Properties

Label 864.2.bh.b.815.18
Level $864$
Weight $2$
Character 864.815
Analytic conductor $6.899$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(47,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bh (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 815.18
Character \(\chi\) \(=\) 864.815
Dual form 864.2.bh.b.335.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00307742 - 1.73205i) q^{3} +(2.47648 - 0.901367i) q^{5} +(-2.55949 + 0.451307i) q^{7} +(-2.99998 + 0.0106605i) q^{9} +(-0.556608 + 1.52927i) q^{11} +(1.88389 - 2.24514i) q^{13} +(-1.56883 - 4.28662i) q^{15} +(-3.28845 - 1.89859i) q^{17} +(-4.30904 - 7.46347i) q^{19} +(0.789562 + 4.43177i) q^{21} +(1.07009 - 6.06879i) q^{23} +(1.49029 - 1.25050i) q^{25} +(0.0276967 + 5.19608i) q^{27} +(3.88174 - 3.25716i) q^{29} +(3.57300 + 0.630016i) q^{31} +(2.65048 + 0.959365i) q^{33} +(-5.93174 + 3.42469i) q^{35} +(-6.40179 - 3.69607i) q^{37} +(-3.89448 - 3.25608i) q^{39} +(-4.43232 + 5.28224i) q^{41} +(3.77811 + 1.37512i) q^{43} +(-7.41980 + 2.73048i) q^{45} +(-0.253807 - 1.43941i) q^{47} +(-0.230541 + 0.0839100i) q^{49} +(-3.27833 + 5.70160i) q^{51} +0.180986 q^{53} +4.28892i q^{55} +(-12.9138 + 7.48643i) q^{57} +(-0.253090 - 0.695359i) q^{59} +(11.1190 - 1.96057i) q^{61} +(7.67361 - 1.38120i) q^{63} +(2.64174 - 7.25812i) q^{65} +(10.5159 + 8.82387i) q^{67} +(-10.5147 - 1.83477i) q^{69} +(-2.57253 + 4.45576i) q^{71} +(-2.62831 - 4.55236i) q^{73} +(-2.17052 - 2.57741i) q^{75} +(0.734463 - 4.16534i) q^{77} +(6.72831 + 8.01849i) q^{79} +(8.99977 - 0.0639625i) q^{81} +(-7.39656 - 8.81488i) q^{83} +(-9.85513 - 1.73773i) q^{85} +(-5.65351 - 6.71333i) q^{87} +(-0.211259 + 0.121971i) q^{89} +(-3.80856 + 6.59662i) q^{91} +(1.08022 - 6.19054i) q^{93} +(-17.3986 - 14.5992i) q^{95} +(1.95441 + 0.711348i) q^{97} +(1.65351 - 4.59371i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{3} - 12 q^{9} + 30 q^{11} - 18 q^{17} + 6 q^{19} - 12 q^{25} - 18 q^{27} - 30 q^{33} + 18 q^{35} + 18 q^{41} + 42 q^{43} - 12 q^{49} + 18 q^{51} - 36 q^{57} + 84 q^{59} - 12 q^{65} - 30 q^{67}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.00307742 1.73205i −0.00177675 0.999998i
\(4\) 0 0
\(5\) 2.47648 0.901367i 1.10752 0.403103i 0.277435 0.960744i \(-0.410516\pi\)
0.830082 + 0.557641i \(0.188293\pi\)
\(6\) 0 0
\(7\) −2.55949 + 0.451307i −0.967396 + 0.170578i −0.634958 0.772547i \(-0.718982\pi\)
−0.332438 + 0.943125i \(0.607871\pi\)
\(8\) 0 0
\(9\) −2.99998 + 0.0106605i −0.999994 + 0.00355349i
\(10\) 0 0
\(11\) −0.556608 + 1.52927i −0.167824 + 0.461091i −0.994884 0.101021i \(-0.967789\pi\)
0.827061 + 0.562113i \(0.190011\pi\)
\(12\) 0 0
\(13\) 1.88389 2.24514i 0.522498 0.622689i −0.438672 0.898647i \(-0.644551\pi\)
0.961169 + 0.275959i \(0.0889953\pi\)
\(14\) 0 0
\(15\) −1.56883 4.28662i −0.405071 1.10680i
\(16\) 0 0
\(17\) −3.28845 1.89859i −0.797567 0.460476i 0.0450525 0.998985i \(-0.485654\pi\)
−0.842620 + 0.538509i \(0.818988\pi\)
\(18\) 0 0
\(19\) −4.30904 7.46347i −0.988561 1.71224i −0.624895 0.780708i \(-0.714858\pi\)
−0.363666 0.931530i \(-0.618475\pi\)
\(20\) 0 0
\(21\) 0.789562 + 4.43177i 0.172297 + 0.967091i
\(22\) 0 0
\(23\) 1.07009 6.06879i 0.223129 1.26543i −0.643100 0.765783i \(-0.722352\pi\)
0.866229 0.499647i \(-0.166537\pi\)
\(24\) 0 0
\(25\) 1.49029 1.25050i 0.298059 0.250101i
\(26\) 0 0
\(27\) 0.0276967 + 5.19608i 0.00533022 + 0.999986i
\(28\) 0 0
\(29\) 3.88174 3.25716i 0.720820 0.604840i −0.206792 0.978385i \(-0.566302\pi\)
0.927612 + 0.373545i \(0.121858\pi\)
\(30\) 0 0
\(31\) 3.57300 + 0.630016i 0.641729 + 0.113154i 0.485037 0.874493i \(-0.338806\pi\)
0.156692 + 0.987648i \(0.449917\pi\)
\(32\) 0 0
\(33\) 2.65048 + 0.959365i 0.461389 + 0.167004i
\(34\) 0 0
\(35\) −5.93174 + 3.42469i −1.00265 + 0.578879i
\(36\) 0 0
\(37\) −6.40179 3.69607i −1.05245 0.607631i −0.129114 0.991630i \(-0.541213\pi\)
−0.923333 + 0.383999i \(0.874547\pi\)
\(38\) 0 0
\(39\) −3.89448 3.25608i −0.623616 0.521391i
\(40\) 0 0
\(41\) −4.43232 + 5.28224i −0.692212 + 0.824947i −0.991621 0.129178i \(-0.958766\pi\)
0.299409 + 0.954125i \(0.403211\pi\)
\(42\) 0 0
\(43\) 3.77811 + 1.37512i 0.576156 + 0.209704i 0.613630 0.789594i \(-0.289709\pi\)
−0.0374734 + 0.999298i \(0.511931\pi\)
\(44\) 0 0
\(45\) −7.41980 + 2.73048i −1.10608 + 0.407036i
\(46\) 0 0
\(47\) −0.253807 1.43941i −0.0370215 0.209960i 0.960686 0.277639i \(-0.0895517\pi\)
−0.997707 + 0.0676790i \(0.978441\pi\)
\(48\) 0 0
\(49\) −0.230541 + 0.0839100i −0.0329344 + 0.0119871i
\(50\) 0 0
\(51\) −3.27833 + 5.70160i −0.459058 + 0.798384i
\(52\) 0 0
\(53\) 0.180986 0.0248604 0.0124302 0.999923i \(-0.496043\pi\)
0.0124302 + 0.999923i \(0.496043\pi\)
\(54\) 0 0
\(55\) 4.28892i 0.578317i
\(56\) 0 0
\(57\) −12.9138 + 7.48643i −1.71048 + 0.991602i
\(58\) 0 0
\(59\) −0.253090 0.695359i −0.0329495 0.0905280i 0.922127 0.386887i \(-0.126450\pi\)
−0.955077 + 0.296359i \(0.904227\pi\)
\(60\) 0 0
\(61\) 11.1190 1.96057i 1.42364 0.251026i 0.591817 0.806072i \(-0.298411\pi\)
0.831819 + 0.555047i \(0.187300\pi\)
\(62\) 0 0
\(63\) 7.67361 1.38120i 0.966784 0.174015i
\(64\) 0 0
\(65\) 2.64174 7.25812i 0.327668 0.900259i
\(66\) 0 0
\(67\) 10.5159 + 8.82387i 1.28472 + 1.07801i 0.992575 + 0.121633i \(0.0388130\pi\)
0.292144 + 0.956374i \(0.405631\pi\)
\(68\) 0 0
\(69\) −10.5147 1.83477i −1.26582 0.220881i
\(70\) 0 0
\(71\) −2.57253 + 4.45576i −0.305303 + 0.528801i −0.977329 0.211727i \(-0.932091\pi\)
0.672025 + 0.740528i \(0.265425\pi\)
\(72\) 0 0
\(73\) −2.62831 4.55236i −0.307620 0.532814i 0.670221 0.742161i \(-0.266199\pi\)
−0.977841 + 0.209348i \(0.932866\pi\)
\(74\) 0 0
\(75\) −2.17052 2.57741i −0.250630 0.297614i
\(76\) 0 0
\(77\) 0.734463 4.16534i 0.0836998 0.474685i
\(78\) 0 0
\(79\) 6.72831 + 8.01849i 0.756994 + 0.902151i 0.997654 0.0684588i \(-0.0218082\pi\)
−0.240660 + 0.970610i \(0.577364\pi\)
\(80\) 0 0
\(81\) 8.99977 0.0639625i 0.999975 0.00710694i
\(82\) 0 0
\(83\) −7.39656 8.81488i −0.811878 0.967559i 0.188015 0.982166i \(-0.439795\pi\)
−0.999893 + 0.0146072i \(0.995350\pi\)
\(84\) 0 0
\(85\) −9.85513 1.73773i −1.06894 0.188483i
\(86\) 0 0
\(87\) −5.65351 6.71333i −0.606120 0.719744i
\(88\) 0 0
\(89\) −0.211259 + 0.121971i −0.0223934 + 0.0129289i −0.511155 0.859489i \(-0.670782\pi\)
0.488761 + 0.872417i \(0.337449\pi\)
\(90\) 0 0
\(91\) −3.80856 + 6.59662i −0.399245 + 0.691513i
\(92\) 0 0
\(93\) 1.08022 6.19054i 0.112014 0.641929i
\(94\) 0 0
\(95\) −17.3986 14.5992i −1.78506 1.49784i
\(96\) 0 0
\(97\) 1.95441 + 0.711348i 0.198441 + 0.0722264i 0.439329 0.898326i \(-0.355216\pi\)
−0.240888 + 0.970553i \(0.577439\pi\)
\(98\) 0 0
\(99\) 1.65351 4.59371i 0.166184 0.461685i
\(100\) 0 0
\(101\) −3.09813 17.5704i −0.308276 1.74832i −0.607670 0.794190i \(-0.707896\pi\)
0.299394 0.954130i \(-0.403216\pi\)
\(102\) 0 0
\(103\) 4.29301 + 11.7949i 0.423003 + 1.16219i 0.949980 + 0.312311i \(0.101103\pi\)
−0.526977 + 0.849879i \(0.676675\pi\)
\(104\) 0 0
\(105\) 5.94999 + 10.2635i 0.580659 + 1.00162i
\(106\) 0 0
\(107\) 10.9395i 1.05757i −0.848757 0.528783i \(-0.822649\pi\)
0.848757 0.528783i \(-0.177351\pi\)
\(108\) 0 0
\(109\) 6.35577i 0.608772i 0.952549 + 0.304386i \(0.0984513\pi\)
−0.952549 + 0.304386i \(0.901549\pi\)
\(110\) 0 0
\(111\) −6.38208 + 11.0996i −0.605760 + 1.05353i
\(112\) 0 0
\(113\) −1.20684 3.31577i −0.113530 0.311921i 0.869895 0.493237i \(-0.164187\pi\)
−0.983425 + 0.181316i \(0.941964\pi\)
\(114\) 0 0
\(115\) −2.82014 15.9938i −0.262979 1.49143i
\(116\) 0 0
\(117\) −5.62771 + 6.75545i −0.520282 + 0.624541i
\(118\) 0 0
\(119\) 9.27361 + 3.37532i 0.850110 + 0.309415i
\(120\) 0 0
\(121\) 6.39764 + 5.36826i 0.581604 + 0.488024i
\(122\) 0 0
\(123\) 9.16273 + 7.66074i 0.826175 + 0.690746i
\(124\) 0 0
\(125\) −4.02503 + 6.97155i −0.360009 + 0.623554i
\(126\) 0 0
\(127\) 15.7942 9.11876i 1.40150 0.809159i 0.406958 0.913447i \(-0.366590\pi\)
0.994547 + 0.104288i \(0.0332563\pi\)
\(128\) 0 0
\(129\) 2.37015 6.54810i 0.208680 0.576528i
\(130\) 0 0
\(131\) −4.10519 0.723856i −0.358672 0.0632436i −0.00859153 0.999963i \(-0.502735\pi\)
−0.350081 + 0.936719i \(0.613846\pi\)
\(132\) 0 0
\(133\) 14.3973 + 17.1580i 1.24840 + 1.48779i
\(134\) 0 0
\(135\) 4.75216 + 12.8430i 0.409001 + 1.10535i
\(136\) 0 0
\(137\) −10.2458 12.2105i −0.875360 1.04321i −0.998706 0.0508494i \(-0.983807\pi\)
0.123347 0.992364i \(-0.460637\pi\)
\(138\) 0 0
\(139\) 0.411616 2.33439i 0.0349128 0.198000i −0.962363 0.271769i \(-0.912391\pi\)
0.997275 + 0.0737683i \(0.0235025\pi\)
\(140\) 0 0
\(141\) −2.49235 + 0.444035i −0.209893 + 0.0373945i
\(142\) 0 0
\(143\) 2.38482 + 4.13064i 0.199429 + 0.345421i
\(144\) 0 0
\(145\) 6.67716 11.5652i 0.554508 0.960436i
\(146\) 0 0
\(147\) 0.146046 + 0.399050i 0.0120456 + 0.0329131i
\(148\) 0 0
\(149\) 12.2426 + 10.2728i 1.00295 + 0.841578i 0.987391 0.158300i \(-0.0506014\pi\)
0.0155632 + 0.999879i \(0.495046\pi\)
\(150\) 0 0
\(151\) −0.806403 + 2.21557i −0.0656242 + 0.180301i −0.968170 0.250292i \(-0.919473\pi\)
0.902546 + 0.430593i \(0.141696\pi\)
\(152\) 0 0
\(153\) 9.88554 + 5.66068i 0.799199 + 0.457639i
\(154\) 0 0
\(155\) 9.41635 1.66036i 0.756339 0.133363i
\(156\) 0 0
\(157\) 0.284046 + 0.780410i 0.0226693 + 0.0622835i 0.950511 0.310691i \(-0.100560\pi\)
−0.927842 + 0.372974i \(0.878338\pi\)
\(158\) 0 0
\(159\) −0.000556971 0.313477i −4.41706e−5 0.0248603i
\(160\) 0 0
\(161\) 16.0159i 1.26223i
\(162\) 0 0
\(163\) 11.2657 0.882401 0.441200 0.897409i \(-0.354553\pi\)
0.441200 + 0.897409i \(0.354553\pi\)
\(164\) 0 0
\(165\) 7.42861 0.0131988i 0.578316 0.00102752i
\(166\) 0 0
\(167\) 16.4192 5.97611i 1.27056 0.462445i 0.383260 0.923641i \(-0.374801\pi\)
0.887299 + 0.461195i \(0.152579\pi\)
\(168\) 0 0
\(169\) 0.765842 + 4.34331i 0.0589110 + 0.334101i
\(170\) 0 0
\(171\) 13.0066 + 22.3443i 0.994639 + 1.70871i
\(172\) 0 0
\(173\) 17.4791 + 6.36186i 1.32891 + 0.483683i 0.906302 0.422630i \(-0.138893\pi\)
0.422606 + 0.906313i \(0.361115\pi\)
\(174\) 0 0
\(175\) −3.25003 + 3.87323i −0.245679 + 0.292789i
\(176\) 0 0
\(177\) −1.20362 + 0.440504i −0.0904693 + 0.0331103i
\(178\) 0 0
\(179\) 6.13650 + 3.54291i 0.458663 + 0.264809i 0.711482 0.702704i \(-0.248024\pi\)
−0.252819 + 0.967514i \(0.581358\pi\)
\(180\) 0 0
\(181\) −0.129860 + 0.0749748i −0.00965242 + 0.00557283i −0.504818 0.863226i \(-0.668441\pi\)
0.495166 + 0.868798i \(0.335107\pi\)
\(182\) 0 0
\(183\) −3.43002 19.2525i −0.253555 1.42319i
\(184\) 0 0
\(185\) −19.1854 3.38291i −1.41054 0.248717i
\(186\) 0 0
\(187\) 4.73383 3.97216i 0.346172 0.290473i
\(188\) 0 0
\(189\) −2.41592 13.2868i −0.175732 0.966473i
\(190\) 0 0
\(191\) −8.37441 + 7.02696i −0.605951 + 0.508453i −0.893352 0.449357i \(-0.851653\pi\)
0.287401 + 0.957810i \(0.407209\pi\)
\(192\) 0 0
\(193\) 0.508999 2.88668i 0.0366385 0.207788i −0.960993 0.276573i \(-0.910801\pi\)
0.997631 + 0.0687854i \(0.0219124\pi\)
\(194\) 0 0
\(195\) −12.5795 4.55329i −0.900840 0.326068i
\(196\) 0 0
\(197\) −1.40635 2.43587i −0.100198 0.173548i 0.811568 0.584258i \(-0.198614\pi\)
−0.911766 + 0.410710i \(0.865281\pi\)
\(198\) 0 0
\(199\) 0.874354 + 0.504808i 0.0619813 + 0.0357849i 0.530670 0.847578i \(-0.321940\pi\)
−0.468689 + 0.883363i \(0.655274\pi\)
\(200\) 0 0
\(201\) 15.2510 18.2412i 1.07572 1.28663i
\(202\) 0 0
\(203\) −8.46528 + 10.0885i −0.594146 + 0.708076i
\(204\) 0 0
\(205\) −6.21535 + 17.0765i −0.434099 + 1.19268i
\(206\) 0 0
\(207\) −3.14556 + 18.2177i −0.218631 + 1.26621i
\(208\) 0 0
\(209\) 13.8121 2.43544i 0.955402 0.168463i
\(210\) 0 0
\(211\) 3.98399 1.45005i 0.274269 0.0998257i −0.201224 0.979545i \(-0.564492\pi\)
0.475493 + 0.879720i \(0.342270\pi\)
\(212\) 0 0
\(213\) 7.72550 + 4.44204i 0.529343 + 0.304363i
\(214\) 0 0
\(215\) 10.5959 0.722636
\(216\) 0 0
\(217\) −9.42938 −0.640108
\(218\) 0 0
\(219\) −7.87682 + 4.56636i −0.532266 + 0.308566i
\(220\) 0 0
\(221\) −10.4577 + 3.80629i −0.703460 + 0.256039i
\(222\) 0 0
\(223\) −15.7442 + 2.77613i −1.05431 + 0.185903i −0.673831 0.738886i \(-0.735352\pi\)
−0.380480 + 0.924789i \(0.624241\pi\)
\(224\) 0 0
\(225\) −4.45752 + 3.76738i −0.297168 + 0.251158i
\(226\) 0 0
\(227\) −0.588042 + 1.61563i −0.0390297 + 0.107233i −0.957677 0.287846i \(-0.907061\pi\)
0.918647 + 0.395080i \(0.129283\pi\)
\(228\) 0 0
\(229\) −5.91992 + 7.05508i −0.391199 + 0.466213i −0.925316 0.379198i \(-0.876200\pi\)
0.534116 + 0.845411i \(0.320644\pi\)
\(230\) 0 0
\(231\) −7.21684 1.25931i −0.474833 0.0828563i
\(232\) 0 0
\(233\) 16.7671 + 9.68050i 1.09845 + 0.634191i 0.935814 0.352495i \(-0.114667\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(234\) 0 0
\(235\) −1.92599 3.33590i −0.125637 0.217610i
\(236\) 0 0
\(237\) 13.8677 11.6784i 0.900804 0.758596i
\(238\) 0 0
\(239\) −0.803749 + 4.55829i −0.0519902 + 0.294851i −0.999706 0.0242659i \(-0.992275\pi\)
0.947715 + 0.319117i \(0.103386\pi\)
\(240\) 0 0
\(241\) 21.1035 17.7079i 1.35939 1.14067i 0.383226 0.923655i \(-0.374813\pi\)
0.976169 0.217012i \(-0.0696312\pi\)
\(242\) 0 0
\(243\) −0.138482 15.5878i −0.00888363 0.999961i
\(244\) 0 0
\(245\) −0.495297 + 0.415604i −0.0316434 + 0.0265519i
\(246\) 0 0
\(247\) −24.8743 4.38601i −1.58271 0.279075i
\(248\) 0 0
\(249\) −15.2450 + 12.8383i −0.966115 + 0.813596i
\(250\) 0 0
\(251\) 12.0234 6.94172i 0.758911 0.438158i −0.0699933 0.997547i \(-0.522298\pi\)
0.828905 + 0.559390i \(0.188964\pi\)
\(252\) 0 0
\(253\) 8.68518 + 5.01439i 0.546033 + 0.315252i
\(254\) 0 0
\(255\) −2.97950 + 17.0749i −0.186583 + 1.06927i
\(256\) 0 0
\(257\) −1.09064 + 1.29978i −0.0680325 + 0.0810779i −0.798987 0.601348i \(-0.794631\pi\)
0.730955 + 0.682426i \(0.239075\pi\)
\(258\) 0 0
\(259\) 18.0534 + 6.57089i 1.12178 + 0.408295i
\(260\) 0 0
\(261\) −11.6104 + 9.81281i −0.718666 + 0.607398i
\(262\) 0 0
\(263\) 0.720517 + 4.08625i 0.0444290 + 0.251969i 0.998931 0.0462368i \(-0.0147229\pi\)
−0.954502 + 0.298206i \(0.903612\pi\)
\(264\) 0 0
\(265\) 0.448210 0.163135i 0.0275333 0.0100213i
\(266\) 0 0
\(267\) 0.211909 + 0.365536i 0.0129686 + 0.0223704i
\(268\) 0 0
\(269\) −31.4461 −1.91730 −0.958650 0.284588i \(-0.908143\pi\)
−0.958650 + 0.284588i \(0.908143\pi\)
\(270\) 0 0
\(271\) 28.1714i 1.71129i −0.517564 0.855644i \(-0.673161\pi\)
0.517564 0.855644i \(-0.326839\pi\)
\(272\) 0 0
\(273\) 11.4374 + 6.57631i 0.692222 + 0.398016i
\(274\) 0 0
\(275\) 1.08285 + 2.97510i 0.0652981 + 0.179405i
\(276\) 0 0
\(277\) 24.3185 4.28801i 1.46116 0.257641i 0.614136 0.789201i \(-0.289505\pi\)
0.847021 + 0.531559i \(0.178394\pi\)
\(278\) 0 0
\(279\) −10.7256 1.85195i −0.642127 0.110873i
\(280\) 0 0
\(281\) −6.58678 + 18.0970i −0.392935 + 1.07958i 0.572720 + 0.819751i \(0.305888\pi\)
−0.965655 + 0.259828i \(0.916334\pi\)
\(282\) 0 0
\(283\) −6.85978 5.75604i −0.407772 0.342161i 0.415717 0.909494i \(-0.363531\pi\)
−0.823488 + 0.567333i \(0.807975\pi\)
\(284\) 0 0
\(285\) −25.2329 + 30.1801i −1.49467 + 1.78772i
\(286\) 0 0
\(287\) 8.96057 15.5202i 0.528926 0.916126i
\(288\) 0 0
\(289\) −1.29071 2.23558i −0.0759243 0.131505i
\(290\) 0 0
\(291\) 1.22607 3.38733i 0.0718738 0.198569i
\(292\) 0 0
\(293\) 3.69497 20.9552i 0.215863 1.22422i −0.663540 0.748140i \(-0.730947\pi\)
0.879403 0.476078i \(-0.157942\pi\)
\(294\) 0 0
\(295\) −1.25355 1.49392i −0.0729843 0.0869793i
\(296\) 0 0
\(297\) −7.96161 2.84982i −0.461979 0.165363i
\(298\) 0 0
\(299\) −11.6093 13.8354i −0.671384 0.800125i
\(300\) 0 0
\(301\) −10.2906 1.81452i −0.593142 0.104587i
\(302\) 0 0
\(303\) −30.4232 + 5.42019i −1.74777 + 0.311382i
\(304\) 0 0
\(305\) 25.7687 14.8776i 1.47551 0.851888i
\(306\) 0 0
\(307\) −4.48896 + 7.77511i −0.256199 + 0.443749i −0.965220 0.261438i \(-0.915803\pi\)
0.709022 + 0.705187i \(0.249137\pi\)
\(308\) 0 0
\(309\) 20.4162 7.47200i 1.16144 0.425067i
\(310\) 0 0
\(311\) −13.0417 10.9433i −0.739525 0.620535i 0.193185 0.981162i \(-0.438118\pi\)
−0.932710 + 0.360627i \(0.882563\pi\)
\(312\) 0 0
\(313\) −9.04413 3.29179i −0.511204 0.186063i 0.0735224 0.997294i \(-0.476576\pi\)
−0.584727 + 0.811230i \(0.698798\pi\)
\(314\) 0 0
\(315\) 17.7586 10.3373i 1.00058 0.582438i
\(316\) 0 0
\(317\) 1.05306 + 5.97220i 0.0591457 + 0.335432i 0.999994 0.00339548i \(-0.00108082\pi\)
−0.940849 + 0.338827i \(0.889970\pi\)
\(318\) 0 0
\(319\) 2.82047 + 7.74917i 0.157916 + 0.433870i
\(320\) 0 0
\(321\) −18.9478 + 0.0336656i −1.05756 + 0.00187903i
\(322\) 0 0
\(323\) 32.7244i 1.82083i
\(324\) 0 0
\(325\) 5.70173i 0.316275i
\(326\) 0 0
\(327\) 11.0085 0.0195594i 0.608771 0.00108164i
\(328\) 0 0
\(329\) 1.29923 + 3.56961i 0.0716290 + 0.196799i
\(330\) 0 0
\(331\) −0.638218 3.61951i −0.0350796 0.198946i 0.962231 0.272233i \(-0.0877622\pi\)
−0.997311 + 0.0732869i \(0.976651\pi\)
\(332\) 0 0
\(333\) 19.2446 + 11.0199i 1.05460 + 0.603887i
\(334\) 0 0
\(335\) 33.9960 + 12.3735i 1.85740 + 0.676037i
\(336\) 0 0
\(337\) 14.8826 + 12.4880i 0.810707 + 0.680264i 0.950776 0.309878i \(-0.100288\pi\)
−0.140070 + 0.990142i \(0.544733\pi\)
\(338\) 0 0
\(339\) −5.73936 + 2.10051i −0.311719 + 0.114084i
\(340\) 0 0
\(341\) −2.95222 + 5.11340i −0.159872 + 0.276906i
\(342\) 0 0
\(343\) 16.3076 9.41522i 0.880530 0.508374i
\(344\) 0 0
\(345\) −27.6934 + 4.93384i −1.49096 + 0.265629i
\(346\) 0 0
\(347\) −14.8923 2.62591i −0.799458 0.140966i −0.241029 0.970518i \(-0.577485\pi\)
−0.558430 + 0.829552i \(0.688596\pi\)
\(348\) 0 0
\(349\) −14.4505 17.2214i −0.773518 0.921843i 0.225104 0.974335i \(-0.427728\pi\)
−0.998621 + 0.0524923i \(0.983284\pi\)
\(350\) 0 0
\(351\) 11.7181 + 9.72667i 0.625465 + 0.519171i
\(352\) 0 0
\(353\) −13.4020 15.9719i −0.713316 0.850096i 0.280648 0.959811i \(-0.409451\pi\)
−0.993963 + 0.109715i \(0.965006\pi\)
\(354\) 0 0
\(355\) −2.35457 + 13.3534i −0.124967 + 0.708725i
\(356\) 0 0
\(357\) 5.81767 16.0727i 0.307904 0.850659i
\(358\) 0 0
\(359\) 5.43854 + 9.41983i 0.287035 + 0.497159i 0.973101 0.230380i \(-0.0739970\pi\)
−0.686066 + 0.727540i \(0.740664\pi\)
\(360\) 0 0
\(361\) −27.6356 + 47.8663i −1.45451 + 2.51928i
\(362\) 0 0
\(363\) 9.27839 11.0975i 0.486989 0.582470i
\(364\) 0 0
\(365\) −10.6123 8.90479i −0.555474 0.466098i
\(366\) 0 0
\(367\) 3.96735 10.9002i 0.207094 0.568985i −0.792046 0.610462i \(-0.790984\pi\)
0.999139 + 0.0414764i \(0.0132061\pi\)
\(368\) 0 0
\(369\) 13.2406 15.8939i 0.689277 0.827401i
\(370\) 0 0
\(371\) −0.463232 + 0.0816804i −0.0240498 + 0.00424063i
\(372\) 0 0
\(373\) −1.65913 4.55843i −0.0859066 0.236027i 0.889299 0.457326i \(-0.151193\pi\)
−0.975206 + 0.221299i \(0.928970\pi\)
\(374\) 0 0
\(375\) 12.0874 + 6.95008i 0.624193 + 0.358901i
\(376\) 0 0
\(377\) 14.8512i 0.764874i
\(378\) 0 0
\(379\) −31.5863 −1.62248 −0.811238 0.584715i \(-0.801206\pi\)
−0.811238 + 0.584715i \(0.801206\pi\)
\(380\) 0 0
\(381\) −15.8427 27.3282i −0.811648 1.40006i
\(382\) 0 0
\(383\) −5.33286 + 1.94100i −0.272496 + 0.0991805i −0.474654 0.880172i \(-0.657427\pi\)
0.202158 + 0.979353i \(0.435205\pi\)
\(384\) 0 0
\(385\) −1.93562 10.9774i −0.0986482 0.559462i
\(386\) 0 0
\(387\) −11.3489 4.08506i −0.576898 0.207655i
\(388\) 0 0
\(389\) 7.70166 + 2.80317i 0.390490 + 0.142127i 0.529801 0.848122i \(-0.322267\pi\)
−0.139311 + 0.990249i \(0.544489\pi\)
\(390\) 0 0
\(391\) −15.0411 + 17.9253i −0.760660 + 0.906520i
\(392\) 0 0
\(393\) −1.24112 + 7.11262i −0.0626063 + 0.358784i
\(394\) 0 0
\(395\) 23.8902 + 13.7930i 1.20204 + 0.694001i
\(396\) 0 0
\(397\) 25.2112 14.5557i 1.26532 0.730531i 0.291218 0.956657i \(-0.405939\pi\)
0.974098 + 0.226126i \(0.0726061\pi\)
\(398\) 0 0
\(399\) 29.6741 24.9895i 1.48556 1.25104i
\(400\) 0 0
\(401\) 13.6729 + 2.41090i 0.682792 + 0.120395i 0.504276 0.863542i \(-0.331759\pi\)
0.178516 + 0.983937i \(0.442870\pi\)
\(402\) 0 0
\(403\) 8.14562 6.83498i 0.405762 0.340475i
\(404\) 0 0
\(405\) 22.2301 8.27050i 1.10462 0.410964i
\(406\) 0 0
\(407\) 9.21557 7.73278i 0.456799 0.383300i
\(408\) 0 0
\(409\) −2.85854 + 16.2116i −0.141346 + 0.801613i 0.828883 + 0.559422i \(0.188977\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(410\) 0 0
\(411\) −21.1176 + 17.7838i −1.04166 + 0.877212i
\(412\) 0 0
\(413\) 0.961601 + 1.66554i 0.0473173 + 0.0819559i
\(414\) 0 0
\(415\) −26.2629 15.1629i −1.28920 0.744318i
\(416\) 0 0
\(417\) −4.04454 0.705755i −0.198062 0.0345610i
\(418\) 0 0
\(419\) −10.4296 + 12.4295i −0.509520 + 0.607223i −0.958070 0.286535i \(-0.907496\pi\)
0.448549 + 0.893758i \(0.351941\pi\)
\(420\) 0 0
\(421\) −0.181389 + 0.498362i −0.00884036 + 0.0242887i −0.944034 0.329847i \(-0.893003\pi\)
0.935194 + 0.354136i \(0.115225\pi\)
\(422\) 0 0
\(423\) 0.776761 + 4.31550i 0.0377674 + 0.209827i
\(424\) 0 0
\(425\) −7.27495 + 1.28277i −0.352887 + 0.0622235i
\(426\) 0 0
\(427\) −27.5740 + 10.0361i −1.33440 + 0.485682i
\(428\) 0 0
\(429\) 7.14712 4.14334i 0.345066 0.200042i
\(430\) 0 0
\(431\) −12.2920 −0.592084 −0.296042 0.955175i \(-0.595667\pi\)
−0.296042 + 0.955175i \(0.595667\pi\)
\(432\) 0 0
\(433\) 14.6907 0.705991 0.352996 0.935625i \(-0.385163\pi\)
0.352996 + 0.935625i \(0.385163\pi\)
\(434\) 0 0
\(435\) −20.0520 11.5296i −0.961420 0.552801i
\(436\) 0 0
\(437\) −49.9053 + 18.1640i −2.38729 + 0.868904i
\(438\) 0 0
\(439\) 28.8488 5.08682i 1.37688 0.242781i 0.564270 0.825591i \(-0.309158\pi\)
0.812609 + 0.582810i \(0.198047\pi\)
\(440\) 0 0
\(441\) 0.690724 0.254186i 0.0328916 0.0121041i
\(442\) 0 0
\(443\) 11.6096 31.8970i 0.551588 1.51547i −0.279955 0.960013i \(-0.590320\pi\)
0.831543 0.555461i \(-0.187458\pi\)
\(444\) 0 0
\(445\) −0.413240 + 0.492480i −0.0195895 + 0.0233458i
\(446\) 0 0
\(447\) 17.7553 21.2364i 0.839795 1.00445i
\(448\) 0 0
\(449\) −15.4011 8.89184i −0.726823 0.419632i 0.0904355 0.995902i \(-0.471174\pi\)
−0.817259 + 0.576271i \(0.804507\pi\)
\(450\) 0 0
\(451\) −5.61089 9.71834i −0.264206 0.457619i
\(452\) 0 0
\(453\) 3.83996 + 1.38991i 0.180417 + 0.0653037i
\(454\) 0 0
\(455\) −3.48587 + 19.7693i −0.163420 + 0.926800i
\(456\) 0 0
\(457\) 9.21939 7.73598i 0.431265 0.361874i −0.401164 0.916006i \(-0.631394\pi\)
0.832429 + 0.554132i \(0.186950\pi\)
\(458\) 0 0
\(459\) 9.77414 17.1397i 0.456218 0.800010i
\(460\) 0 0
\(461\) 12.6139 10.5843i 0.587487 0.492960i −0.299909 0.953968i \(-0.596956\pi\)
0.887396 + 0.461008i \(0.152512\pi\)
\(462\) 0 0
\(463\) 3.83957 + 0.677019i 0.178440 + 0.0314638i 0.262154 0.965026i \(-0.415567\pi\)
−0.0837142 + 0.996490i \(0.526678\pi\)
\(464\) 0 0
\(465\) −2.90480 16.3045i −0.134707 0.756101i
\(466\) 0 0
\(467\) 8.38005 4.83822i 0.387782 0.223886i −0.293416 0.955985i \(-0.594792\pi\)
0.681199 + 0.732098i \(0.261459\pi\)
\(468\) 0 0
\(469\) −30.8975 17.8387i −1.42672 0.823715i
\(470\) 0 0
\(471\) 1.35083 0.494383i 0.0622431 0.0227800i
\(472\) 0 0
\(473\) −4.20585 + 5.01234i −0.193385 + 0.230468i
\(474\) 0 0
\(475\) −15.7548 5.73429i −0.722881 0.263107i
\(476\) 0 0
\(477\) −0.542955 + 0.00192940i −0.0248602 + 8.83411e-5i
\(478\) 0 0
\(479\) 0.352574 + 1.99955i 0.0161095 + 0.0913616i 0.991802 0.127780i \(-0.0407853\pi\)
−0.975693 + 0.219142i \(0.929674\pi\)
\(480\) 0 0
\(481\) −20.3585 + 7.40988i −0.928266 + 0.337861i
\(482\) 0 0
\(483\) 27.7404 0.0492878i 1.26223 0.00224267i
\(484\) 0 0
\(485\) 5.48126 0.248891
\(486\) 0 0
\(487\) 7.67766i 0.347908i 0.984754 + 0.173954i \(0.0556544\pi\)
−0.984754 + 0.173954i \(0.944346\pi\)
\(488\) 0 0
\(489\) −0.0346694 19.5128i −0.00156780 0.882399i
\(490\) 0 0
\(491\) −6.23136 17.1205i −0.281217 0.772638i −0.997218 0.0745389i \(-0.976251\pi\)
0.716001 0.698100i \(-0.245971\pi\)
\(492\) 0 0
\(493\) −18.9489 + 3.34121i −0.853417 + 0.150480i
\(494\) 0 0
\(495\) −0.0457219 12.8667i −0.00205505 0.578314i
\(496\) 0 0
\(497\) 4.57346 12.5655i 0.205148 0.563638i
\(498\) 0 0
\(499\) 0.594620 + 0.498945i 0.0266189 + 0.0223359i 0.656000 0.754761i \(-0.272247\pi\)
−0.629381 + 0.777097i \(0.716692\pi\)
\(500\) 0 0
\(501\) −10.4014 28.4205i −0.464702 1.26973i
\(502\) 0 0
\(503\) −16.6264 + 28.7978i −0.741335 + 1.28403i 0.210552 + 0.977583i \(0.432474\pi\)
−0.951887 + 0.306448i \(0.900859\pi\)
\(504\) 0 0
\(505\) −23.5098 40.7203i −1.04617 1.81203i
\(506\) 0 0
\(507\) 7.52046 1.33984i 0.333995 0.0595045i
\(508\) 0 0
\(509\) 5.59821 31.7490i 0.248136 1.40725i −0.564958 0.825119i \(-0.691108\pi\)
0.813095 0.582132i \(-0.197781\pi\)
\(510\) 0 0
\(511\) 8.78164 + 10.4655i 0.388477 + 0.462969i
\(512\) 0 0
\(513\) 38.6614 22.5968i 1.70694 0.997674i
\(514\) 0 0
\(515\) 21.2631 + 25.3404i 0.936966 + 1.11663i
\(516\) 0 0
\(517\) 2.34251 + 0.413048i 0.103024 + 0.0181658i
\(518\) 0 0
\(519\) 10.9653 30.2942i 0.481321 1.32977i
\(520\) 0 0
\(521\) −27.9816 + 16.1552i −1.22590 + 0.707773i −0.966169 0.257909i \(-0.916966\pi\)
−0.259729 + 0.965682i \(0.583633\pi\)
\(522\) 0 0
\(523\) 1.25831 2.17946i 0.0550222 0.0953012i −0.837202 0.546893i \(-0.815810\pi\)
0.892225 + 0.451592i \(0.149144\pi\)
\(524\) 0 0
\(525\) 6.71862 + 5.61728i 0.293225 + 0.245158i
\(526\) 0 0
\(527\) −10.5535 8.85544i −0.459718 0.385749i
\(528\) 0 0
\(529\) −14.0722 5.12185i −0.611833 0.222689i
\(530\) 0 0
\(531\) 0.766678 + 2.08336i 0.0332710 + 0.0904103i
\(532\) 0 0
\(533\) 3.50932 + 19.9023i 0.152005 + 0.862066i
\(534\) 0 0
\(535\) −9.86054 27.0916i −0.426308 1.17127i
\(536\) 0 0
\(537\) 6.11760 10.6396i 0.263994 0.459133i
\(538\) 0 0
\(539\) 0.399264i 0.0171975i
\(540\) 0 0
\(541\) 20.7984i 0.894192i 0.894486 + 0.447096i \(0.147542\pi\)
−0.894486 + 0.447096i \(0.852458\pi\)
\(542\) 0 0
\(543\) 0.130260 + 0.224693i 0.00558997 + 0.00964251i
\(544\) 0 0
\(545\) 5.72888 + 15.7400i 0.245398 + 0.674226i
\(546\) 0 0
\(547\) 3.11764 + 17.6810i 0.133301 + 0.755985i 0.976028 + 0.217645i \(0.0698375\pi\)
−0.842727 + 0.538341i \(0.819051\pi\)
\(548\) 0 0
\(549\) −33.3358 + 6.00021i −1.42274 + 0.256083i
\(550\) 0 0
\(551\) −41.0363 14.9360i −1.74820 0.636294i
\(552\) 0 0
\(553\) −20.8398 17.4867i −0.886200 0.743610i
\(554\) 0 0
\(555\) −5.80032 + 33.2405i −0.246210 + 1.41098i
\(556\) 0 0
\(557\) −15.8779 + 27.5013i −0.672766 + 1.16527i 0.304350 + 0.952560i \(0.401561\pi\)
−0.977116 + 0.212705i \(0.931773\pi\)
\(558\) 0 0
\(559\) 10.2049 5.89179i 0.431621 0.249196i
\(560\) 0 0
\(561\) −6.89453 8.18700i −0.291087 0.345655i
\(562\) 0 0
\(563\) −21.2510 3.74712i −0.895621 0.157922i −0.293153 0.956065i \(-0.594705\pi\)
−0.602468 + 0.798143i \(0.705816\pi\)
\(564\) 0 0
\(565\) −5.97745 7.12365i −0.251473 0.299694i
\(566\) 0 0
\(567\) −23.0060 + 4.22537i −0.966159 + 0.177449i
\(568\) 0 0
\(569\) 28.0024 + 33.3720i 1.17392 + 1.39903i 0.899221 + 0.437495i \(0.144134\pi\)
0.274701 + 0.961530i \(0.411421\pi\)
\(570\) 0 0
\(571\) −5.33260 + 30.2427i −0.223162 + 1.26562i 0.643005 + 0.765862i \(0.277687\pi\)
−0.866167 + 0.499754i \(0.833424\pi\)
\(572\) 0 0
\(573\) 12.1968 + 14.4833i 0.509529 + 0.605046i
\(574\) 0 0
\(575\) −5.99429 10.3824i −0.249979 0.432977i
\(576\) 0 0
\(577\) −18.5251 + 32.0864i −0.771210 + 1.33578i 0.165690 + 0.986178i \(0.447015\pi\)
−0.936900 + 0.349597i \(0.886318\pi\)
\(578\) 0 0
\(579\) −5.00143 0.872727i −0.207852 0.0362693i
\(580\) 0 0
\(581\) 22.9096 + 19.2235i 0.950452 + 0.797524i
\(582\) 0 0
\(583\) −0.100738 + 0.276776i −0.00417216 + 0.0114629i
\(584\) 0 0
\(585\) −7.84780 + 21.8024i −0.324467 + 0.901418i
\(586\) 0 0
\(587\) −2.18563 + 0.385385i −0.0902104 + 0.0159065i −0.218571 0.975821i \(-0.570140\pi\)
0.128361 + 0.991728i \(0.459028\pi\)
\(588\) 0 0
\(589\) −10.6941 29.3817i −0.440642 1.21065i
\(590\) 0 0
\(591\) −4.21471 + 2.44336i −0.173370 + 0.100506i
\(592\) 0 0
\(593\) 7.72015i 0.317028i 0.987357 + 0.158514i \(0.0506704\pi\)
−0.987357 + 0.158514i \(0.949330\pi\)
\(594\) 0 0
\(595\) 26.0084 1.06624
\(596\) 0 0
\(597\) 0.871661 1.51598i 0.0356747 0.0620448i
\(598\) 0 0
\(599\) 5.13051 1.86735i 0.209627 0.0762980i −0.235072 0.971978i \(-0.575533\pi\)
0.444699 + 0.895680i \(0.353311\pi\)
\(600\) 0 0
\(601\) 2.68385 + 15.2209i 0.109477 + 0.620872i 0.989337 + 0.145641i \(0.0465245\pi\)
−0.879861 + 0.475231i \(0.842364\pi\)
\(602\) 0 0
\(603\) −31.6415 26.3593i −1.28854 1.07344i
\(604\) 0 0
\(605\) 20.6824 + 7.52779i 0.840860 + 0.306048i
\(606\) 0 0
\(607\) 0.0926471 0.110413i 0.00376043 0.00448151i −0.764161 0.645026i \(-0.776847\pi\)
0.767921 + 0.640544i \(0.221291\pi\)
\(608\) 0 0
\(609\) 17.4999 + 14.6312i 0.709130 + 0.592887i
\(610\) 0 0
\(611\) −3.70982 2.14186i −0.150083 0.0866505i
\(612\) 0 0
\(613\) 30.3578 17.5271i 1.22614 0.707913i 0.259921 0.965630i \(-0.416304\pi\)
0.966220 + 0.257717i \(0.0829702\pi\)
\(614\) 0 0
\(615\) 29.5965 + 10.7127i 1.19345 + 0.431979i
\(616\) 0 0
\(617\) 1.95314 + 0.344391i 0.0786304 + 0.0138647i 0.212825 0.977090i \(-0.431734\pi\)
−0.134195 + 0.990955i \(0.542845\pi\)
\(618\) 0 0
\(619\) −30.9839 + 25.9986i −1.24535 + 1.04497i −0.248262 + 0.968693i \(0.579859\pi\)
−0.997087 + 0.0762782i \(0.975696\pi\)
\(620\) 0 0
\(621\) 31.5635 + 5.39219i 1.26660 + 0.216381i
\(622\) 0 0
\(623\) 0.485670 0.407525i 0.0194579 0.0163272i
\(624\) 0 0
\(625\) −5.37310 + 30.4724i −0.214924 + 1.21890i
\(626\) 0 0
\(627\) −4.26081 23.9157i −0.170160 0.955101i
\(628\) 0 0
\(629\) 14.0347 + 24.3087i 0.559598 + 0.969253i
\(630\) 0 0
\(631\) −28.0718 16.2073i −1.11752 0.645202i −0.176755 0.984255i \(-0.556560\pi\)
−0.940767 + 0.339053i \(0.889893\pi\)
\(632\) 0 0
\(633\) −2.52382 6.89599i −0.100313 0.274091i
\(634\) 0 0
\(635\) 30.8946 36.8188i 1.22602 1.46111i
\(636\) 0 0
\(637\) −0.245925 + 0.675673i −0.00974390 + 0.0267711i
\(638\) 0 0
\(639\) 7.67005 13.3946i 0.303422 0.529883i
\(640\) 0 0
\(641\) 16.3026 2.87458i 0.643912 0.113539i 0.157850 0.987463i \(-0.449544\pi\)
0.486063 + 0.873924i \(0.338433\pi\)
\(642\) 0 0
\(643\) 25.2314 9.18349i 0.995030 0.362161i 0.207364 0.978264i \(-0.433511\pi\)
0.787666 + 0.616102i \(0.211289\pi\)
\(644\) 0 0
\(645\) −0.0326081 18.3526i −0.00128394 0.722635i
\(646\) 0 0
\(647\) −29.0527 −1.14218 −0.571090 0.820887i \(-0.693479\pi\)
−0.571090 + 0.820887i \(0.693479\pi\)
\(648\) 0 0
\(649\) 1.20426 0.0472714
\(650\) 0 0
\(651\) 0.0290182 + 16.3321i 0.00113731 + 0.640107i
\(652\) 0 0
\(653\) 32.5052 11.8309i 1.27203 0.462980i 0.384240 0.923233i \(-0.374463\pi\)
0.887788 + 0.460253i \(0.152241\pi\)
\(654\) 0 0
\(655\) −10.8189 + 1.90767i −0.422730 + 0.0745387i
\(656\) 0 0
\(657\) 7.93340 + 13.6290i 0.309512 + 0.531717i
\(658\) 0 0
\(659\) −7.44079 + 20.4434i −0.289852 + 0.796362i 0.706234 + 0.707978i \(0.250393\pi\)
−0.996086 + 0.0883842i \(0.971830\pi\)
\(660\) 0 0
\(661\) −16.3906 + 19.5335i −0.637519 + 0.759766i −0.983976 0.178300i \(-0.942940\pi\)
0.346457 + 0.938066i \(0.387385\pi\)
\(662\) 0 0
\(663\) 6.62486 + 18.1015i 0.257288 + 0.703004i
\(664\) 0 0
\(665\) 51.1202 + 29.5143i 1.98236 + 1.14451i
\(666\) 0 0
\(667\) −15.6132 27.0429i −0.604546 1.04710i
\(668\) 0 0
\(669\) 4.85684 + 27.2612i 0.187776 + 1.05398i
\(670\) 0 0
\(671\) −3.19066 + 18.0951i −0.123174 + 0.698555i
\(672\) 0 0
\(673\) −6.18349 + 5.18857i −0.238356 + 0.200005i −0.754139 0.656715i \(-0.771946\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(674\) 0 0
\(675\) 6.53899 + 7.70904i 0.251686 + 0.296721i
\(676\) 0 0
\(677\) −11.8370 + 9.93243i −0.454933 + 0.381734i −0.841263 0.540627i \(-0.818187\pi\)
0.386330 + 0.922361i \(0.373743\pi\)
\(678\) 0 0
\(679\) −5.32333 0.938647i −0.204291 0.0360220i
\(680\) 0 0
\(681\) 2.80016 + 1.01354i 0.107302 + 0.0388391i
\(682\) 0 0
\(683\) 1.82111 1.05142i 0.0696830 0.0402315i −0.464754 0.885440i \(-0.653857\pi\)
0.534437 + 0.845209i \(0.320524\pi\)
\(684\) 0 0
\(685\) −36.3798 21.0039i −1.39000 0.802516i
\(686\) 0 0
\(687\) 12.2380 + 10.2319i 0.466907 + 0.390370i
\(688\) 0 0
\(689\) 0.340959 0.406339i 0.0129895 0.0154803i
\(690\) 0 0
\(691\) 21.9905 + 8.00388i 0.836557 + 0.304482i 0.724547 0.689225i \(-0.242049\pi\)
0.112010 + 0.993707i \(0.464271\pi\)
\(692\) 0 0
\(693\) −2.15897 + 12.5038i −0.0820125 + 0.474980i
\(694\) 0 0
\(695\) −1.08478 6.15210i −0.0411481 0.233362i
\(696\) 0 0
\(697\) 24.6043 8.95523i 0.931954 0.339203i
\(698\) 0 0
\(699\) 16.7155 29.0713i 0.632238 1.09958i
\(700\) 0 0
\(701\) 40.5028 1.52977 0.764884 0.644168i \(-0.222796\pi\)
0.764884 + 0.644168i \(0.222796\pi\)
\(702\) 0 0
\(703\) 63.7061i 2.40272i
\(704\) 0 0
\(705\) −5.77202 + 3.34617i −0.217387 + 0.126024i
\(706\) 0 0
\(707\) 15.8593 + 43.5730i 0.596450 + 1.63873i
\(708\) 0 0
\(709\) −12.4782 + 2.20024i −0.468628 + 0.0826317i −0.402975 0.915211i \(-0.632024\pi\)
−0.0656523 + 0.997843i \(0.520913\pi\)
\(710\) 0 0
\(711\) −20.2703 23.9836i −0.760195 0.899455i
\(712\) 0 0
\(713\) 7.64687 21.0096i 0.286377 0.786815i
\(714\) 0 0
\(715\) 9.62920 + 8.07986i 0.360112 + 0.302170i
\(716\) 0 0
\(717\) 7.89765 + 1.37810i 0.294943 + 0.0514662i
\(718\) 0 0
\(719\) −23.2178 + 40.2145i −0.865879 + 1.49975i 0.000291815 1.00000i \(0.499907\pi\)
−0.866171 + 0.499747i \(0.833426\pi\)
\(720\) 0 0
\(721\) −16.3111 28.2516i −0.607455 1.05214i
\(722\) 0 0
\(723\) −30.7359 36.4977i −1.14308 1.35737i
\(724\) 0 0
\(725\) 1.71183 9.70825i 0.0635756 0.360555i
\(726\) 0 0
\(727\) 7.82850 + 9.32964i 0.290343 + 0.346017i 0.891424 0.453171i \(-0.149707\pi\)
−0.601081 + 0.799188i \(0.705263\pi\)
\(728\) 0 0
\(729\) −26.9985 + 0.287828i −0.999943 + 0.0106603i
\(730\) 0 0
\(731\) −9.81335 11.6951i −0.362960 0.432559i
\(732\) 0 0
\(733\) 9.85329 + 1.73740i 0.363939 + 0.0641723i 0.352628 0.935764i \(-0.385288\pi\)
0.0113117 + 0.999936i \(0.496399\pi\)
\(734\) 0 0
\(735\) 0.721370 + 0.856600i 0.0266081 + 0.0315962i
\(736\) 0 0
\(737\) −19.3473 + 11.1702i −0.712666 + 0.411458i
\(738\) 0 0
\(739\) −22.0318 + 38.1602i −0.810454 + 1.40375i 0.102093 + 0.994775i \(0.467446\pi\)
−0.912547 + 0.408972i \(0.865887\pi\)
\(740\) 0 0
\(741\) −7.52023 + 43.0969i −0.276262 + 1.58321i
\(742\) 0 0
\(743\) −6.42946 5.39496i −0.235874 0.197922i 0.517187 0.855872i \(-0.326979\pi\)
−0.753061 + 0.657950i \(0.771424\pi\)
\(744\) 0 0
\(745\) 39.5782 + 14.4053i 1.45003 + 0.527769i
\(746\) 0 0
\(747\) 22.2835 + 26.3656i 0.815311 + 0.964668i
\(748\) 0 0
\(749\) 4.93709 + 27.9996i 0.180397 + 1.02308i
\(750\) 0 0
\(751\) −7.74342 21.2749i −0.282561 0.776331i −0.997055 0.0766890i \(-0.975565\pi\)
0.714494 0.699642i \(-0.246657\pi\)
\(752\) 0 0
\(753\) −12.0604 20.8038i −0.439505 0.758132i
\(754\) 0 0
\(755\) 6.21370i 0.226140i
\(756\) 0 0
\(757\) 19.5088i 0.709058i −0.935045 0.354529i \(-0.884641\pi\)
0.935045 0.354529i \(-0.115359\pi\)
\(758\) 0 0
\(759\) 8.65844 15.0586i 0.314281 0.546592i
\(760\) 0 0
\(761\) −9.62500 26.4445i −0.348906 0.958612i −0.982715 0.185122i \(-0.940732\pi\)
0.633809 0.773489i \(-0.281490\pi\)
\(762\) 0 0
\(763\) −2.86840 16.2675i −0.103843 0.588924i
\(764\) 0 0
\(765\) 29.5837 + 5.10808i 1.06960 + 0.184683i
\(766\) 0 0
\(767\) −2.03797 0.741760i −0.0735868 0.0267834i
\(768\) 0 0
\(769\) 12.3157 + 10.3341i 0.444117 + 0.372658i 0.837247 0.546824i \(-0.184163\pi\)
−0.393130 + 0.919483i \(0.628608\pi\)
\(770\) 0 0
\(771\) 2.25463 + 1.88505i 0.0811987 + 0.0678883i
\(772\) 0 0
\(773\) 6.27436 10.8675i 0.225673 0.390877i −0.730848 0.682540i \(-0.760875\pi\)
0.956521 + 0.291663i \(0.0942086\pi\)
\(774\) 0 0
\(775\) 6.11265 3.52914i 0.219573 0.126770i
\(776\) 0 0
\(777\) 11.3255 31.2895i 0.406301 1.12251i
\(778\) 0 0
\(779\) 58.5229 + 10.3192i 2.09680 + 0.369722i
\(780\) 0 0
\(781\) −5.38215 6.41420i −0.192589 0.229518i
\(782\) 0 0
\(783\) 17.0320 + 20.0796i 0.608673 + 0.717586i
\(784\) 0 0
\(785\) 1.40687 + 1.67664i 0.0502134 + 0.0598420i
\(786\) 0 0
\(787\) 3.64035 20.6454i 0.129764 0.735930i −0.848599 0.529037i \(-0.822553\pi\)
0.978363 0.206894i \(-0.0663354\pi\)
\(788\) 0 0
\(789\) 7.07537 1.26054i 0.251890 0.0448766i
\(790\) 0 0
\(791\) 4.58533 + 7.94202i 0.163036 + 0.282386i
\(792\) 0 0
\(793\) 16.5452 28.6571i 0.587536 1.01764i
\(794\) 0 0
\(795\) −0.283937 0.775819i −0.0100702 0.0275155i
\(796\) 0 0
\(797\) −21.2235 17.8086i −0.751775 0.630814i 0.184197 0.982889i \(-0.441032\pi\)
−0.935972 + 0.352075i \(0.885476\pi\)
\(798\) 0 0
\(799\) −1.89822 + 5.21531i −0.0671541 + 0.184504i
\(800\) 0 0
\(801\) 0.632474 0.368162i 0.0223474 0.0130084i
\(802\) 0 0
\(803\) 8.42472 1.48550i 0.297302 0.0524223i
\(804\) 0 0
\(805\) 14.4362 + 39.6632i 0.508810 + 1.39794i
\(806\) 0 0
\(807\) 0.0967727 + 54.4661i 0.00340656 + 1.91730i
\(808\) 0 0
\(809\) 21.9542i 0.771867i −0.922527 0.385933i \(-0.873879\pi\)
0.922527 0.385933i \(-0.126121\pi\)
\(810\) 0 0
\(811\) 17.4685 0.613401 0.306700 0.951806i \(-0.400775\pi\)
0.306700 + 0.951806i \(0.400775\pi\)
\(812\) 0 0
\(813\) −48.7942 + 0.0866951i −1.71129 + 0.00304053i
\(814\) 0 0
\(815\) 27.8994 10.1546i 0.977274 0.355699i
\(816\) 0 0
\(817\) −6.01685 34.1233i −0.210503 1.19382i
\(818\) 0 0
\(819\) 11.3553 19.8303i 0.396786 0.692928i
\(820\) 0 0
\(821\) −40.3394 14.6823i −1.40786 0.512417i −0.477355 0.878710i \(-0.658405\pi\)
−0.930500 + 0.366293i \(0.880627\pi\)
\(822\) 0 0
\(823\) 17.8062 21.2206i 0.620686 0.739705i −0.360502 0.932758i \(-0.617395\pi\)
0.981188 + 0.193053i \(0.0618390\pi\)
\(824\) 0 0
\(825\) 5.14968 1.88470i 0.179289 0.0656168i
\(826\) 0 0
\(827\) −23.1043 13.3392i −0.803414 0.463851i 0.0412497 0.999149i \(-0.486866\pi\)
−0.844663 + 0.535298i \(0.820199\pi\)
\(828\) 0 0
\(829\) −2.23315 + 1.28931i −0.0775606 + 0.0447796i −0.538279 0.842767i \(-0.680925\pi\)
0.460718 + 0.887547i \(0.347592\pi\)
\(830\) 0 0
\(831\) −7.50187 42.1076i −0.260237 1.46070i
\(832\) 0 0
\(833\) 0.917434 + 0.161768i 0.0317872 + 0.00560494i
\(834\) 0 0
\(835\) 35.2753 29.5995i 1.22075 1.02433i
\(836\) 0 0
\(837\) −3.17465 + 18.5830i −0.109732 + 0.642323i
\(838\) 0 0
\(839\) 27.0517 22.6991i 0.933928 0.783659i −0.0425905 0.999093i \(-0.513561\pi\)
0.976518 + 0.215434i \(0.0691166\pi\)
\(840\) 0 0
\(841\) −0.577037 + 3.27254i −0.0198978 + 0.112846i
\(842\) 0 0
\(843\) 31.3652 + 11.3529i 1.08028 + 0.391016i
\(844\) 0 0
\(845\) 5.81151 + 10.0658i 0.199922 + 0.346275i
\(846\) 0 0
\(847\) −18.7974 10.8527i −0.645887 0.372903i
\(848\) 0 0
\(849\) −9.94863 + 11.8992i −0.341436 + 0.408379i
\(850\) 0 0
\(851\) −29.2812 + 34.8959i −1.00375 + 1.19622i
\(852\) 0 0
\(853\) 11.8972 32.6874i 0.407354 1.11919i −0.551222 0.834358i \(-0.685838\pi\)
0.958576 0.284837i \(-0.0919393\pi\)
\(854\) 0 0
\(855\) 52.3511 + 43.6117i 1.79037 + 1.49149i
\(856\) 0 0
\(857\) −14.7995 + 2.60955i −0.505541 + 0.0891405i −0.420601 0.907246i \(-0.638181\pi\)
−0.0849397 + 0.996386i \(0.527070\pi\)
\(858\) 0 0
\(859\) 11.2421 4.09177i 0.383574 0.139610i −0.143034 0.989718i \(-0.545686\pi\)
0.526608 + 0.850108i \(0.323464\pi\)
\(860\) 0 0
\(861\) −26.9092 15.4724i −0.917065 0.527297i
\(862\) 0 0
\(863\) 4.99128 0.169905 0.0849526 0.996385i \(-0.472926\pi\)
0.0849526 + 0.996385i \(0.472926\pi\)
\(864\) 0 0
\(865\) 49.0210 1.66676
\(866\) 0 0
\(867\) −3.86816 + 2.24246i −0.131370 + 0.0761578i
\(868\) 0 0
\(869\) −16.0074 + 5.82624i −0.543016 + 0.197641i
\(870\) 0 0
\(871\) 39.6216 6.98635i 1.34253 0.236724i
\(872\) 0 0
\(873\) −5.87078 2.11320i −0.198696 0.0715208i
\(874\) 0 0
\(875\) 7.15570 19.6601i 0.241907 0.664634i
\(876\) 0 0
\(877\) 13.3228 15.8774i 0.449878 0.536143i −0.492670 0.870217i \(-0.663979\pi\)
0.942547 + 0.334073i \(0.108423\pi\)
\(878\) 0 0
\(879\) −36.3069 6.33539i −1.22460 0.213687i
\(880\) 0 0
\(881\) 7.33774 + 4.23645i 0.247215 + 0.142729i 0.618488 0.785794i \(-0.287745\pi\)
−0.371274 + 0.928524i \(0.621079\pi\)
\(882\) 0 0
\(883\) −9.03674 15.6521i −0.304111 0.526735i 0.672952 0.739686i \(-0.265026\pi\)
−0.977063 + 0.212951i \(0.931693\pi\)
\(884\) 0 0
\(885\) −2.58368 + 2.17580i −0.0868495 + 0.0731387i
\(886\) 0 0
\(887\) −3.87890 + 21.9983i −0.130241 + 0.738632i 0.847816 + 0.530291i \(0.177917\pi\)
−0.978056 + 0.208341i \(0.933194\pi\)
\(888\) 0 0
\(889\) −36.3096 + 30.4674i −1.21779 + 1.02184i
\(890\) 0 0
\(891\) −4.91153 + 13.7987i −0.164542 + 0.462273i
\(892\) 0 0
\(893\) −9.64933 + 8.09675i −0.322903 + 0.270948i
\(894\) 0 0
\(895\) 18.3904 + 3.24272i 0.614723 + 0.108392i
\(896\) 0 0
\(897\) −23.9279 + 20.1505i −0.798930 + 0.672805i
\(898\) 0 0
\(899\) 15.9215 9.19228i 0.531012 0.306580i
\(900\) 0 0
\(901\) −0.595165 0.343619i −0.0198278 0.0114476i
\(902\) 0 0
\(903\) −3.11116 + 17.8295i −0.103533 + 0.593327i
\(904\) 0 0
\(905\) −0.254017 + 0.302725i −0.00844380 + 0.0100629i
\(906\) 0 0
\(907\) −37.7812 13.7512i −1.25450 0.456602i −0.372583 0.927999i \(-0.621528\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(908\) 0 0
\(909\) 9.48165 + 52.6778i 0.314487 + 1.74721i
\(910\) 0 0
\(911\) 1.26349 + 7.16560i 0.0418613 + 0.237407i 0.998558 0.0536786i \(-0.0170946\pi\)
−0.956697 + 0.291086i \(0.905984\pi\)
\(912\) 0 0
\(913\) 17.5973 6.40489i 0.582386 0.211971i
\(914\) 0 0
\(915\) −25.8480 44.5869i −0.854508 1.47400i
\(916\) 0 0
\(917\) 10.8339 0.357766
\(918\) 0 0
\(919\) 24.9111i 0.821741i 0.911694 + 0.410870i \(0.134775\pi\)
−0.911694 + 0.410870i \(0.865225\pi\)
\(920\) 0 0
\(921\) 13.4807 + 7.75117i 0.444203 + 0.255410i
\(922\) 0 0
\(923\) 5.15741 + 14.1699i 0.169758 + 0.466406i
\(924\) 0 0
\(925\) −14.1625 + 2.49723i −0.465660 + 0.0821084i
\(926\) 0 0
\(927\) −13.0047 35.3388i −0.427130 1.16068i
\(928\) 0 0
\(929\) 12.8203 35.2236i 0.420621 1.15565i −0.530730 0.847541i \(-0.678082\pi\)
0.951352 0.308107i \(-0.0996955\pi\)
\(930\) 0 0
\(931\) 1.61967 + 1.35906i 0.0530825 + 0.0445415i
\(932\) 0 0
\(933\) −18.9141 + 22.6225i −0.619220 + 0.740626i
\(934\) 0 0
\(935\) 8.14289 14.1039i 0.266301 0.461247i
\(936\) 0 0
\(937\) 4.91136 + 8.50673i 0.160447 + 0.277903i 0.935029 0.354571i \(-0.115373\pi\)
−0.774582 + 0.632474i \(0.782040\pi\)
\(938\) 0 0
\(939\) −5.67371 + 15.6750i −0.185155 + 0.511534i
\(940\) 0 0
\(941\) −1.11021 + 6.29630i −0.0361918 + 0.205254i −0.997542 0.0700759i \(-0.977676\pi\)
0.961350 + 0.275330i \(0.0887870\pi\)
\(942\) 0 0
\(943\) 27.3138 + 32.5513i 0.889459 + 1.06002i
\(944\) 0 0
\(945\) −17.9593 30.7270i −0.584215 0.999548i
\(946\) 0 0
\(947\) −2.56959 3.06232i −0.0835006 0.0995121i 0.722677 0.691186i \(-0.242912\pi\)
−0.806177 + 0.591674i \(0.798467\pi\)
\(948\) 0 0
\(949\) −15.1721 2.67525i −0.492508 0.0868424i
\(950\) 0 0
\(951\) 10.3409 1.84233i 0.335326 0.0597416i
\(952\) 0 0
\(953\) 38.3667 22.1510i 1.24282 0.717542i 0.273152 0.961971i \(-0.411934\pi\)
0.969667 + 0.244428i \(0.0786003\pi\)
\(954\) 0 0
\(955\) −14.4052 + 24.9506i −0.466142 + 0.807382i
\(956\) 0 0
\(957\) 13.4133 4.90903i 0.433589 0.158687i
\(958\) 0 0
\(959\) 31.7348 + 26.6286i 1.02477 + 0.859883i
\(960\) 0 0
\(961\) −16.7611 6.10053i −0.540680 0.196791i
\(962\) 0 0
\(963\) 0.116621 + 32.8184i 0.00375805 + 1.05756i
\(964\) 0 0
\(965\) −1.34143 7.60761i −0.0431820 0.244897i
\(966\) 0 0
\(967\) −8.11445 22.2943i −0.260943 0.716935i −0.999104 0.0423110i \(-0.986528\pi\)
0.738161 0.674624i \(-0.235694\pi\)
\(968\) 0 0
\(969\) 56.6802 0.100707i 1.82083 0.00323516i
\(970\) 0 0
\(971\) 23.3729i 0.750071i −0.927010 0.375036i \(-0.877631\pi\)
0.927010 0.375036i \(-0.122369\pi\)
\(972\) 0 0
\(973\) 6.16061i 0.197500i
\(974\) 0 0
\(975\) −9.87566 + 0.0175466i −0.316274 + 0.000561941i
\(976\) 0 0
\(977\) 17.9667 + 49.3632i 0.574807 + 1.57927i 0.796814 + 0.604224i \(0.206517\pi\)
−0.222007 + 0.975045i \(0.571261\pi\)
\(978\) 0 0
\(979\) −0.0689371 0.390962i −0.00220324 0.0124952i
\(980\) 0 0
\(981\) −0.0677555 19.0672i −0.00216327 0.608768i
\(982\) 0 0
\(983\) 10.1837 + 3.70656i 0.324809 + 0.118221i 0.499278 0.866442i \(-0.333599\pi\)
−0.174469 + 0.984663i \(0.555821\pi\)
\(984\) 0 0
\(985\) −5.67841 4.76475i −0.180929 0.151817i
\(986\) 0 0
\(987\) 6.17874 2.26132i 0.196671 0.0719785i
\(988\) 0 0
\(989\) 12.3882 21.4570i 0.393923 0.682294i
\(990\) 0 0
\(991\) −37.1953 + 21.4747i −1.18155 + 0.682167i −0.956372 0.292152i \(-0.905629\pi\)
−0.225175 + 0.974318i \(0.572295\pi\)
\(992\) 0 0
\(993\) −6.26721 + 1.11656i −0.198884 + 0.0354330i
\(994\) 0 0
\(995\) 2.62034 + 0.462037i 0.0830704 + 0.0146475i
\(996\) 0 0
\(997\) 27.5401 + 32.8210i 0.872204 + 1.03945i 0.998871 + 0.0475071i \(0.0151277\pi\)
−0.126667 + 0.991945i \(0.540428\pi\)
\(998\) 0 0
\(999\) 19.0278 33.3666i 0.602012 1.05567i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bh.b.815.18 192
4.3 odd 2 216.2.v.b.59.2 yes 192
8.3 odd 2 inner 864.2.bh.b.815.17 192
8.5 even 2 216.2.v.b.59.17 yes 192
12.11 even 2 648.2.v.b.611.31 192
24.5 odd 2 648.2.v.b.611.16 192
27.11 odd 18 inner 864.2.bh.b.335.17 192
108.11 even 18 216.2.v.b.11.17 yes 192
108.43 odd 18 648.2.v.b.35.16 192
216.11 even 18 inner 864.2.bh.b.335.18 192
216.173 odd 18 216.2.v.b.11.2 192
216.205 even 18 648.2.v.b.35.31 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.2 192 216.173 odd 18
216.2.v.b.11.17 yes 192 108.11 even 18
216.2.v.b.59.2 yes 192 4.3 odd 2
216.2.v.b.59.17 yes 192 8.5 even 2
648.2.v.b.35.16 192 108.43 odd 18
648.2.v.b.35.31 192 216.205 even 18
648.2.v.b.611.16 192 24.5 odd 2
648.2.v.b.611.31 192 12.11 even 2
864.2.bh.b.335.17 192 27.11 odd 18 inner
864.2.bh.b.335.18 192 216.11 even 18 inner
864.2.bh.b.815.17 192 8.3 odd 2 inner
864.2.bh.b.815.18 192 1.1 even 1 trivial