
\(123\) −2.83977 + 3.11853i −0.256053 + 0.281189i
\(124\) 0 0
\(125\) −2.22323 + 3.85075i −0.198852 + 0.344422i
\(126\) 0 0
\(127\) −14.9938 + 8.65666i −1.33048 + 0.768154i −0.985373 0.170409i \(-0.945491\pi\)
−0.345108 + 0.938563i \(0.612158\pi\)
\(128\) 0 0
\(129\) −17.3845 7.13744i −1.53062 0.628417i
\(130\) 0 0
\(131\) 3.03491 + 0.535137i 0.265162 + 0.0467552i 0.304648 0.952465i \(-0.401461\pi\)
−0.0394865 + 0.999220i \(0.512572\pi\)
\(132\) 0 0
\(133\) −1.13394 1.35138i −0.0983252 0.117179i
\(134\) 0 0
\(135\) −2.29828 + 0.532125i −0.197804 + 0.0457980i
\(136\) 0 0
\(137\) 7.57425 + 9.02665i 0.647112 + 0.771198i 0.985476 0.169817i \(-0.0543177\pi\)
−0.338363 + 0.941016i \(0.609873\pi\)
\(138\) 0 0
\(139\) 0.930383 5.27646i 0.0789140 0.447544i −0.919591 0.392878i \(-0.871480\pi\)
0.998505 0.0546659i \(-0.0174094\pi\)
\(140\) 0 0
\(141\) 1.05475 + 7.82299i 0.0888259 + 0.658815i
\(142\) 0 0
\(143\) −0.0196817 0.0340897i −0.00164587 0.00285073i
\(144\) 0 0
\(145\) 1.65036 2.85851i 0.137055 0.237386i
\(146\) 0 0
\(147\) 8.75742 2.79126i 0.722300 0.230219i
\(148\) 0 0
\(149\) −10.9918 9.22325i −0.900486 0.755598i 0.0697991 0.997561i \(-0.477764\pi\)
−0.970285 + 0.241963i \(0.922209\pi\)
\(150\) 0 0
\(151\) 4.06790 11.1765i 0.331041 0.909528i −0.656800 0.754065i \(-0.728091\pi\)
0.987842 0.155464i \(-0.0496872\pi\)
\(152\) 0 0
\(153\) 3.62562 + 2.50513i 0.293114 + 0.202527i
\(154\) 0 0
\(155\) 4.03044 0.710675i 0.323733 0.0570828i
\(156\) 0 0
\(157\) 5.75062 + 15.7997i 0.458950 + 1.26095i 0.926268 + 0.376865i \(0.122998\pi\)
−0.467319 + 0.884089i \(0.654780\pi\)
\(158\) 0 0
\(159\) −18.0133 0.730195i −1.42855 0.0579082i
\(160\) 0 0
\(161\) 2.76881i 0.218213i
\(162\) 0 0
\(163\) −10.1776 −0.797169 −0.398585 0.917132i \(-0.630498\pi\)
−0.398585 + 0.917132i \(0.630498\pi\)
\(164\) 0 0
\(165\) 0.000561272 0.0138461i 4.36950e−5 0.00107792i
\(166\) 0 0
\(167\) −15.0723 + 5.48587i −1.16633 + 0.424509i −0.851355 0.524591i \(-0.824218\pi\)
−0.314975 + 0.949100i \(0.601996\pi\)
\(168\) 0 0
\(169\) 1.39101 + 7.88879i 0.107000 + 0.606830i
\(170\) 0 0
\(171\) −1.74177 3.67520i −0.133196 0.281050i
\(172\) 0 0
\(173\) −12.7203 4.62982i −0.967109 0.351999i −0.190293 0.981727i \(-0.560944\pi\)
−0.776815 + 0.629729i \(0.783166\pi\)
\(174\) 0 0
\(175\) −4.00978 + 4.77867i −0.303111 + 0.361233i
\(176\) 0 0
\(177\) −5.77198 18.1092i −0.433848 1.36117i
\(178\) 0 0
\(179\) −9.84897 5.68630i −0.736146 0.425014i 0.0845201 0.996422i \(-0.473064\pi\)
−0.820667 + 0.571407i \(0.806398\pi\)
\(180\) 0 0
\(181\) −12.8369 + 7.41138i −0.954159 + 0.550884i −0.894370 0.447327i \(-0.852376\pi\)
−0.0597883 + 0.998211i \(0.519043\pi\)
\(182\) 0 0
\(183\) −15.4614 + 2.08461i −1.14294 + 0.154099i
\(184\) 0 0
\(185\) 2.36824 + 0.417585i 0.174117 + 0.0307015i
\(186\) 0 0
\(187\) −0.0198303 + 0.0166396i −0.00145014 + 0.00121681i
\(188\) 0 0
\(189\) −6.75208 + 0.358129i −0.491141 + 0.0260500i
\(190\) 0 0
\(191\) 14.4389 12.1157i 1.04476 0.876659i 0.0522283 0.998635i \(-0.483368\pi\)
0.992533 + 0.121976i \(0.0389232\pi\)
\(192\) 0 0
\(193\) −0.366460 + 2.07830i −0.0263783 + 0.149599i −0.995152 0.0983471i \(-0.968644\pi\)
0.968774 + 0.247946i \(0.0797556\pi\)
\(194\) 0 0
\(195\) 0.667121 1.62489i 0.0477735 0.116361i
\(196\) 0 0
\(197\) 5.72884 + 9.92264i 0.408163 + 0.706959i 0.994684 0.102975i \(-0.0328362\pi\)
−0.586521 + 0.809934i \(0.699503\pi\)
\(198\) 0 0
\(199\) −4.92181 2.84161i −0.348898 0.201436i 0.315302 0.948991i \(-0.397894\pi\)
−0.664200 + 0.747555i \(0.731228\pi\)
\(200\) 0 0
\(201\) 6.18622 + 5.63323i 0.436342 + 0.397337i
\(202\) 0 0
\(203\) 6.08110 7.24717i 0.426809 0.508652i
\(204\) 0 0
\(205\) 0.378123 1.03889i 0.0264093 0.0725589i
\(206\) 0 0
\(207\) 1.61364 6.17603i 0.112156 0.429264i
\(208\) 0 0
\(209\) 0.0235273 0.00414851i 0.00162742 0.000286958i
\(210\) 0 0
\(211\) −15.6412 + 5.69295i −1.07679 + 0.391919i −0.818711 0.574206i \(-0.805311\pi\)
−0.258077 + 0.966124i \(0.583089\pi\)
\(212\) 0 0
\(213\) −9.32948 + 14.7456i −0.639246 + 1.01036i
\(214\) 0 0
\(215\) 4.92591 0.335945
\(216\) 0 0
\(217\) 11.7302 0.796300
\(218\) 0 0
\(219\) 0.546232 + 1.04136i 0.0369109 + 0.0703685i
\(220\) 0 0
\(221\) −3.08338 + 1.12226i −0.207410 + 0.0754912i
\(222\) 0 0
\(223\) 2.73564 0.482367i 0.183192 0.0323017i −0.0812995 0.996690i \(-0.525907\pi\)
0.264491 + 0.964388i \(0.414796\pi\)
\(224\) 0 0
\(225\) −11.7291 + 8.32230i −0.781938 + 0.554820i
\(226\) 0 0
\(227\) 8.45693 23.2352i 0.561306 1.54218i −0.256418 0.966566i \(-0.582542\pi\)
0.817724 0.575611i \(-0.195236\pi\)
\(228\) 0 0
\(229\) −10.0744 + 12.0062i −0.665736 + 0.793393i −0.988197 0.153190i \(-0.951045\pi\)
0.322461 + 0.946583i \(0.395490\pi\)
\(230\) 0 0
\(231\) 0.00847561 0.0388034i 0.000557654 0.00255307i
\(232\) 0 0
\(233\) 17.5198 + 10.1151i 1.14776 + 0.662659i 0.948340 0.317255i \(-0.102761\pi\)
0.199419 + 0.979914i \(0.436094\pi\)
\(234\) 0 0
\(235\) −1.03456 1.79190i −0.0674870 0.116891i
\(236\) 0 0
\(237\) −8.55901 11.0826i −0.555968 0.719891i
\(238\) 0 0
\(239\) −1.48780 + 8.43773i −0.0962378 + 0.545791i 0.898123 + 0.439744i \(0.144931\pi\)
−0.994361 + 0.106048i \(0.966180\pi\)
\(240\) 0 0
\(241\) 11.0727 9.29110i 0.713255 0.598492i −0.212255 0.977214i \(-0.568081\pi\)
0.925510 + 0.378722i \(0.123636\pi\)
\(242\) 0 0
\(243\) −15.2697 3.13622i −0.979552 0.201189i
\(244\) 0 0
\(245\) −1.84561 + 1.54865i −0.117912 + 0.0989395i
\(246\) 0 0
\(247\) 2.98221 + 0.525844i 0.189754 + 0.0334587i
\(248\) 0 0
\(249\) 2.12666 + 2.75370i 0.134772 + 0.174508i
\(250\) 0 0
\(251\) −12.7128 + 7.33976i −0.802427 + 0.463281i −0.844319 0.535841i \(-0.819995\pi\)
0.0418921 + 0.999122i \(0.486661\pi\)
\(252\) 0 0
\(253\) 0.0324730 + 0.0187483i 0.00204156 + 0.00117869i
\(254\) 0 0
\(255\) −1.12853 0.246498i −0.0706711 0.0154363i
\(256\) 0 0
\(257\) −14.4703 + 17.2450i −0.902633 + 1.07572i 0.0941497 + 0.995558i \(0.469987\pi\)
−0.996782 + 0.0801575i \(0.974458\pi\)
\(258\) 0 0
\(259\) 6.47689 + 2.35739i 0.402454 + 0.146481i
\(260\) 0 0
\(261\) 17.7879 12.6213i 1.10104 0.781240i
\(262\) 0 0
\(263\) −3.07511 17.4398i −0.189620 1.07539i −0.919875 0.392212i \(-0.871710\pi\)
0.730255 0.683175i \(-0.239401\pi\)
\(264\) 0 0
\(265\) 4.44053 1.61622i 0.272780 0.0992836i
\(266\) 0 0
\(267\) 0.183744 0.0963806i 0.0112449 0.00589839i
\(268\) 0 0
\(269\) 10.2475 0.624803 0.312402 0.949950i \(-0.398867\pi\)
0.312402 + 0.949950i \(0.398867\pi\)
\(270\) 0 0
\(271\) 18.7315i 1.13786i −0.822386 0.568929i \(-0.807358\pi\)
0.822386 0.568929i \(-0.192642\pi\)
\(272\) 0 0
\(273\) 2.69177 4.25446i 0.162913 0.257492i
\(274\) 0 0
\(275\) −0.0288937 0.0793847i −0.00174235 0.00478708i
\(276\) 0 0
\(277\) 21.4560 3.78327i 1.28917 0.227315i 0.513299 0.858210i \(-0.328423\pi\)
0.775868 + 0.630895i \(0.217312\pi\)
\(278\) 0 0
\(279\) 26.1651 + 6.83628i 1.56646 + 0.409277i
\(280\) 0 0
\(281\) −3.95262 + 10.8597i −0.235793 + 0.647837i 0.764203 + 0.644976i \(0.223133\pi\)
−0.999996 + 0.00286067i \(0.999089\pi\)
\(282\) 0 0
\(283\) 3.28791 + 2.75888i 0.195446 + 0.163998i 0.735259 0.677786i \(-0.237061\pi\)
−0.539813 + 0.841785i \(0.681505\pi\)
\(284\) 0 0
\(285\) 0.788218 + 0.717759i 0.0466900 + 0.0425164i
\(286\) 0 0
\(287\) 1.58437 2.74421i 0.0935226 0.161986i
\(288\) 0 0
\(289\) −7.42107 12.8537i −0.436533 0.756098i
\(290\) 0 0
\(291\) 17.8696 + 7.33663i 1.04754 + 0.430081i
\(292\) 0 0
\(293\) −2.18285 + 12.3796i −0.127523 + 0.723221i 0.852254 + 0.523129i \(0.175235\pi\)
−0.979777 + 0.200092i \(0.935876\pi\)
\(294\) 0 0
\(295\) 3.20241 + 3.81648i 0.186451 + 0.222204i
\(296\) 0 0
\(297\) 0.0415197 0.0816142i 0.00240922 0.00473574i
\(298\) 0 0
\(299\) 3.05509 + 3.64092i 0.176681 + 0.210560i
\(300\) 0 0
\(301\) 13.9041 + 2.45167i 0.801421 + 0.141312i
\(302\) 0 0
\(303\) 3.86160 + 28.6412i 0.221843 + 1.64539i
\(304\) 0 0
\(305\) 3.54153 2.04470i 0.202787 0.117079i
\(306\) 0 0
\(307\) −7.46768 + 12.9344i −0.426203 + 0.738205i −0.996532 0.0832113i \(-0.973482\pi\)
0.570329 + 0.821416i \(0.306816\pi\)
\(308\) 0 0
\(309\) −8.39186 26.3290i −0.477396 1.49780i
\(310\) 0 0
\(311\) −0.935160 0.784692i −0.0530280 0.0444958i 0.615888 0.787833i \(-0.288797\pi\)
−0.668916 + 0.743338i \(0.733242\pi\)
\(312\) 0 0
\(313\) −3.74180 1.36190i −0.211499 0.0769794i 0.234098 0.972213i \(-0.424786\pi\)
−0.445597 + 0.895234i \(0.647009\pi\)
\(314\) 0 0
\(315\) 1.60158 0.759028i 0.0902389 0.0427664i
\(316\) 0 0
\(317\) −1.28552 7.29053i −0.0722018 0.409477i −0.999391 0.0348844i \(-0.988894\pi\)
0.927190 0.374593i \(-0.122217\pi\)
\(318\) 0 0
\(319\) 0.0438192 + 0.120392i 0.00245340 + 0.00674067i
\(320\) 0 0
\(321\) 0.472559 11.6576i 0.0263757 0.650666i
\(322\) 0 0
\(323\) 1.99145i 0.110807i
\(324\) 0 0
\(325\) 10.7082i 0.593984i
\(326\) 0 0
\(327\) −0.204638 + 5.04824i −0.0113165 + 0.279168i
\(328\) 0 0
\(329\) −2.02834 5.57283i −0.111826 0.307240i
\(330\) 0 0
\(331\) −0.520452 2.95163i −0.0286066 0.162236i 0.967158 0.254176i \(-0.0818043\pi\)
−0.995765 + 0.0919400i \(0.970693\pi\)
\(332\) 0 0
\(333\) 13.0733 + 9.03302i 0.716412 + 0.495006i
\(334\) 0 0
\(335\) −2.06083 0.750081i −0.112595 0.0409813i
\(336\) 0 0
\(337\) −10.0788 8.45709i −0.549025 0.460687i 0.325586 0.945513i \(-0.394439\pi\)
−0.874611 + 0.484826i \(0.838883\pi\)
\(338\) 0 0
\(339\) 10.2600 + 32.1900i 0.557244 + 1.74832i
\(340\) 0 0
\(341\) −0.0794281 + 0.137574i −0.00430127 + 0.00745003i
\(342\) 0 0
\(343\) −13.8688 + 8.00714i −0.748844 + 0.432345i
\(344\) 0 0
\(345\) 0.223570 + 1.65820i 0.0120366 + 0.0892744i
\(346\) 0 0
\(347\) −28.8369 5.08472i −1.54804 0.272962i −0.666660 0.745362i \(-0.732277\pi\)
−0.881385 + 0.472400i \(0.843388\pi\)
\(348\) 0 0
\(349\) −13.4766 16.0608i −0.721385 0.859713i 0.273380 0.961906i \(-0.411859\pi\)
−0.994765 + 0.102193i \(0.967414\pi\)
\(350\) 0 0
\(351\) 8.48366 7.92114i 0.452824 0.422799i
\(352\) 0 0
\(353\) 2.02760 + 2.41640i 0.107918 + 0.128612i 0.817300 0.576213i \(-0.195470\pi\)
−0.709381 + 0.704825i \(0.751026\pi\)
\(354\) 0 0
\(355\) 0.794226 4.50428i 0.0421532 0.239062i
\(356\) 0 0
\(357\) −3.06275 1.25746i −0.162098 0.0665516i
\(358\) 0 0
\(359\) 15.2950 + 26.4917i 0.807240 + 1.39818i 0.914768 + 0.403979i \(0.132373\pi\)
−0.107529 + 0.994202i \(0.534294\pi\)
\(360\) 0 0
\(361\) 8.58106 14.8628i 0.451635 0.782255i
\(362\) 0 0
\(363\) −14.0867 12.8275i −0.739360 0.673268i
\(364\) 0 0
\(365\) −0.236120 0.198128i −0.0123591 0.0103705i
\(366\) 0 0
\(367\) 7.65245 21.0249i 0.399455 1.09749i −0.563096 0.826391i \(-0.690390\pi\)
0.962551 0.271101i \(-0.0873878\pi\)
\(368\) 0 0
\(369\) 5.13336 5.19781i 0.267232 0.270587i
\(370\) 0 0
\(371\) 13.3385 2.35193i 0.692499 0.122106i
\(372\) 0 0
\(373\) 3.91132 + 10.7463i 0.202521 + 0.556421i 0.998824 0.0484764i \(-0.0154366\pi\)
−0.796304 + 0.604897i \(0.793214\pi\)
\(374\) 0 0
\(375\) 4.11773 6.50825i 0.212639 0.336085i
\(376\) 0 0
\(377\) 16.2397i 0.836387i
\(378\) 0 0
\(379\) 21.7004 1.11468 0.557338 0.830286i \(-0.311823\pi\)
0.557338 + 0.830286i \(0.311823\pi\)
\(380\) 0 0
\(381\) 26.5560 13.9296i 1.36050 0.713635i
\(382\) 0 0
\(383\) −31.1726 + 11.3459i −1.59285 + 0.579749i −0.977946 0.208856i \(-0.933026\pi\)
−0.614900 + 0.788605i \(0.710804\pi\)
\(384\) 0 0
\(385\) 0.00180784 + 0.0102528i 9.21359e−5 + 0.000522529i
\(386\) 0 0
\(387\) 29.5854 + 13.5718i 1.50391 + 0.689896i
\(388\) 0 0
\(389\) 6.54404 + 2.38183i 0.331796 + 0.120764i 0.502546 0.864551i \(-0.332397\pi\)
−0.170750 + 0.985314i \(0.554619\pi\)
\(390\) 0 0
\(391\) 2.00913 2.39438i 0.101606 0.121089i
\(392\) 0 0
\(393\) −5.21477 1.13903i −0.263050 0.0574567i
\(394\) 0 0
\(395\) 3.17868 + 1.83521i 0.159937 + 0.0923395i
\(396\) 0 0
\(397\) −31.8597 + 18.3942i −1.59899 + 0.923178i −0.607308 + 0.794466i \(0.707751\pi\)
−0.991682 + 0.128712i \(0.958916\pi\)
\(398\) 0 0
\(399\) 1.86763 + 2.41829i 0.0934984 + 0.121066i
\(400\) 0 0
\(401\) 3.00611 + 0.530059i 0.150118 + 0.0264699i 0.248202 0.968708i \(-0.420160\pi\)
−0.0980840 + 0.995178i \(0.531271\pi\)
\(402\) 0 0
\(403\) −15.4250 + 12.9431i −0.768372 + 0.644740i
\(404\) 0 0
\(405\) 4.01480 0.759679i 0.199497 0.0377487i
\(406\) 0 0
\(407\) −0.0715044 + 0.0599993i −0.00354434 + 0.00297406i
\(408\) 0 0
\(409\) −4.18256 + 23.7205i −0.206814 + 1.17290i 0.687745 + 0.725952i \(0.258601\pi\)
−0.894559 + 0.446949i \(0.852511\pi\)
\(410\) 0 0
\(411\) −12.4750 16.1531i −0.615345 0.796776i
\(412\) 0 0
\(413\) 7.13978 + 12.3665i 0.351326 + 0.608514i
\(414\) 0 0
\(415\) −0.789809 0.455997i −0.0387702 0.0223840i
\(416\) 0 0
\(417\) −1.98031 + 9.06633i −0.0969762 + 0.443980i
\(418\) 0 0
\(419\) 19.0854 22.7451i 0.932383 1.11117i −0.0612068 0.998125i \(-0.519495\pi\)
0.993590 0.113046i \(-0.0360607\pi\)
\(420\) 0 0
\(421\) 9.82045 26.9815i 0.478619 1.31500i −0.432046 0.901851i \(-0.642208\pi\)
0.910666 0.413144i \(-0.135570\pi\)
\(422\) 0 0
\(423\) −1.27657 13.6127i −0.0620689 0.661872i
\(424\) 0 0
\(425\) −6.93506 + 1.22284i −0.336400 + 0.0593164i
\(426\) 0 0
\(427\) 11.0142 4.00883i 0.533013 0.194001i
\(428\) 0 0
\(429\) 0.0316702 + 0.0603774i 0.00152905 + 0.00291505i
\(430\) 0 0
\(431\) 26.5585 1.27928 0.639639 0.768675i \(-0.279084\pi\)
0.639639 + 0.768675i \(0.279084\pi\)
\(432\) 0 0
\(433\) −1.55270 −0.0746180 −0.0373090 0.999304i \(-0.511879\pi\)
−0.0373090 + 0.999304i \(0.511879\pi\)
\(434\) 0 0
\(435\) −3.05670 + 4.83124i −0.146557 + 0.231640i
\(436\) 0 0
\(437\) −2.71064 + 0.986591i −0.129667 + 0.0471951i
\(438\) 0 0
\(439\) −1.13120 + 0.199460i −0.0539891 + 0.00951973i −0.200577 0.979678i \(-0.564282\pi\)
0.146588 + 0.989198i \(0.453171\pi\)
\(440\) 0 0
\(441\) −15.3517 + 4.21628i −0.731032 + 0.200775i
\(442\) 0 0
\(443\) −5.79518 + 15.9221i −0.275337 + 0.756483i 0.722538 + 0.691331i \(0.242975\pi\)
−0.997875 + 0.0651518i \(0.979247\pi\)
\(444\) 0 0
\(445\) −0.0349590 + 0.0416625i −0.00165721 + 0.00197499i
\(446\) 0 0
\(447\) 18.3758 + 16.7331i 0.869143 + 0.791450i
\(448\) 0 0
\(449\) −26.5725 15.3416i −1.25403 0.724017i −0.282126 0.959377i \(-0.591039\pi\)
−0.971908 + 0.235361i \(0.924373\pi\)
\(450\) 0 0
\(451\) 0.0214563 + 0.0371634i 0.00101034 + 0.00174996i
\(452\) 0 0
\(453\) −7.82410 + 19.0570i −0.367608 + 0.895374i
\(454\) 0 0
\(455\) −0.229153 + 1.29959i −0.0107428 + 0.0609257i
\(456\) 0 0
\(457\) 5.48725 4.60435i 0.256683 0.215382i −0.505361 0.862908i \(-0.668641\pi\)
0.762044 + 0.647526i \(0.224196\pi\)
\(458\) 0 0
\(459\) −6.09886 4.58979i −0.284670 0.214233i
\(460\) 0 0
\(461\) 6.34887 5.32733i 0.295696 0.248119i −0.482854 0.875701i \(-0.660400\pi\)
0.778550 + 0.627582i \(0.215955\pi\)
\(462\) 0 0
\(463\) −0.381159 0.0672086i −0.0177140 0.00312345i 0.164784 0.986330i \(-0.447307\pi\)
−0.182498 + 0.983206i \(0.558418\pi\)
\(464\) 0 0
\(465\) −7.02505 + 0.947165i −0.325779 + 0.0439237i
\(466\) 0 0
\(467\) 5.76908 3.33078i 0.266961 0.154130i −0.360545 0.932742i \(-0.617409\pi\)
0.627506 + 0.778612i \(0.284076\pi\)
\(468\) 0 0
\(469\) −5.44368 3.14291i −0.251366 0.145126i
\(470\) 0 0
\(471\) −8.84379 27.7469i −0.407500 1.27851i
\(472\) 0 0
\(473\) −0.122902 + 0.146469i −0.00565103 + 0.00673463i
\(474\) 0 0
\(475\) 6.10704 + 2.22278i 0.280210 + 0.101988i
\(476\) 0 0
\(477\) 31.1231 + 2.52739i 1.42503 + 0.115721i
\(478\) 0 0
\(479\) 0.196814 + 1.11619i 0.00899268 + 0.0510000i 0.988974 0.148090i \(-0.0473125\pi\)
−0.979981 + 0.199090i \(0.936201\pi\)
\(480\) 0 0
\(481\) −11.1181 + 4.04665i −0.506941 + 0.184511i
\(482\) 0 0
\(483\) −0.194242 + 4.79179i −0.00883832 + 0.218034i
\(484\) 0 0
\(485\) −5.06338 −0.229916
\(486\) 0 0
\(487\) 41.9634i 1.90154i −0.309896 0.950771i \(-0.600294\pi\)
0.309896 0.950771i \(-0.399706\pi\)
\(488\) 0 0
\(489\) 17.6136 + 0.713993i 0.796515 + 0.0322879i
\(490\) 0 0
\(491\) 7.04382 + 19.3527i 0.317883 + 0.873377i 0.991003 + 0.133843i \(0.0427317\pi\)
−0.673119 + 0.739534i \(0.735046\pi\)
\(492\) 0 0
\(493\) 10.5175 1.85452i 0.473684 0.0835233i
\(494\) 0 0
\(495\) −0.00194271 + 0.0239231i −8.73182e−5 + 0.00107526i
\(496\) 0 0
\(497\) 4.48365 12.3187i 0.201119 0.552570i
\(498\) 0 0
\(499\) −7.68110 6.44521i −0.343853 0.288527i 0.454463 0.890766i \(-0.349831\pi\)
−0.798316 + 0.602239i \(0.794276\pi\)
\(500\) 0 0
\(501\) 26.4694 8.43663i 1.18257 0.376921i
\(502\) 0 0
\(503\) −12.3849 + 21.4513i −0.552216 + 0.956466i 0.445898 + 0.895084i \(0.352884\pi\)
−0.998114 + 0.0613824i \(0.980449\pi\)
\(504\) 0 0
\(505\) −3.78767 6.56044i −0.168549 0.291936i
\(506\) 0 0
\(507\) −1.85389 13.7502i −0.0823341 0.610666i
\(508\) 0 0
\(509\) −5.29018 + 30.0021i −0.234483 + 1.32982i 0.609217 + 0.793004i \(0.291484\pi\)
−0.843700 + 0.536816i \(0.819627\pi\)
\(510\) 0 0
\(511\) −0.567874 0.676766i −0.0251213 0.0299383i
\(512\) 0 0
\(513\) 2.75653 + 6.48260i 0.121704 + 0.286214i
\(514\) 0 0
\(515\) 4.65597 + 5.54877i 0.205167 + 0.244508i
\(516\) 0 0
\(517\) 0.0790932 + 0.0139463i 0.00347852 + 0.000613356i
\(518\) 0 0
\(519\) 21.6894 + 8.90488i 0.952058 + 0.390881i
\(520\) 0 0
\(521\) −2.67309 + 1.54331i −0.117110 + 0.0676136i −0.557411 0.830237i \(-0.688205\pi\)
0.440301 + 0.897850i \(0.354872\pi\)
\(522\) 0 0
\(523\) 6.24198 10.8114i 0.272943 0.472750i −0.696671 0.717390i \(-0.745336\pi\)
0.969614 + 0.244640i \(0.0786698\pi\)
\(524\) 0 0
\(525\) 7.27468 7.98880i 0.317493 0.348660i
\(526\) 0 0
\(527\) 10.1439 + 8.51177i 0.441877 + 0.370779i
\(528\) 0 0
\(529\) 17.3585 + 6.31798i 0.754717 + 0.274695i
\(530\) 0 0
\(531\) 8.71872 + 31.7453i 0.378360 + 1.37763i
\(532\) 0 0
\(533\) 0.944542 + 5.35676i 0.0409126 + 0.232027i
\(534\) 0 0
\(535\) 1.04597 + 2.87377i 0.0452211 + 0.124244i
\(536\) 0 0
\(537\) 16.6460 + 10.5318i 0.718328 + 0.454482i
\(538\) 0 0
\(539\) 0.0935167i 0.00402805i
\(540\) 0 0
\(541\) 35.0866i 1.50849i −0.656592 0.754246i \(-0.728003\pi\)
0.656592 0.754246i \(-0.271997\pi\)
\(542\) 0 0
\(543\) 22.7358 11.9258i 0.975688 0.511785i
\(544\) 0 0
\(545\) −0.452947 1.24446i −0.0194021 0.0533069i
\(546\) 0 0
\(547\) 0.423952 + 2.40435i 0.0181269 + 0.102803i 0.992529 0.122010i \(-0.0389340\pi\)
−0.974402 + 0.224813i \(0.927823\pi\)
\(548\) 0 0
\(549\) 26.9042 2.52302i 1.14824 0.107680i
\(550\) 0 0
\(551\) −9.26174 3.37100i −0.394563 0.143609i
\(552\) 0 0
\(553\) 8.05890 + 6.76222i 0.342699 + 0.287559i
\(554\) 0 0
\(555\) −4.06926 0.888826i −0.172730 0.0377286i
\(556\) 0 0
\(557\) 3.41195 5.90968i 0.144569 0.250401i −0.784643 0.619948i \(-0.787154\pi\)
0.929212 + 0.369547i \(0.120487\pi\)
\(558\) 0 0
\(559\) −20.9888 + 12.1179i −0.887730 + 0.512531i
\(560\) 0 0
\(561\) 0.0354862 0.0274058i 0.00149823 0.00115707i
\(562\) 0 0
\(563\) −20.6520 3.64150i −0.870377 0.153471i −0.279415 0.960170i \(-0.590141\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(564\) 0 0
\(565\) −5.69243 6.78397i −0.239482 0.285404i
\(566\) 0 0
\(567\) 11.7105 0.146105i 0.491793 0.00613585i
\(568\) 0 0
\(569\) −20.8313 24.8258i −0.873295 1.04075i −0.998815 0.0486610i \(-0.984505\pi\)
0.125521 0.992091i \(-0.459940\pi\)
\(570\) 0 0
\(571\) 0.396543 2.24891i 0.0165948 0.0941139i −0.975385 0.220507i \(-0.929229\pi\)
0.991980 + 0.126393i \(0.0403400\pi\)
\(572\) 0 0
\(573\) −25.8383 + 19.9548i −1.07941 + 0.833623i
\(574\) 0 0
\(575\) 5.10017 + 8.83376i 0.212692 + 0.368393i
\(576\) 0 0
\(577\) −10.7395 + 18.6014i −0.447092 + 0.774387i −0.998195 0.0600507i \(-0.980874\pi\)
0.551103 + 0.834437i \(0.314207\pi\)
\(578\) 0 0
\(579\) 0.780006 3.57105i 0.0324159 0.148408i
\(580\) 0 0
\(581\) −2.00240 1.68021i −0.0830736 0.0697070i
\(582\) 0 0
\(583\) −0.0627342 + 0.172361i −0.00259818 + 0.00713845i
\(584\) 0 0
\(585\) −1.26853 + 2.76528i −0.0524473 + 0.114330i
\(586\) 0 0
\(587\) −18.6609 + 3.29041i −0.770216 + 0.135810i −0.544928 0.838483i \(-0.683443\pi\)
−0.225287 + 0.974292i \(0.572332\pi\)
\(588\) 0 0
\(589\) −4.17975 11.4838i −0.172224 0.473180i
\(590\) 0 0
\(591\) −9.21839 17.5743i −0.379194 0.722911i
\(592\) 0 0
\(593\) 23.6650i 0.971804i −0.874013 0.485902i \(-0.838491\pi\)
0.874013 0.485902i \(-0.161509\pi\)
\(594\) 0 0
\(595\) 0.867835 0.0355778
\(596\) 0 0
\(597\) 8.31848 + 5.26305i 0.340453 + 0.215402i
\(598\) 0 0
\(599\) −8.37844 + 3.04950i −0.342334 + 0.124599i −0.507465 0.861672i \(-0.669417\pi\)
0.165131 + 0.986272i \(0.447195\pi\)
\(600\) 0 0
\(601\) 4.44934 + 25.2334i 0.181492 + 1.02929i 0.930380 + 0.366597i \(0.119477\pi\)
−0.748888 + 0.662697i \(0.769412\pi\)
\(602\) 0 0
\(603\) −10.3109 10.1830i −0.419891 0.414685i
\(604\) 0 0
\(605\) 4.69274 + 1.70802i 0.190787 + 0.0694407i
\(606\) 0 0
\(607\) −8.91382 + 10.6231i −0.361801 + 0.431177i −0.915982 0.401218i \(-0.868587\pi\)
0.554182 + 0.832396i \(0.313031\pi\)
\(608\) 0 0
\(609\) −11.0325 + 12.1156i −0.447061 + 0.490947i
\(610\) 0 0
\(611\) 8.81625 + 5.09007i 0.356667 + 0.205922i
\(612\) 0 0
\(613\) −17.7329 + 10.2381i −0.716224 + 0.413512i −0.813361 0.581759i \(-0.802365\pi\)
0.0971374 + 0.995271i \(0.469031\pi\)
\(614\) 0 0
\(615\) −0.727273 + 1.77140i −0.0293265 + 0.0714297i
\(616\) 0 0
\(617\) 45.9610 + 8.10416i 1.85032 + 0.326261i 0.984675 0.174399i \(-0.0557983\pi\)
0.865644 + 0.500660i \(0.166909\pi\)
\(618\) 0 0
\(619\) 20.3900 17.1092i 0.819542 0.687678i −0.133323 0.991073i \(-0.542565\pi\)
0.952865 + 0.303395i \(0.0981202\pi\)
\(620\) 0 0
\(621\) −3.22588 + 10.5752i −0.129450 + 0.424369i
\(622\) 0 0
\(623\) −0.119413 + 0.100199i −0.00478417 + 0.00401439i
\(624\) 0 0
\(625\) 3.81170 21.6172i 0.152468 0.864688i
\(626\) 0 0
\(627\) −0.0410081 + 0.00552900i −0.00163771 + 0.000220807i
\(628\) 0 0
\(629\) 3.89042 + 6.73841i 0.155121 + 0.268678i
\(630\) 0 0
\(631\) 24.6191 + 14.2138i 0.980071 + 0.565844i 0.902292 0.431126i \(-0.141884\pi\)
0.0777793 + 0.996971i \(0.475217\pi\)
\(632\) 0 0
\(633\) 27.4686 8.75510i 1.09178 0.347984i
\(634\) 0 0
\(635\) −5.05252 + 6.02135i −0.200503 + 0.238950i
\(636\) 0 0
\(637\) 4.05421 11.1389i 0.160634 0.441337i
\(638\) 0 0
\(639\) 17.1803 24.8648i 0.679644 0.983635i
\(640\) 0 0
\(641\) 19.2764 3.39896i 0.761373 0.134251i 0.220537 0.975379i \(-0.429219\pi\)
0.540836 + 0.841128i \(0.318108\pi\)
\(642\) 0 0
\(643\) 10.2317 3.72402i 0.403497 0.146861i −0.132296 0.991210i \(-0.542235\pi\)
0.535793 + 0.844349i \(0.320013\pi\)
\(644\) 0 0
\(645\) −8.52493 0.345571i −0.335669 0.0136068i
\(646\) 0 0
\(647\) 19.0202 0.747763 0.373881 0.927477i \(-0.378027\pi\)
0.373881 + 0.927477i \(0.378027\pi\)
\(648\) 0 0
\(649\) −0.193381 −0.00759085
\(650\) 0 0
\(651\) −20.3007 0.822917i −0.795646 0.0322527i
\(652\) 0 0
\(653\) −11.7763 + 4.28623i −0.460843 + 0.167733i −0.562000 0.827137i \(-0.689968\pi\)
0.101157 + 0.994871i \(0.467746\pi\)
\(654\) 0 0
\(655\) 1.37786 0.242955i 0.0538376 0.00949302i
\(656\) 0 0
\(657\) −0.872270 1.84053i −0.0340305 0.0718058i
\(658\) 0 0
\(659\) −9.65592 + 26.5294i −0.376141 + 1.03344i 0.596801 + 0.802389i \(0.296438\pi\)
−0.972942 + 0.231050i \(0.925784\pi\)
\(660\) 0 0
\(661\) 10.6735 12.7202i 0.415150 0.494757i −0.517427 0.855727i \(-0.673110\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(662\) 0 0
\(663\) 5.41491 1.72590i 0.210298 0.0670285i
\(664\) 0 0
\(665\) −0.693608 0.400455i −0.0268970 0.0155290i
\(666\) 0 0
\(667\) −7.73476 13.3970i −0.299491 0.518734i
\(668\) 0 0
\(669\) −4.76822 + 0.642884i −0.184350 + 0.0248553i
\(670\) 0 0
\(671\) −0.0275635 + 0.156320i −0.00106408 + 0.00603468i
\(672\) 0 0
\(673\) 4.64214 3.89522i 0.178941 0.150150i −0.548918 0.835876i \(-0.684960\pi\)
0.727859 + 0.685727i \(0.240516\pi\)
\(674\) 0 0
\(675\) 20.8825 13.5800i 0.803768 0.522694i
\(676\) 0 0
\(677\) −5.34485 + 4.48486i −0.205419 + 0.172367i −0.739693 0.672944i \(-0.765029\pi\)
0.534274 + 0.845311i \(0.320585\pi\)
\(678\) 0 0
\(679\) −14.2922 2.52009i −0.548483 0.0967123i
\(680\) 0 0
\(681\) −16.2659 + 39.6183i −0.623309 + 1.51818i
\(682\) 0 0
\(683\) −25.8624 + 14.9317i −0.989597 + 0.571344i −0.905154 0.425084i \(-0.860244\pi\)
−0.0844432 + 0.996428i \(0.526911\pi\)
\(684\) 0 0
\(685\) 4.63301 + 2.67487i 0.177018 + 0.102201i
\(686\) 0 0
\(687\) 18.2773 20.0715i 0.697324 0.765777i
\(688\) 0 0
\(689\) −14.9446 + 17.8103i −0.569346 + 0.678520i
\(690\) 0 0
\(691\) −31.1175 11.3259i −1.18377 0.430856i −0.326236 0.945288i \(-0.605780\pi\)
−0.857531 + 0.514432i \(0.828003\pi\)
\(692\) 0 0
\(693\) −0.0173903 + 0.0665597i −0.000660604 + 0.00252839i
\(694\) 0 0
\(695\) −0.422398 2.39554i −0.0160225 0.0908679i
\(696\) 0 0
\(697\) 3.36139 1.22345i 0.127322 0.0463414i
\(698\) 0 0
\(699\) −29.6107 18.7345i −1.11998 0.708603i
\(700\) 0 0
\(701\) −9.68894 −0.365946 −0.182973 0.983118i \(-0.558572\pi\)
−0.182973 + 0.983118i \(0.558572\pi\)
\(702\) 0 0
\(703\) 7.18080i 0.270829i
\(704\) 0 0
\(705\) 1.66473 + 3.17370i 0.0626972 + 0.119528i
\(706\) 0 0
\(707\) −7.42607 20.4030i −0.279286 0.767333i
\(708\) 0 0
\(709\) −24.6853 + 4.35269i −0.927077 + 0.163469i −0.616748 0.787161i \(-0.711550\pi\)
−0.310329 + 0.950629i \(0.600439\pi\)
\(710\) 0 0
\(711\) 14.0350 + 19.7803i 0.526354 + 0.741819i
\(712\) 0 0
\(713\) 6.56025 18.0241i 0.245683 0.675009i
\(714\) 0 0
\(715\) −0.0136901 0.0114874i −0.000511981 0.000429603i
\(716\) 0 0
\(717\) 3.16677 14.4982i 0.118265 0.541446i
\(718\) 0 0
\(719\) −16.4482 + 28.4892i −0.613415 + 1.06247i 0.377245 + 0.926113i \(0.376871\pi\)
−0.990660 + 0.136353i \(0.956462\pi\)
\(720\) 0 0
\(721\) 10.3805 + 17.9796i 0.386590 + 0.669594i
\(722\) 0 0
\(723\) −19.8145 + 15.3027i −0.736911 + 0.569112i
\(724\) 0 0
\(725\) −6.05210 + 34.3232i −0.224769 + 1.27473i
\(726\) 0 0
\(727\) −20.0843 23.9355i −0.744884 0.887719i 0.251908 0.967751i \(-0.418942\pi\)
−0.996792 + 0.0800327i \(0.974498\pi\)
\(728\) 0 0
\(729\) 26.2062 + 6.49886i 0.970600 + 0.240699i
\(730\) 0 0
\(731\) 10.2449 + 12.2094i 0.378920 + 0.451579i
\(732\) 0 0
\(733\) −16.2456 2.86454i −0.600046 0.105804i −0.134630 0.990896i \(-0.542984\pi\)
−0.465417 + 0.885092i \(0.654096\pi\)
\(734\) 0 0
\(735\) 3.30271 2.55066i 0.121822 0.0940825i
\(736\) 0 0
\(737\) 0.0737209 0.0425628i 0.00271554 0.00156782i
\(738\) 0 0
\(739\) 11.5876 20.0704i 0.426258 0.738301i −0.570279 0.821451i \(-0.693165\pi\)
0.996537 + 0.0831501i \(0.0264981\pi\)
\(740\) 0 0
\(741\) −5.12421 1.11925i −0.188243 0.0411168i
\(742\) 0 0
\(743\) −2.55778 2.14623i −0.0938358 0.0787376i 0.594663 0.803975i \(-0.297286\pi\)
−0.688499 + 0.725238i \(0.741730\pi\)
\(744\) 0 0
\(745\) −6.12156 2.22807i −0.224277 0.0816300i
\(746\) 0 0
\(747\) −3.48729 4.91482i −0.127593 0.179824i
\(748\) 0 0
\(749\) 1.52210 + 8.63224i 0.0556162 + 0.315415i
\(750\) 0 0
\(751\) −0.701648 1.92776i −0.0256035 0.0703450i 0.926232 0.376953i \(-0.123028\pi\)
−0.951836 + 0.306608i \(0.900806\pi\)
\(752\) 0 0
\(753\) 22.5161 11.8106i 0.820533 0.430400i
\(754\) 0 0
\(755\) 5.39982i 0.196519i
\(756\) 0 0
\(757\) 41.6394i 1.51341i −0.653756 0.756705i \(-0.726808\pi\)
0.653756 0.756705i \(-0.273192\pi\)
\(758\) 0 0
\(759\) −0.0548834 0.0347244i −0.00199214 0.00126042i
\(760\) 0 0
\(761\) −14.1101 38.7671i −0.511490 1.40531i −0.879684 0.475558i \(-0.842246\pi\)
0.368195 0.929749i \(-0.379976\pi\)
\(762\) 0 0
\(763\) −0.659130 3.73811i −0.0238621 0.135329i
\(764\) 0 0
\(765\) 1.93577 + 0.505767i 0.0699879 + 0.0182860i
\(766\) 0 0
\(767\) −23.0337 8.38359i −0.831700 0.302714i
\(768\) 0 0
\(769\) −33.4132 28.0370i −1.20491 1.01104i −0.999476 0.0323712i \(-0.989694\pi\)
−0.205437 0.978670i \(-0.565861\pi\)
\(770\) 0 0
\(771\) 26.2525 28.8296i 0.945462 1.03827i
\(772\) 0 0
\(773\) −3.52468 + 6.10492i −0.126774 + 0.219579i −0.922425 0.386176i \(-0.873796\pi\)
0.795651 + 0.605755i \(0.207129\pi\)
\(774\) 0 0
\(775\) −37.4247 + 21.6072i −1.34434 + 0.776153i
\(776\) 0 0
\(777\) −11.0437 4.53415i −0.396191 0.162662i
\(778\) 0 0
\(779\) −3.25111 0.573258i −0.116483 0.0205391i
\(780\) 0 0
\(781\) 0.114116 + 0.135998i 0.00408338 + 0.00486638i
\(782\) 0 0
\(783\) −31.6697 + 20.5950i −1.13178 + 0.736004i
\(784\) 0 0
\(785\) 4.90671 + 5.84759i 0.175128 + 0.208709i
\(786\) 0 0
\(787\) −8.03739 + 45.5823i −0.286502 + 1.62483i 0.413369 + 0.910564i \(0.364352\pi\)
−0.699871 + 0.714270i \(0.746759\pi\)
\(788\) 0 0
\(789\) 4.09842 + 30.3976i 0.145907 + 1.08218i
\(790\) 0 0
\(791\) −12.6913 21.9820i −0.451250 0.781589i
\(792\) 0 0
\(793\) −10.0600 + 17.4245i −0.357242 + 0.618762i
\(794\) 0 0
\(795\) −7.79830 + 2.48556i −0.276577 + 0.0881537i
\(796\) 0 0
\(797\) −10.7323 9.00550i −0.380159 0.318991i 0.432606 0.901583i \(-0.357594\pi\)
−0.812765 + 0.582592i \(0.802039\pi\)
\(798\) 0 0
\(799\) 2.28975 6.29103i 0.0810054 0.222561i
\(800\) 0 0
\(801\) −0.324754 + 0.153909i −0.0114746 + 0.00543810i
\(802\) 0 0
\(803\) 0.0117824 0.00207756i 0.000415792 7.33153e-5i
\(804\) 0 0
\(805\) −0.429937 1.18124i −0.0151533 0.0416333i
\(806\) 0 0
\(807\) −17.7347 0.718901i −0.624290 0.0253065i
\(808\) 0 0
\(809\) 25.2574i 0.888002i 0.896026 + 0.444001i \(0.146441\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(810\) 0 0
\(811\) 36.9593 1.29782 0.648908 0.760867i \(-0.275226\pi\)
0.648908 + 0.760867i \(0.275226\pi\)
\(812\) 0 0
\(813\) −1.31408 + 32.4173i −0.0460869 + 1.13692i
\(814\) 0 0
\(815\) −4.34200 + 1.58036i −0.152094 + 0.0553576i
\(816\) 0 0
\(817\) −2.55420 14.4856i −0.0893602 0.506787i
\(818\) 0 0
\(819\) −4.95693 + 7.17406i −0.173209 + 0.250682i
\(820\) 0 0
\(821\) −5.42437 1.97431i −0.189312 0.0689038i 0.245625 0.969365i \(-0.421007\pi\)
−0.434936 + 0.900461i \(0.643229\pi\)
\(822\) 0 0
\(823\) −12.2571 + 14.6074i −0.427254 + 0.509182i −0.936128 0.351659i \(-0.885618\pi\)
0.508874 + 0.860841i \(0.330062\pi\)
\(824\) 0 0
\(825\) 0.0444351 + 0.139412i 0.00154703 + 0.00485372i
\(826\) 0 0
\(827\) 23.7503 + 13.7122i 0.825878 + 0.476821i 0.852439 0.522826i \(-0.175122\pi\)
−0.0265613 + 0.999647i \(0.508456\pi\)
\(828\) 0 0
\(829\) −23.8710 + 13.7819i −0.829073 + 0.478666i −0.853535 0.521035i \(-0.825546\pi\)
0.0244622 + 0.999701i \(0.492213\pi\)
\(830\) 0 0
\(831\) −37.3978 + 5.04223i −1.29732 + 0.174913i
\(832\) 0 0
\(833\) −7.67695 1.35365i −0.265991 0.0469013i
\(834\) 0 0
\(835\) −5.57837 + 4.68081i −0.193048 + 0.161986i
\(836\) 0 0
\(837\) −44.8025 13.6666i −1.54860 0.472388i
\(838\) 0 0
\(839\) −22.7744 + 19.1100i −0.786259 + 0.659750i −0.944816 0.327600i \(-0.893760\pi\)
0.158558 + 0.987350i \(0.449316\pi\)
\(840\) 0 0
\(841\) 4.14263 23.4940i 0.142849 0.810138i
\(842\) 0 0
\(843\) 7.60237 18.5169i 0.261839 0.637755i
\(844\) 0 0
\(845\) 1.81840 + 3.14956i 0.0625548 + 0.108348i
\(846\) 0 0
\(847\) 12.3959 + 7.15675i 0.425927 + 0.245909i
\(848\) 0 0
\(849\) −5.49660 5.00526i −0.188643 0.171780i
\(850\) 0 0
\(851\) 7.24453 8.63370i 0.248339 0.295959i
\(852\) 0 0
\(853\) −14.9845 + 41.1697i −0.513061 + 1.40962i 0.364970 + 0.931019i \(0.381079\pi\)
−0.878031 + 0.478604i \(0.841143\pi\)
\(854\) 0 0
\(855\) −1.31376 1.29747i −0.0449297 0.0443726i
\(856\) 0 0
\(857\) −12.6966 + 2.23875i −0.433708 + 0.0764744i −0.386240 0.922398i \(-0.626226\pi\)
−0.0474680 + 0.998873i \(0.515115\pi\)
\(858\) 0 0
\(859\) 26.7551 9.73806i 0.912872 0.332258i 0.157473 0.987523i \(-0.449665\pi\)
0.755399 + 0.655265i \(0.227443\pi\)
\(860\) 0 0
\(861\) −2.93448 + 4.63807i −0.100007 + 0.158065i
\(862\) 0 0
\(863\) −46.6170 −1.58686 −0.793431 0.608660i \(-0.791707\pi\)
−0.793431 + 0.608660i \(0.791707\pi\)
\(864\) 0 0
\(865\) −6.14571 −0.208961
\(866\) 0 0
\(867\) 11.9414 + 22.7656i 0.405551 + 0.773159i
\(868\) 0 0
\(869\) −0.133877 + 0.0487272i −0.00454146 + 0.00165296i
\(870\) 0 0
\(871\) 10.6262 1.87368i 0.360054 0.0634873i
\(872\) 0 0
\(873\) −30.4110 13.9506i −1.02926 0.472157i
\(874\) 0 0
\(875\) −1.97894 + 5.43708i −0.0669003 + 0.183807i
\(876\) 0 0
\(877\) −3.98303 + 4.74679i −0.134497 + 0.160288i −0.829089 0.559116i \(-0.811141\pi\)
0.694592 + 0.719404i \(0.255585\pi\)
\(878\) 0 0
\(879\) 4.64617 21.2713i 0.156712 0.717463i
\(880\) 0 0
\(881\) −21.9173 12.6539i −0.738412 0.426322i 0.0830799 0.996543i \(-0.473524\pi\)
−0.821492 + 0.570221i \(0.806858\pi\)
\(882\) 0 0
\(883\) −15.7424 27.2667i −0.529775 0.917597i −0.999397 0.0347290i \(-0.988943\pi\)
0.469622 0.882868i \(-0.344390\pi\)
\(884\) 0 0
\(885\) −5.27444 6.82958i −0.177298 0.229574i
\(886\) 0 0
\(887\) −0.0310073 + 0.175851i −0.00104112 + 0.00590451i −0.985324 0.170695i \(-0.945399\pi\)
0.984283 + 0.176600i \(0.0565098\pi\)
\(888\) 0 0
\(889\) −17.2584 + 14.4815i −0.578827 + 0.485694i
\(890\) 0 0
\(891\) −0.0775808 + 0.138331i −0.00259906 + 0.00463427i
\(892\) 0 0
\(893\) −4.73299 + 3.97145i −0.158384 + 0.132900i
\(894\) 0 0
\(895\) −5.08477 0.896582i −0.169965 0.0299694i
\(896\) 0 0
\(897\) −5.03181 6.51541i −0.168007 0.217543i
\(898\) 0 0
\(899\) 56.7571 32.7687i 1.89296 1.09290i
\(900\) 0 0
\(901\) 13.2413 + 7.64488i 0.441132 + 0.254688i
\(902\) 0 0
\(903\) −23.8909 5.21836i −0.795040 0.173656i
\(904\) 0 0
\(905\) −4.32570 + 5.15517i −0.143791 + 0.171364i
\(906\) 0 0
\(907\) 18.2575 + 6.64519i 0.606231 + 0.220650i 0.626853 0.779137i \(-0.284343\pi\)
−0.0206225 + 0.999787i \(0.506565\pi\)
\(908\) 0 0
\(909\) −4.67372 49.8382i −0.155017 1.65303i
\(910\) 0 0
\(911\) 0.423720 + 2.40304i 0.0140385 + 0.0796161i 0.991022 0.133698i \(-0.0426853\pi\)
−0.976984 + 0.213314i \(0.931574\pi\)
\(912\) 0 0
\(913\) 0.0332645 0.0121073i 0.00110089 0.000400693i
\(914\) 0 0
\(915\) −6.27252 + 3.29017i −0.207363 + 0.108770i
\(916\) 0 0
\(917\) 4.01015 0.132427
\(918\) 0 0
\(919\) 2.20402i 0.0727038i −0.999339 0.0363519i \(-0.988426\pi\)
0.999339 0.0363519i \(-0.0115737\pi\)
\(920\) 0 0
\(921\) 13.8312 21.8608i 0.455753 0.720337i
\(922\) 0 0
\(923\) 7.69653 + 21.1460i 0.253334 + 0.696030i
\(924\) 0 0
\(925\) −25.0065 + 4.40933i −0.822210 + 0.144978i
\(926\) 0 0
\(927\) 12.6761 + 46.1544i 0.416339 + 1.51591i
\(928\) 0 0
\(929\) 3.30889 9.09111i 0.108561 0.298270i −0.873502 0.486820i \(-0.838157\pi\)
0.982063 + 0.188551i \(0.0603789\pi\)
\(930\) 0 0
\(931\) 5.51109 + 4.62435i 0.180619 + 0.151557i
\(932\) 0 0
\(933\) 1.56337 + 1.42362i 0.0511823 + 0.0466071i
\(934\) 0 0
\(935\) −0.00587632 + 0.0101781i −0.000192176 + 0.000332859i
\(936\) 0 0
\(937\) −22.2202 38.4864i −0.725901 1.25730i −0.958602 0.284749i \(-0.908090\pi\)
0.232701 0.972548i \(-0.425243\pi\)
\(938\) 0 0
\(939\) 6.38013 + 2.61945i 0.208208 + 0.0854826i
\(940\) 0 0
\(941\) 7.38960 41.9085i 0.240894 1.36618i −0.588944 0.808174i \(-0.700456\pi\)
0.829838 0.558004i \(-0.188433\pi\)
\(942\) 0 0
\(943\) −3.33056 3.96920i −0.108458 0.129255i
\(944\) 0 0
\(945\) −2.82499 + 1.20124i −0.0918970 + 0.0390763i
\(946\) 0 0
\(947\) −30.3650 36.1877i −0.986731 1.17594i −0.984400 0.175943i \(-0.943702\pi\)
−0.00233119 0.999997i \(-0.500742\pi\)
\(948\) 0 0
\(949\) 1.49348 + 0.263341i 0.0484804 + 0.00854841i
\(950\) 0 0
\(951\) 1.71330 + 12.7074i 0.0555575 + 0.412065i
\(952\) 0 0
\(953\) −23.8540 + 13.7721i −0.772707 + 0.446123i −0.833840 0.552007i \(-0.813862\pi\)
0.0611321 + 0.998130i \(0.480529\pi\)
\(954\) 0 0
\(955\) 4.27868 7.41089i 0.138455 0.239811i
\(956\) 0 0
\(957\) −0.0673888 0.211428i −0.00217837 0.00683451i
\(958\) 0 0
\(959\) 11.7461 + 9.85611i 0.379300 + 0.318270i
\(960\) 0 0
\(961\) 47.2298 + 17.1902i 1.52354 + 0.554524i
\(962\) 0 0
\(963\) −1.63565 + 20.1419i −0.0527081 + 0.649064i
\(964\) 0 0
\(965\) 0.166374 + 0.943555i 0.00535578 + 0.0303741i
\(966\) 0 0
\(967\) 0.543982 + 1.49458i 0.0174933 + 0.0480624i 0.948132 0.317877i \(-0.102970\pi\)
−0.930639 + 0.365939i \(0.880748\pi\)
\(968\) 0 0
\(969\) −0.139707 + 3.44646i −0.00448805 + 0.110716i
\(970\) 0 0
\(971\) 9.93969i 0.318980i 0.987200 + 0.159490i \(0.0509849\pi\)
−0.987200 + 0.159490i \(0.949015\pi\)
\(972\) 0 0
\(973\) 6.97199i 0.223512i
\(974\) 0 0
\(975\) −0.751218 + 18.5319i −0.0240582 + 0.593496i
\(976\) 0 0
\(977\) 13.5121 + 37.1242i 0.432290 + 1.18771i 0.944403 + 0.328789i \(0.106641\pi\)
−0.512113 + 0.858918i \(0.671137\pi\)
\(978\) 0 0
\(979\) −0.000366577 0.00207896i −1.17158e−5 6.64438e-5i
\(980\) 0 0
\(981\) 0.708304 8.72227i 0.0226144 0.278481i
\(982\) 0 0
\(983\) 30.2880 + 11.0239i 0.966036 + 0.351608i 0.776396 0.630245i \(-0.217046\pi\)
0.189640 + 0.981854i \(0.439268\pi\)
\(984\) 0 0
\(985\) 3.98484 + 3.34368i 0.126967 + 0.106538i
\(986\) 0 0
\(987\) 3.11936 + 9.78679i 0.0992902 + 0.311517i
\(988\) 0 0
\(989\) 11.5432 19.9933i 0.367051 0.635751i
\(990\) 0 0
\(991\) −2.66599 + 1.53921i −0.0846881 + 0.0488947i −0.541746 0.840542i \(-0.682237\pi\)
0.457058 + 0.889437i \(0.348903\pi\)
\(992\) 0 0
\(993\) 0.693642 + 5.14469i 0.0220121 + 0.163262i
\(994\) 0 0
\(995\) −2.54100 0.448048i −0.0805553 0.0142041i
\(996\) 0 0
\(997\) 27.9424 + 33.3004i 0.884944 + 1.05464i 0.998134 + 0.0610619i \(0.0194487\pi\)
−0.113190 + 0.993573i \(0.536107\pi\)
\(998\) 0 0
\(999\) −21.9913 16.5499i −0.695775 0.523617i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bh.b.815.2 192
4.3 odd 2 216.2.v.b.59.22 yes 192
8.3 odd 2 inner 864.2.bh.b.815.1 192
8.5 even 2 216.2.v.b.59.5 yes 192
12.11 even 2 648.2.v.b.611.11 192
24.5 odd 2 648.2.v.b.611.28 192
27.11 odd 18 inner 864.2.bh.b.335.1 192
108.11 even 18 216.2.v.b.11.5 192
108.43 odd 18 648.2.v.b.35.28 192
216.11 even 18 inner 864.2.bh.b.335.2 192
216.173 odd 18 216.2.v.b.11.22 yes 192
216.205 even 18 648.2.v.b.35.11 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.5 192 108.11 even 18
216.2.v.b.11.22 yes 192 216.173 odd 18
216.2.v.b.59.5 yes 192 8.5 even 2
216.2.v.b.59.22 yes 192 4.3 odd 2
648.2.v.b.35.11 192 216.205 even 18
648.2.v.b.35.28 192 108.43 odd 18
648.2.v.b.611.11 192 12.11 even 2
648.2.v.b.611.28 192 24.5 odd 2
864.2.bh.b.335.1 192 27.11 odd 18 inner
864.2.bh.b.335.2 192 216.11 even 18 inner
864.2.bh.b.815.1 192 8.3 odd 2 inner
864.2.bh.b.815.2 192 1.1 even 1 trivial