Properties

Label 864.2.bh.b.335.4
Level $864$
Weight $2$
Character 864.335
Analytic conductor $6.899$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(47,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bh (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 335.4
Character \(\chi\) \(=\) 864.335
Dual form 864.2.bh.b.815.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59734 - 0.669704i) q^{3} +(3.00936 + 1.09532i) q^{5} +(4.58614 + 0.808660i) q^{7} +(2.10299 + 2.13949i) q^{9} +(0.303411 + 0.833616i) q^{11} +(1.22056 + 1.45461i) q^{13} +(-4.07344 - 3.76498i) q^{15} +(-4.03247 + 2.32815i) q^{17} +(0.171350 - 0.296787i) q^{19} +(-6.78406 - 4.36306i) q^{21} +(1.00156 + 5.68012i) q^{23} +(4.02633 + 3.37849i) q^{25} +(-1.92637 - 4.82588i) q^{27} +(-4.16935 - 3.49850i) q^{29} +(-7.80815 + 1.37679i) q^{31} +(0.0736241 - 1.53476i) q^{33} +(12.9156 + 7.45683i) q^{35} +(-2.31812 + 1.33837i) q^{37} +(-0.975496 - 3.14092i) q^{39} +(0.0346849 + 0.0413359i) q^{41} +(2.85915 - 1.04064i) q^{43} +(3.98525 + 8.74195i) q^{45} +(1.90179 - 10.7856i) q^{47} +(13.8009 + 5.02311i) q^{49} +(8.00039 - 1.01828i) q^{51} +1.27415 q^{53} +2.84099i q^{55} +(-0.472464 + 0.359316i) q^{57} +(-2.43399 + 6.68734i) q^{59} +(8.19039 + 1.44419i) q^{61} +(7.91450 + 11.5126i) q^{63} +(2.07985 + 5.71435i) q^{65} +(6.31205 - 5.29644i) q^{67} +(2.20417 - 9.74384i) q^{69} +(0.186788 + 0.323526i) q^{71} +(6.29550 - 10.9041i) q^{73} +(-4.16883 - 8.09304i) q^{75} +(0.717374 + 4.06843i) q^{77} +(2.54509 - 3.03312i) q^{79} +(-0.154829 + 8.99867i) q^{81} +(-8.90996 + 10.6185i) q^{83} +(-14.6852 + 2.58940i) q^{85} +(4.31692 + 8.38053i) q^{87} +(-6.35012 - 3.66624i) q^{89} +(4.42138 + 7.65805i) q^{91} +(13.3943 + 3.02994i) q^{93} +(0.840731 - 0.705457i) q^{95} +(-0.833364 + 0.303320i) q^{97} +(-1.14544 + 2.40223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{3} - 12 q^{9} + 30 q^{11} - 18 q^{17} + 6 q^{19} - 12 q^{25} - 18 q^{27} - 30 q^{33} + 18 q^{35} + 18 q^{41} + 42 q^{43} - 12 q^{49} + 18 q^{51} - 36 q^{57} + 84 q^{59} - 12 q^{65} - 30 q^{67}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.59734 0.669704i −0.922225 0.386654i
\(4\) 0 0
\(5\) 3.00936 + 1.09532i 1.34583 + 0.489842i 0.911643 0.410982i \(-0.134814\pi\)
0.434185 + 0.900824i \(0.357036\pi\)
\(6\) 0 0
\(7\) 4.58614 + 0.808660i 1.73340 + 0.305645i 0.949155 0.314810i \(-0.101941\pi\)
0.784242 + 0.620455i \(0.213052\pi\)
\(8\) 0 0
\(9\) 2.10299 + 2.13949i 0.700998 + 0.713163i
\(10\) 0 0
\(11\) 0.303411 + 0.833616i 0.0914819 + 0.251345i 0.976992 0.213275i \(-0.0684132\pi\)
−0.885510 + 0.464620i \(0.846191\pi\)
\(12\) 0 0
\(13\) 1.22056 + 1.45461i 0.338523 + 0.403436i 0.908270 0.418384i \(-0.137403\pi\)
−0.569747 + 0.821820i \(0.692959\pi\)
\(14\) 0 0
\(15\) −4.07344 3.76498i −1.05176 0.972113i
\(16\) 0 0
\(17\) −4.03247 + 2.32815i −0.978017 + 0.564658i −0.901671 0.432423i \(-0.857659\pi\)
−0.0763460 + 0.997081i \(0.524325\pi\)
\(18\) 0 0
\(19\) 0.171350 0.296787i 0.0393104 0.0680876i −0.845701 0.533657i \(-0.820817\pi\)
0.885011 + 0.465570i \(0.154151\pi\)
\(20\) 0 0
\(21\) −6.78406 4.36306i −1.48040 0.952097i
\(22\) 0 0
\(23\) 1.00156 + 5.68012i 0.208839 + 1.18439i 0.891282 + 0.453449i \(0.149806\pi\)
−0.682443 + 0.730939i \(0.739082\pi\)
\(24\) 0 0
\(25\) 4.02633 + 3.37849i 0.805265 + 0.675698i
\(26\) 0 0
\(27\) −1.92637 4.82588i −0.370731 0.928740i
\(28\) 0 0
\(29\) −4.16935 3.49850i −0.774229 0.649655i 0.167559 0.985862i \(-0.446411\pi\)
−0.941788 + 0.336207i \(0.890856\pi\)
\(30\) 0 0
\(31\) −7.80815 + 1.37679i −1.40238 + 0.247278i −0.823123 0.567864i \(-0.807770\pi\)
−0.579262 + 0.815142i \(0.696659\pi\)
\(32\) 0 0
\(33\) 0.0736241 1.53476i 0.0128163 0.267168i
\(34\) 0 0
\(35\) 12.9156 + 7.45683i 2.18314 + 1.26044i
\(36\) 0 0
\(37\) −2.31812 + 1.33837i −0.381097 + 0.220026i −0.678295 0.734789i \(-0.737281\pi\)
0.297199 + 0.954816i \(0.403948\pi\)
\(38\) 0 0
\(39\) −0.975496 3.14092i −0.156204 0.502950i
\(40\) 0 0
\(41\) 0.0346849 + 0.0413359i 0.00541687 + 0.00645558i 0.768746 0.639554i \(-0.220881\pi\)
−0.763329 + 0.646010i \(0.776437\pi\)
\(42\) 0 0
\(43\) 2.85915 1.04064i 0.436016 0.158697i −0.114681 0.993402i \(-0.536584\pi\)
0.550696 + 0.834706i \(0.314362\pi\)
\(44\) 0 0
\(45\) 3.98525 + 8.74195i 0.594086 + 1.30317i
\(46\) 0 0
\(47\) 1.90179 10.7856i 0.277404 1.57324i −0.453814 0.891096i \(-0.649937\pi\)
0.731219 0.682143i \(-0.238952\pi\)
\(48\) 0 0
\(49\) 13.8009 + 5.02311i 1.97155 + 0.717587i
\(50\) 0 0
\(51\) 8.00039 1.01828i 1.12028 0.142588i
\(52\) 0 0
\(53\) 1.27415 0.175018 0.0875092 0.996164i \(-0.472109\pi\)
0.0875092 + 0.996164i \(0.472109\pi\)
\(54\) 0 0
\(55\) 2.84099i 0.383078i
\(56\) 0 0
\(57\) −0.472464 + 0.359316i −0.0625793 + 0.0475926i
\(58\) 0 0
\(59\) −2.43399 + 6.68734i −0.316879 + 0.870618i 0.674344 + 0.738417i \(0.264427\pi\)
−0.991223 + 0.132201i \(0.957796\pi\)
\(60\) 0 0
\(61\) 8.19039 + 1.44419i 1.04867 + 0.184909i 0.671326 0.741163i \(-0.265725\pi\)
0.377347 + 0.926072i \(0.376836\pi\)
\(62\) 0 0
\(63\) 7.91450 + 11.5126i 0.997134 + 1.45045i
\(64\) 0 0
\(65\) 2.07985 + 5.71435i 0.257974 + 0.708778i
\(66\) 0 0
\(67\) 6.31205 5.29644i 0.771139 0.647063i −0.169861 0.985468i \(-0.554332\pi\)
0.941000 + 0.338405i \(0.109887\pi\)
\(68\) 0 0
\(69\) 2.20417 9.74384i 0.265351 1.17302i
\(70\) 0 0
\(71\) 0.186788 + 0.323526i 0.0221676 + 0.0383955i 0.876896 0.480679i \(-0.159610\pi\)
−0.854729 + 0.519075i \(0.826277\pi\)
\(72\) 0 0
\(73\) 6.29550 10.9041i 0.736832 1.27623i −0.217083 0.976153i \(-0.569654\pi\)
0.953915 0.300077i \(-0.0970125\pi\)
\(74\) 0 0
\(75\) −4.16883 8.09304i −0.481375 0.934504i
\(76\) 0 0
\(77\) 0.717374 + 4.06843i 0.0817524 + 0.463641i
\(78\) 0 0
\(79\) 2.54509 3.03312i 0.286345 0.341252i −0.603628 0.797266i \(-0.706279\pi\)
0.889973 + 0.456014i \(0.150723\pi\)
\(80\) 0 0
\(81\) −0.154829 + 8.99867i −0.0172032 + 0.999852i
\(82\) 0 0
\(83\) −8.90996 + 10.6185i −0.977996 + 1.16553i 0.00820363 + 0.999966i \(0.497389\pi\)
−0.986199 + 0.165563i \(0.947056\pi\)
\(84\) 0 0
\(85\) −14.6852 + 2.58940i −1.59284 + 0.280860i
\(86\) 0 0
\(87\) 4.31692 + 8.38053i 0.462822 + 0.898487i
\(88\) 0 0
\(89\) −6.35012 3.66624i −0.673111 0.388621i 0.124143 0.992264i \(-0.460382\pi\)
−0.797254 + 0.603644i \(0.793715\pi\)
\(90\) 0 0
\(91\) 4.42138 + 7.65805i 0.463487 + 0.802782i
\(92\) 0 0
\(93\) 13.3943 + 3.02994i 1.38892 + 0.314191i
\(94\) 0 0
\(95\) 0.840731 0.705457i 0.0862572 0.0723783i
\(96\) 0 0
\(97\) −0.833364 + 0.303320i −0.0846153 + 0.0307975i −0.383981 0.923341i \(-0.625447\pi\)
0.299366 + 0.954138i \(0.403225\pi\)
\(98\) 0 0
\(99\) −1.14544 + 2.40223i −0.115121 + 0.241434i
\(100\) 0 0
\(101\) 1.09507 6.21046i 0.108964 0.617964i −0.880599 0.473862i \(-0.842860\pi\)
0.989563 0.144102i \(-0.0460294\pi\)
\(102\) 0 0
\(103\) 2.99018 8.21544i 0.294631 0.809492i −0.700743 0.713414i \(-0.747148\pi\)
0.995374 0.0960778i \(-0.0306297\pi\)
\(104\) 0 0
\(105\) −15.6368 20.5607i −1.52599 2.00652i
\(106\) 0 0
\(107\) 3.23101i 0.312354i 0.987729 + 0.156177i \(0.0499170\pi\)
−0.987729 + 0.156177i \(0.950083\pi\)
\(108\) 0 0
\(109\) 10.8688i 1.04104i −0.853849 0.520521i \(-0.825738\pi\)
0.853849 0.520521i \(-0.174262\pi\)
\(110\) 0 0
\(111\) 4.59914 0.585375i 0.436531 0.0555614i
\(112\) 0 0
\(113\) 3.71933 10.2188i 0.349885 0.961301i −0.632521 0.774543i \(-0.717980\pi\)
0.982406 0.186758i \(-0.0597979\pi\)
\(114\) 0 0
\(115\) −3.20749 + 18.1906i −0.299100 + 1.69628i
\(116\) 0 0
\(117\) −0.545285 + 5.67041i −0.0504117 + 0.524230i
\(118\) 0 0
\(119\) −20.3761 + 7.41630i −1.86788 + 0.679851i
\(120\) 0 0
\(121\) 7.82363 6.56481i 0.711239 0.596801i
\(122\) 0 0
\(123\) −0.0277209 0.0892561i −0.00249950 0.00804795i
\(124\) 0 0
\(125\) 0.409913 + 0.709991i 0.0366638 + 0.0635035i
\(126\) 0 0
\(127\) −12.2372 7.06513i −1.08587 0.626929i −0.153399 0.988164i \(-0.549022\pi\)
−0.932475 + 0.361235i \(0.882355\pi\)
\(128\) 0 0
\(129\) −5.26395 0.252517i −0.463465 0.0222329i
\(130\) 0 0
\(131\) 3.55599 0.627016i 0.310688 0.0547827i −0.0161302 0.999870i \(-0.505135\pi\)
0.326818 + 0.945087i \(0.394024\pi\)
\(132\) 0 0
\(133\) 1.02583 1.22254i 0.0889511 0.106008i
\(134\) 0 0
\(135\) −0.511290 16.6328i −0.0440049 1.43152i
\(136\) 0 0
\(137\) −8.46244 + 10.0851i −0.722995 + 0.861632i −0.994918 0.100687i \(-0.967896\pi\)
0.271923 + 0.962319i \(0.412340\pi\)
\(138\) 0 0
\(139\) −2.08259 11.8109i −0.176643 1.00179i −0.936230 0.351387i \(-0.885710\pi\)
0.759588 0.650405i \(-0.225401\pi\)
\(140\) 0 0
\(141\) −10.2609 + 15.9546i −0.864128 + 1.34362i
\(142\) 0 0
\(143\) −0.842252 + 1.45882i −0.0704327 + 0.121993i
\(144\) 0 0
\(145\) −8.71512 15.0950i −0.723751 1.25357i
\(146\) 0 0
\(147\) −18.6807 17.2661i −1.54076 1.42408i
\(148\) 0 0
\(149\) −6.78333 + 5.69189i −0.555712 + 0.466298i −0.876870 0.480728i \(-0.840372\pi\)
0.321158 + 0.947026i \(0.395928\pi\)
\(150\) 0 0
\(151\) 1.00187 + 2.75261i 0.0815308 + 0.224004i 0.973759 0.227580i \(-0.0730813\pi\)
−0.892229 + 0.451584i \(0.850859\pi\)
\(152\) 0 0
\(153\) −13.4613 3.73134i −1.08828 0.301661i
\(154\) 0 0
\(155\) −25.0056 4.40916i −2.00850 0.354152i
\(156\) 0 0
\(157\) 3.73399 10.2591i 0.298005 0.818762i −0.696828 0.717238i \(-0.745406\pi\)
0.994833 0.101524i \(-0.0323717\pi\)
\(158\) 0 0
\(159\) −2.03526 0.853305i −0.161406 0.0676715i
\(160\) 0 0
\(161\) 26.8597i 2.11684i
\(162\) 0 0
\(163\) 0.983434 0.0770285 0.0385143 0.999258i \(-0.487737\pi\)
0.0385143 + 0.999258i \(0.487737\pi\)
\(164\) 0 0
\(165\) 1.90262 4.53802i 0.148119 0.353284i
\(166\) 0 0
\(167\) 1.50427 + 0.547510i 0.116404 + 0.0423676i 0.399565 0.916705i \(-0.369161\pi\)
−0.283161 + 0.959072i \(0.591383\pi\)
\(168\) 0 0
\(169\) 1.63131 9.25162i 0.125485 0.711663i
\(170\) 0 0
\(171\) 0.995320 0.257540i 0.0761141 0.0196946i
\(172\) 0 0
\(173\) −13.3229 + 4.84914i −1.01292 + 0.368673i −0.794554 0.607193i \(-0.792295\pi\)
−0.218367 + 0.975867i \(0.570073\pi\)
\(174\) 0 0
\(175\) 15.7332 + 18.7501i 1.18932 + 1.41738i
\(176\) 0 0
\(177\) 8.36646 9.05191i 0.628861 0.680383i
\(178\) 0 0
\(179\) 5.27151 3.04351i 0.394011 0.227483i −0.289885 0.957061i \(-0.593617\pi\)
0.683897 + 0.729579i \(0.260284\pi\)
\(180\) 0 0
\(181\) 11.4059 + 6.58520i 0.847795 + 0.489474i 0.859906 0.510452i \(-0.170522\pi\)
−0.0121116 + 0.999927i \(0.503855\pi\)
\(182\) 0 0
\(183\) −12.1157 7.79200i −0.895616 0.576001i
\(184\) 0 0
\(185\) −8.44201 + 1.48855i −0.620669 + 0.109441i
\(186\) 0 0
\(187\) −3.16427 2.65514i −0.231395 0.194163i
\(188\) 0 0
\(189\) −4.93213 23.6899i −0.358760 1.72319i
\(190\) 0 0
\(191\) 16.3786 + 13.7433i 1.18512 + 0.994431i 0.999931 + 0.0117270i \(0.00373289\pi\)
0.185185 + 0.982704i \(0.440712\pi\)
\(192\) 0 0
\(193\) 3.64547 + 20.6745i 0.262407 + 1.48818i 0.776319 + 0.630341i \(0.217085\pi\)
−0.513912 + 0.857843i \(0.671804\pi\)
\(194\) 0 0
\(195\) 0.504686 10.5207i 0.0361413 0.753399i
\(196\) 0 0
\(197\) 5.23281 9.06349i 0.372822 0.645747i −0.617176 0.786825i \(-0.711723\pi\)
0.989999 + 0.141078i \(0.0450568\pi\)
\(198\) 0 0
\(199\) 14.3685 8.29565i 1.01855 0.588063i 0.104870 0.994486i \(-0.466557\pi\)
0.913685 + 0.406423i \(0.133224\pi\)
\(200\) 0 0
\(201\) −13.6295 + 4.23301i −0.961353 + 0.298574i
\(202\) 0 0
\(203\) −16.2921 19.4162i −1.14348 1.36275i
\(204\) 0 0
\(205\) 0.0591036 + 0.162386i 0.00412797 + 0.0113415i
\(206\) 0 0
\(207\) −10.0463 + 14.0881i −0.698265 + 0.979190i
\(208\) 0 0
\(209\) 0.299396 + 0.0527915i 0.0207096 + 0.00365167i
\(210\) 0 0
\(211\) 8.76523 + 3.19028i 0.603423 + 0.219628i 0.625623 0.780126i \(-0.284845\pi\)
−0.0222000 + 0.999754i \(0.507067\pi\)
\(212\) 0 0
\(213\) −0.0816973 0.641874i −0.00559781 0.0439805i
\(214\) 0 0
\(215\) 9.74405 0.664539
\(216\) 0 0
\(217\) −36.9226 −2.50647
\(218\) 0 0
\(219\) −17.3586 + 13.2015i −1.17298 + 0.892073i
\(220\) 0 0
\(221\) −8.30841 3.02402i −0.558884 0.203417i
\(222\) 0 0
\(223\) −18.4672 3.25626i −1.23665 0.218055i −0.483172 0.875525i \(-0.660515\pi\)
−0.753481 + 0.657470i \(0.771627\pi\)
\(224\) 0 0
\(225\) 1.23910 + 15.7192i 0.0826067 + 1.04795i
\(226\) 0 0
\(227\) −1.73323 4.76200i −0.115038 0.316065i 0.868790 0.495181i \(-0.164898\pi\)
−0.983828 + 0.179116i \(0.942676\pi\)
\(228\) 0 0
\(229\) 14.4905 + 17.2691i 0.957559 + 1.14117i 0.989910 + 0.141698i \(0.0452562\pi\)
−0.0323508 + 0.999477i \(0.510299\pi\)
\(230\) 0 0
\(231\) 1.57875 6.97910i 0.103874 0.459191i
\(232\) 0 0
\(233\) 4.93700 2.85038i 0.323434 0.186735i −0.329488 0.944160i \(-0.606876\pi\)
0.652922 + 0.757425i \(0.273543\pi\)
\(234\) 0 0
\(235\) 17.5368 30.3747i 1.14398 1.98143i
\(236\) 0 0
\(237\) −6.09666 + 3.14047i −0.396020 + 0.203995i
\(238\) 0 0
\(239\) −3.99952 22.6824i −0.258707 1.46720i −0.786374 0.617750i \(-0.788044\pi\)
0.527667 0.849451i \(-0.323067\pi\)
\(240\) 0 0
\(241\) 16.6164 + 13.9428i 1.07036 + 0.898137i 0.995085 0.0990259i \(-0.0315727\pi\)
0.0752732 + 0.997163i \(0.476017\pi\)
\(242\) 0 0
\(243\) 6.27375 14.2702i 0.402462 0.915437i
\(244\) 0 0
\(245\) 36.0300 + 30.2327i 2.30187 + 1.93150i
\(246\) 0 0
\(247\) 0.640852 0.112999i 0.0407764 0.00718999i
\(248\) 0 0
\(249\) 21.3435 10.9943i 1.35259 0.696735i
\(250\) 0 0
\(251\) 6.86745 + 3.96493i 0.433470 + 0.250264i 0.700824 0.713334i \(-0.252816\pi\)
−0.267354 + 0.963598i \(0.586149\pi\)
\(252\) 0 0
\(253\) −4.43115 + 2.55833i −0.278584 + 0.160841i
\(254\) 0 0
\(255\) 25.1914 + 5.69859i 1.57755 + 0.356860i
\(256\) 0 0
\(257\) 0.0798480 + 0.0951592i 0.00498078 + 0.00593587i 0.768529 0.639815i \(-0.220989\pi\)
−0.763548 + 0.645751i \(0.776545\pi\)
\(258\) 0 0
\(259\) −11.7135 + 4.26337i −0.727842 + 0.264913i
\(260\) 0 0
\(261\) −1.28312 16.2776i −0.0794229 1.00756i
\(262\) 0 0
\(263\) 0.961362 5.45215i 0.0592801 0.336194i −0.940715 0.339197i \(-0.889845\pi\)
0.999995 + 0.00300271i \(0.000955794\pi\)
\(264\) 0 0
\(265\) 3.83439 + 1.39560i 0.235545 + 0.0857313i
\(266\) 0 0
\(267\) 7.68800 + 10.1089i 0.470498 + 0.618657i
\(268\) 0 0
\(269\) −5.59805 −0.341319 −0.170659 0.985330i \(-0.554590\pi\)
−0.170659 + 0.985330i \(0.554590\pi\)
\(270\) 0 0
\(271\) 1.56554i 0.0951000i 0.998869 + 0.0475500i \(0.0151413\pi\)
−0.998869 + 0.0475500i \(0.984859\pi\)
\(272\) 0 0
\(273\) −1.93382 15.1935i −0.117040 0.919555i
\(274\) 0 0
\(275\) −1.59473 + 4.38148i −0.0961657 + 0.264213i
\(276\) 0 0
\(277\) −27.6100 4.86839i −1.65893 0.292513i −0.735854 0.677140i \(-0.763219\pi\)
−0.923072 + 0.384627i \(0.874330\pi\)
\(278\) 0 0
\(279\) −19.3661 13.8101i −1.15942 0.826787i
\(280\) 0 0
\(281\) 3.07719 + 8.45452i 0.183570 + 0.504354i 0.997008 0.0772972i \(-0.0246290\pi\)
−0.813438 + 0.581651i \(0.802407\pi\)
\(282\) 0 0
\(283\) 22.1256 18.5656i 1.31523 1.10361i 0.327936 0.944700i \(-0.393647\pi\)
0.987293 0.158909i \(-0.0507976\pi\)
\(284\) 0 0
\(285\) −1.81538 + 0.563815i −0.107534 + 0.0333975i
\(286\) 0 0
\(287\) 0.125643 + 0.217620i 0.00741648 + 0.0128457i
\(288\) 0 0
\(289\) 2.34052 4.05391i 0.137678 0.238465i
\(290\) 0 0
\(291\) 1.53430 + 0.0736019i 0.0899423 + 0.00431462i
\(292\) 0 0
\(293\) −3.10437 17.6058i −0.181359 1.02854i −0.930545 0.366179i \(-0.880666\pi\)
0.749185 0.662360i \(-0.230445\pi\)
\(294\) 0 0
\(295\) −14.6495 + 17.4587i −0.852930 + 1.01648i
\(296\) 0 0
\(297\) 3.43844 3.07008i 0.199519 0.178144i
\(298\) 0 0
\(299\) −7.03989 + 8.38981i −0.407127 + 0.485196i
\(300\) 0 0
\(301\) 13.9540 2.46046i 0.804293 0.141819i
\(302\) 0 0
\(303\) −5.90837 + 9.18685i −0.339427 + 0.527771i
\(304\) 0 0
\(305\) 23.0660 + 13.3172i 1.32076 + 0.762540i
\(306\) 0 0
\(307\) −2.66885 4.62258i −0.152319 0.263825i 0.779760 0.626078i \(-0.215341\pi\)
−0.932080 + 0.362253i \(0.882008\pi\)
\(308\) 0 0
\(309\) −10.2782 + 11.1203i −0.584709 + 0.632613i
\(310\) 0 0
\(311\) −7.48203 + 6.27817i −0.424267 + 0.356002i −0.829783 0.558086i \(-0.811536\pi\)
0.405517 + 0.914088i \(0.367092\pi\)
\(312\) 0 0
\(313\) −20.9377 + 7.62069i −1.18347 + 0.430747i −0.857425 0.514608i \(-0.827937\pi\)
−0.326042 + 0.945355i \(0.605715\pi\)
\(314\) 0 0
\(315\) 11.2077 + 43.3145i 0.631480 + 2.44050i
\(316\) 0 0
\(317\) 2.75422 15.6200i 0.154692 0.877304i −0.804374 0.594123i \(-0.797499\pi\)
0.959067 0.283181i \(-0.0913897\pi\)
\(318\) 0 0
\(319\) 1.65138 4.53712i 0.0924593 0.254030i
\(320\) 0 0
\(321\) 2.16382 5.16103i 0.120773 0.288060i
\(322\) 0 0
\(323\) 1.59571i 0.0887877i
\(324\) 0 0
\(325\) 9.98038i 0.553612i
\(326\) 0 0
\(327\) −7.27887 + 17.3612i −0.402522 + 0.960075i
\(328\) 0 0
\(329\) 17.4437 47.9263i 0.961704 2.64226i
\(330\) 0 0
\(331\) −4.91331 + 27.8648i −0.270060 + 1.53159i 0.484169 + 0.874974i \(0.339122\pi\)
−0.754229 + 0.656611i \(0.771989\pi\)
\(332\) 0 0
\(333\) −7.73842 2.14501i −0.424063 0.117546i
\(334\) 0 0
\(335\) 24.7965 9.02520i 1.35478 0.493099i
\(336\) 0 0
\(337\) −2.65131 + 2.22472i −0.144426 + 0.121188i −0.712138 0.702039i \(-0.752273\pi\)
0.567712 + 0.823227i \(0.307829\pi\)
\(338\) 0 0
\(339\) −12.7846 + 13.8320i −0.694363 + 0.751251i
\(340\) 0 0
\(341\) −3.51679 6.09126i −0.190445 0.329860i
\(342\) 0 0
\(343\) 30.9999 + 17.8978i 1.67383 + 0.966389i
\(344\) 0 0
\(345\) 17.3058 26.9085i 0.931710 1.44870i
\(346\) 0 0
\(347\) 21.3082 3.75721i 1.14388 0.201698i 0.430581 0.902552i \(-0.358309\pi\)
0.713304 + 0.700854i \(0.247198\pi\)
\(348\) 0 0
\(349\) −13.6098 + 16.2195i −0.728514 + 0.868209i −0.995428 0.0955113i \(-0.969551\pi\)
0.266915 + 0.963720i \(0.413996\pi\)
\(350\) 0 0
\(351\) 4.66850 8.69240i 0.249186 0.463966i
\(352\) 0 0
\(353\) −10.0326 + 11.9564i −0.533980 + 0.636373i −0.963827 0.266529i \(-0.914123\pi\)
0.429847 + 0.902902i \(0.358568\pi\)
\(354\) 0 0
\(355\) 0.207748 + 1.17820i 0.0110261 + 0.0625324i
\(356\) 0 0
\(357\) 37.5143 + 1.79960i 1.98547 + 0.0952449i
\(358\) 0 0
\(359\) 2.44114 4.22817i 0.128838 0.223154i −0.794389 0.607410i \(-0.792209\pi\)
0.923227 + 0.384256i \(0.125542\pi\)
\(360\) 0 0
\(361\) 9.44128 + 16.3528i 0.496909 + 0.860672i
\(362\) 0 0
\(363\) −16.8935 + 5.24672i −0.886678 + 0.275381i
\(364\) 0 0
\(365\) 30.8889 25.9189i 1.61680 1.35666i
\(366\) 0 0
\(367\) −3.44230 9.45764i −0.179687 0.493685i 0.816849 0.576852i \(-0.195719\pi\)
−0.996536 + 0.0831666i \(0.973497\pi\)
\(368\) 0 0
\(369\) −0.0154955 + 0.161137i −0.000806662 + 0.00838846i
\(370\) 0 0
\(371\) 5.84344 + 1.03036i 0.303376 + 0.0534935i
\(372\) 0 0
\(373\) 0.511543 1.40545i 0.0264867 0.0727717i −0.925745 0.378149i \(-0.876561\pi\)
0.952231 + 0.305378i \(0.0987828\pi\)
\(374\) 0 0
\(375\) −0.179288 1.40862i −0.00925839 0.0727407i
\(376\) 0 0
\(377\) 10.3349i 0.532275i
\(378\) 0 0
\(379\) −26.4034 −1.35625 −0.678126 0.734945i \(-0.737208\pi\)
−0.678126 + 0.734945i \(0.737208\pi\)
\(380\) 0 0
\(381\) 14.8154 + 19.4807i 0.759015 + 0.998027i
\(382\) 0 0
\(383\) −14.7665 5.37456i −0.754532 0.274627i −0.0640204 0.997949i \(-0.520392\pi\)
−0.690511 + 0.723321i \(0.742614\pi\)
\(384\) 0 0
\(385\) −2.29739 + 13.0291i −0.117086 + 0.664027i
\(386\) 0 0
\(387\) 8.23922 + 3.92864i 0.418823 + 0.199704i
\(388\) 0 0
\(389\) −19.0208 + 6.92300i −0.964393 + 0.351010i −0.775753 0.631036i \(-0.782630\pi\)
−0.188639 + 0.982046i \(0.560408\pi\)
\(390\) 0 0
\(391\) −17.2629 20.5731i −0.873023 1.04043i
\(392\) 0 0
\(393\) −6.10004 1.37990i −0.307706 0.0696066i
\(394\) 0 0
\(395\) 10.9813 6.34007i 0.552530 0.319003i
\(396\) 0 0
\(397\) −23.8679 13.7801i −1.19789 0.691604i −0.237808 0.971312i \(-0.576429\pi\)
−0.960085 + 0.279708i \(0.909762\pi\)
\(398\) 0 0
\(399\) −2.45735 + 1.26581i −0.123021 + 0.0633698i
\(400\) 0 0
\(401\) −6.68368 + 1.17851i −0.333767 + 0.0588521i −0.338020 0.941139i \(-0.609757\pi\)
0.00425323 + 0.999991i \(0.498646\pi\)
\(402\) 0 0
\(403\) −11.5330 9.67734i −0.574500 0.482063i
\(404\) 0 0
\(405\) −10.3223 + 26.9107i −0.512922 + 1.33720i
\(406\) 0 0
\(407\) −1.81903 1.52635i −0.0901659 0.0756581i
\(408\) 0 0
\(409\) −2.97274 16.8592i −0.146992 0.833636i −0.965746 0.259490i \(-0.916445\pi\)
0.818753 0.574145i \(-0.194666\pi\)
\(410\) 0 0
\(411\) 20.2715 10.4421i 0.999917 0.515070i
\(412\) 0 0
\(413\) −16.5704 + 28.7008i −0.815377 + 1.41227i
\(414\) 0 0
\(415\) −38.4439 + 22.1956i −1.88714 + 1.08954i
\(416\) 0 0
\(417\) −4.58323 + 20.2608i −0.224442 + 0.992177i
\(418\) 0 0
\(419\) −0.999049 1.19062i −0.0488067 0.0581656i 0.741089 0.671407i \(-0.234310\pi\)
−0.789896 + 0.613241i \(0.789865\pi\)
\(420\) 0 0
\(421\) −4.61578 12.6818i −0.224959 0.618071i 0.774943 0.632031i \(-0.217778\pi\)
−0.999903 + 0.0139601i \(0.995556\pi\)
\(422\) 0 0
\(423\) 27.0751 18.6132i 1.31644 0.905003i
\(424\) 0 0
\(425\) −24.1016 4.24977i −1.16910 0.206144i
\(426\) 0 0
\(427\) 36.3944 + 13.2465i 1.76125 + 0.641042i
\(428\) 0 0
\(429\) 2.32234 1.76618i 0.112124 0.0852719i
\(430\) 0 0
\(431\) −32.6219 −1.57134 −0.785671 0.618644i \(-0.787682\pi\)
−0.785671 + 0.618644i \(0.787682\pi\)
\(432\) 0 0
\(433\) −20.4173 −0.981192 −0.490596 0.871387i \(-0.663221\pi\)
−0.490596 + 0.871387i \(0.663221\pi\)
\(434\) 0 0
\(435\) 3.81182 + 29.9485i 0.182763 + 1.43592i
\(436\) 0 0
\(437\) 1.85740 + 0.676039i 0.0888516 + 0.0323393i
\(438\) 0 0
\(439\) 5.01912 + 0.885007i 0.239550 + 0.0422391i 0.292134 0.956377i \(-0.405635\pi\)
−0.0525843 + 0.998616i \(0.516746\pi\)
\(440\) 0 0
\(441\) 18.2763 + 40.0904i 0.870299 + 1.90907i
\(442\) 0 0
\(443\) −6.33577 17.4074i −0.301022 0.827050i −0.994323 0.106403i \(-0.966067\pi\)
0.693301 0.720648i \(-0.256155\pi\)
\(444\) 0 0
\(445\) −15.0941 17.9885i −0.715529 0.852735i
\(446\) 0 0
\(447\) 14.6472 4.54907i 0.692787 0.215163i
\(448\) 0 0
\(449\) 16.4019 9.46962i 0.774052 0.446899i −0.0602665 0.998182i \(-0.519195\pi\)
0.834318 + 0.551283i \(0.185862\pi\)
\(450\) 0 0
\(451\) −0.0239344 + 0.0414557i −0.00112703 + 0.00195207i
\(452\) 0 0
\(453\) 0.243108 5.06781i 0.0114222 0.238106i
\(454\) 0 0
\(455\) 4.91753 + 27.8887i 0.230537 + 1.30744i
\(456\) 0 0
\(457\) −8.02025 6.72979i −0.375172 0.314806i 0.435632 0.900125i \(-0.356525\pi\)
−0.810803 + 0.585319i \(0.800969\pi\)
\(458\) 0 0
\(459\) 19.0034 + 14.9753i 0.887002 + 0.698987i
\(460\) 0 0
\(461\) −18.6832 15.6771i −0.870163 0.730153i 0.0939698 0.995575i \(-0.470044\pi\)
−0.964132 + 0.265422i \(0.914489\pi\)
\(462\) 0 0
\(463\) 15.5149 2.73570i 0.721039 0.127139i 0.198925 0.980015i \(-0.436255\pi\)
0.522113 + 0.852876i \(0.325144\pi\)
\(464\) 0 0
\(465\) 36.9896 + 23.7892i 1.71535 + 1.10320i
\(466\) 0 0
\(467\) 6.64718 + 3.83775i 0.307595 + 0.177590i 0.645850 0.763465i \(-0.276503\pi\)
−0.338255 + 0.941055i \(0.609837\pi\)
\(468\) 0 0
\(469\) 33.2309 19.1859i 1.53446 0.885922i
\(470\) 0 0
\(471\) −12.8350 + 13.8865i −0.591405 + 0.639858i
\(472\) 0 0
\(473\) 1.73499 + 2.06769i 0.0797751 + 0.0950723i
\(474\) 0 0
\(475\) 1.69260 0.616057i 0.0776619 0.0282666i
\(476\) 0 0
\(477\) 2.67954 + 2.72604i 0.122688 + 0.124817i
\(478\) 0 0
\(479\) −5.41592 + 30.7152i −0.247460 + 1.40341i 0.567250 + 0.823545i \(0.308007\pi\)
−0.814710 + 0.579869i \(0.803104\pi\)
\(480\) 0 0
\(481\) −4.77621 1.73840i −0.217776 0.0792641i
\(482\) 0 0
\(483\) 17.9881 42.9042i 0.818485 1.95221i
\(484\) 0 0
\(485\) −2.84013 −0.128964
\(486\) 0 0
\(487\) 14.2176i 0.644263i −0.946695 0.322131i \(-0.895601\pi\)
0.946695 0.322131i \(-0.104399\pi\)
\(488\) 0 0
\(489\) −1.57088 0.658609i −0.0710376 0.0297833i
\(490\) 0 0
\(491\) −0.483056 + 1.32718i −0.0218000 + 0.0598950i −0.950115 0.311899i \(-0.899035\pi\)
0.928315 + 0.371794i \(0.121257\pi\)
\(492\) 0 0
\(493\) 24.9578 + 4.40073i 1.12404 + 0.198199i
\(494\) 0 0
\(495\) −6.07826 + 5.97458i −0.273197 + 0.268537i
\(496\) 0 0
\(497\) 0.595012 + 1.63478i 0.0266899 + 0.0733300i
\(498\) 0 0
\(499\) −22.9472 + 19.2550i −1.02726 + 0.861971i −0.990522 0.137355i \(-0.956140\pi\)
−0.0367345 + 0.999325i \(0.511696\pi\)
\(500\) 0 0
\(501\) −2.03616 1.88198i −0.0909691 0.0840805i
\(502\) 0 0
\(503\) −4.40212 7.62469i −0.196281 0.339968i 0.751039 0.660258i \(-0.229553\pi\)
−0.947320 + 0.320290i \(0.896220\pi\)
\(504\) 0 0
\(505\) 10.0979 17.4901i 0.449351 0.778299i
\(506\) 0 0
\(507\) −8.80160 + 13.6855i −0.390893 + 0.607794i
\(508\) 0 0
\(509\) 3.62638 + 20.5662i 0.160737 + 0.911582i 0.953352 + 0.301860i \(0.0976077\pi\)
−0.792616 + 0.609722i \(0.791281\pi\)
\(510\) 0 0
\(511\) 37.6897 44.9169i 1.66730 1.98701i
\(512\) 0 0
\(513\) −1.76234 0.255191i −0.0778093 0.0112670i
\(514\) 0 0
\(515\) 17.9971 21.4481i 0.793045 0.945114i
\(516\) 0 0
\(517\) 9.56806 1.68711i 0.420803 0.0741988i
\(518\) 0 0
\(519\) 24.5287 + 1.17667i 1.07669 + 0.0516499i
\(520\) 0 0
\(521\) 18.8404 + 10.8775i 0.825413 + 0.476552i 0.852280 0.523087i \(-0.175220\pi\)
−0.0268665 + 0.999639i \(0.508553\pi\)
\(522\) 0 0
\(523\) −2.21522 3.83687i −0.0968647 0.167775i 0.813521 0.581536i \(-0.197548\pi\)
−0.910385 + 0.413761i \(0.864215\pi\)
\(524\) 0 0
\(525\) −12.5743 40.4870i −0.548788 1.76700i
\(526\) 0 0
\(527\) 28.2807 23.7303i 1.23193 1.03371i
\(528\) 0 0
\(529\) −9.64774 + 3.51149i −0.419467 + 0.152673i
\(530\) 0 0
\(531\) −19.4262 + 8.85594i −0.843024 + 0.384315i
\(532\) 0 0
\(533\) −0.0177924 + 0.100906i −0.000770676 + 0.00437072i
\(534\) 0 0
\(535\) −3.53899 + 9.72329i −0.153004 + 0.420375i
\(536\) 0 0
\(537\) −10.4586 + 1.33117i −0.451324 + 0.0574442i
\(538\) 0 0
\(539\) 13.0287i 0.561186i
\(540\) 0 0
\(541\) 37.3027i 1.60377i 0.597479 + 0.801884i \(0.296169\pi\)
−0.597479 + 0.801884i \(0.703831\pi\)
\(542\) 0 0
\(543\) −13.8090 18.1574i −0.592600 0.779208i
\(544\) 0 0
\(545\) 11.9048 32.7082i 0.509945 1.40106i
\(546\) 0 0
\(547\) −3.56925 + 20.2422i −0.152610 + 0.865496i 0.808328 + 0.588733i \(0.200373\pi\)
−0.960938 + 0.276763i \(0.910738\pi\)
\(548\) 0 0
\(549\) 14.1345 + 20.5604i 0.603247 + 0.877496i
\(550\) 0 0
\(551\) −1.75273 + 0.637941i −0.0746687 + 0.0271772i
\(552\) 0 0
\(553\) 14.1249 11.8522i 0.600651 0.504006i
\(554\) 0 0
\(555\) 14.4816 + 3.27591i 0.614712 + 0.139055i
\(556\) 0 0
\(557\) 13.7564 + 23.8268i 0.582877 + 1.00957i 0.995136 + 0.0985064i \(0.0314065\pi\)
−0.412259 + 0.911067i \(0.635260\pi\)
\(558\) 0 0
\(559\) 5.00349 + 2.88877i 0.211625 + 0.122182i
\(560\) 0 0
\(561\) 3.27627 + 6.36029i 0.138324 + 0.268532i
\(562\) 0 0
\(563\) 28.2129 4.97470i 1.18903 0.209658i 0.456080 0.889939i \(-0.349253\pi\)
0.732952 + 0.680280i \(0.238142\pi\)
\(564\) 0 0
\(565\) 22.3856 26.6781i 0.941770 1.12236i
\(566\) 0 0
\(567\) −7.98693 + 41.1439i −0.335419 + 1.72788i
\(568\) 0 0
\(569\) −4.16772 + 4.96689i −0.174720 + 0.208223i −0.846297 0.532712i \(-0.821173\pi\)
0.671577 + 0.740935i \(0.265617\pi\)
\(570\) 0 0
\(571\) 4.13866 + 23.4715i 0.173197 + 0.982252i 0.940204 + 0.340612i \(0.110634\pi\)
−0.767006 + 0.641639i \(0.778255\pi\)
\(572\) 0 0
\(573\) −16.9583 32.9216i −0.708444 1.37532i
\(574\) 0 0
\(575\) −15.1576 + 26.2538i −0.632117 + 1.09486i
\(576\) 0 0
\(577\) 9.82303 + 17.0140i 0.408938 + 0.708302i 0.994771 0.102130i \(-0.0325658\pi\)
−0.585833 + 0.810432i \(0.699232\pi\)
\(578\) 0 0
\(579\) 8.02273 35.4656i 0.333413 1.47390i
\(580\) 0 0
\(581\) −49.4491 + 41.4927i −2.05149 + 1.72141i
\(582\) 0 0
\(583\) 0.386593 + 1.06215i 0.0160110 + 0.0439899i
\(584\) 0 0
\(585\) −7.85187 + 16.4671i −0.324635 + 0.680830i
\(586\) 0 0
\(587\) 0.851961 + 0.150224i 0.0351642 + 0.00620040i 0.191203 0.981551i \(-0.438761\pi\)
−0.156038 + 0.987751i \(0.549872\pi\)
\(588\) 0 0
\(589\) −0.929313 + 2.55327i −0.0382917 + 0.105206i
\(590\) 0 0
\(591\) −14.4284 + 10.9731i −0.593507 + 0.451371i
\(592\) 0 0
\(593\) 14.5405i 0.597108i −0.954393 0.298554i \(-0.903496\pi\)
0.954393 0.298554i \(-0.0965044\pi\)
\(594\) 0 0
\(595\) −69.4424 −2.84686
\(596\) 0 0
\(597\) −28.5070 + 3.62835i −1.16671 + 0.148499i
\(598\) 0 0
\(599\) 19.6014 + 7.13433i 0.800892 + 0.291501i 0.709856 0.704347i \(-0.248760\pi\)
0.0910360 + 0.995848i \(0.470982\pi\)
\(600\) 0 0
\(601\) −3.10434 + 17.6056i −0.126629 + 0.718147i 0.853699 + 0.520768i \(0.174354\pi\)
−0.980327 + 0.197379i \(0.936757\pi\)
\(602\) 0 0
\(603\) 24.6059 + 2.36618i 1.00203 + 0.0963583i
\(604\) 0 0
\(605\) 30.7347 11.1865i 1.24954 0.454797i
\(606\) 0 0
\(607\) −11.4075 13.5950i −0.463017 0.551803i 0.483126 0.875551i \(-0.339501\pi\)
−0.946143 + 0.323748i \(0.895057\pi\)
\(608\) 0 0
\(609\) 13.0210 + 41.9252i 0.527636 + 1.69889i
\(610\) 0 0
\(611\) 18.0101 10.3981i 0.728609 0.420662i
\(612\) 0 0
\(613\) 6.61359 + 3.81836i 0.267120 + 0.154222i 0.627578 0.778554i \(-0.284046\pi\)
−0.360458 + 0.932775i \(0.617380\pi\)
\(614\) 0 0
\(615\) 0.0143418 0.298967i 0.000578315 0.0120555i
\(616\) 0 0
\(617\) 1.20638 0.212717i 0.0485669 0.00856365i −0.149312 0.988790i \(-0.547706\pi\)
0.197879 + 0.980226i \(0.436595\pi\)
\(618\) 0 0
\(619\) 4.70712 + 3.94975i 0.189195 + 0.158754i 0.732465 0.680804i \(-0.238370\pi\)
−0.543270 + 0.839558i \(0.682814\pi\)
\(620\) 0 0
\(621\) 25.4822 15.7754i 1.02256 0.633047i
\(622\) 0 0
\(623\) −26.1578 21.9490i −1.04799 0.879367i
\(624\) 0 0
\(625\) −4.10756 23.2951i −0.164302 0.931805i
\(626\) 0 0
\(627\) −0.442882 0.284832i −0.0176870 0.0113751i
\(628\) 0 0
\(629\) 6.23183 10.7938i 0.248479 0.430379i
\(630\) 0 0
\(631\) 4.14675 2.39413i 0.165080 0.0953088i −0.415184 0.909737i \(-0.636283\pi\)
0.580264 + 0.814429i \(0.302949\pi\)
\(632\) 0 0
\(633\) −11.8645 10.9661i −0.471572 0.435862i
\(634\) 0 0
\(635\) −29.0875 34.6652i −1.15430 1.37565i
\(636\) 0 0
\(637\) 9.53816 + 26.2059i 0.377916 + 1.03832i
\(638\) 0 0
\(639\) −0.299367 + 1.08000i −0.0118428 + 0.0427243i
\(640\) 0 0
\(641\) 7.66053 + 1.35076i 0.302573 + 0.0533517i 0.322873 0.946442i \(-0.395351\pi\)
−0.0203006 + 0.999794i \(0.506462\pi\)
\(642\) 0 0
\(643\) −22.0412 8.02234i −0.869220 0.316370i −0.131369 0.991334i \(-0.541937\pi\)
−0.737851 + 0.674964i \(0.764159\pi\)
\(644\) 0 0
\(645\) −15.5646 6.52563i −0.612854 0.256946i
\(646\) 0 0
\(647\) 11.2669 0.442948 0.221474 0.975166i \(-0.428913\pi\)
0.221474 + 0.975166i \(0.428913\pi\)
\(648\) 0 0
\(649\) −6.31318 −0.247814
\(650\) 0 0
\(651\) 58.9779 + 24.7272i 2.31153 + 0.969135i
\(652\) 0 0
\(653\) 36.3675 + 13.2367i 1.42317 + 0.517991i 0.934965 0.354739i \(-0.115430\pi\)
0.488203 + 0.872730i \(0.337653\pi\)
\(654\) 0 0
\(655\) 11.3880 + 2.00802i 0.444968 + 0.0784598i
\(656\) 0 0
\(657\) 36.5686 9.46215i 1.42668 0.369154i
\(658\) 0 0
\(659\) 11.6740 + 32.0740i 0.454753 + 1.24942i 0.929343 + 0.369217i \(0.120374\pi\)
−0.474590 + 0.880207i \(0.657404\pi\)
\(660\) 0 0
\(661\) −32.5831 38.8310i −1.26734 1.51035i −0.762252 0.647281i \(-0.775906\pi\)
−0.505083 0.863071i \(-0.668538\pi\)
\(662\) 0 0
\(663\) 11.2462 + 10.3946i 0.436765 + 0.403691i
\(664\) 0 0
\(665\) 4.42618 2.55546i 0.171640 0.0990964i
\(666\) 0 0
\(667\) 15.6961 27.1864i 0.607754 1.05266i
\(668\) 0 0
\(669\) 27.3176 + 17.5689i 1.05616 + 0.679252i
\(670\) 0 0
\(671\) 1.28116 + 7.26582i 0.0494587 + 0.280494i
\(672\) 0 0
\(673\) 17.6716 + 14.8283i 0.681191 + 0.571587i 0.916354 0.400369i \(-0.131118\pi\)
−0.235163 + 0.971956i \(0.575562\pi\)
\(674\) 0 0
\(675\) 8.54795 25.9388i 0.329011 0.998384i
\(676\) 0 0
\(677\) −32.2459 27.0575i −1.23931 1.03991i −0.997578 0.0695623i \(-0.977840\pi\)
−0.241733 0.970343i \(-0.577716\pi\)
\(678\) 0 0
\(679\) −4.06720 + 0.717158i −0.156085 + 0.0275220i
\(680\) 0 0
\(681\) −0.420576 + 8.76729i −0.0161165 + 0.335963i
\(682\) 0 0
\(683\) −34.0757 19.6736i −1.30387 0.752789i −0.322804 0.946466i \(-0.604625\pi\)
−0.981065 + 0.193676i \(0.937959\pi\)
\(684\) 0 0
\(685\) −36.5130 + 21.0808i −1.39509 + 0.805456i
\(686\) 0 0
\(687\) −11.5811 37.2890i −0.441846 1.42266i
\(688\) 0 0
\(689\) 1.55518 + 1.85340i 0.0592478 + 0.0706087i
\(690\) 0 0
\(691\) −34.6497 + 12.6115i −1.31814 + 0.479762i −0.902861 0.429933i \(-0.858537\pi\)
−0.415276 + 0.909696i \(0.636315\pi\)
\(692\) 0 0
\(693\) −7.19573 + 10.0907i −0.273343 + 0.383314i
\(694\) 0 0
\(695\) 6.66949 37.8245i 0.252988 1.43477i
\(696\) 0 0
\(697\) −0.236102 0.0859340i −0.00894299 0.00325498i
\(698\) 0 0
\(699\) −9.79498 + 1.24670i −0.370480 + 0.0471545i
\(700\) 0 0
\(701\) 6.58502 0.248713 0.124356 0.992238i \(-0.460313\pi\)
0.124356 + 0.992238i \(0.460313\pi\)
\(702\) 0 0
\(703\) 0.917317i 0.0345973i
\(704\) 0 0
\(705\) −48.3543 + 36.7742i −1.82113 + 1.38500i
\(706\) 0 0
\(707\) 10.0443 27.5965i 0.377755 1.03787i
\(708\) 0 0
\(709\) 11.2866 + 1.99013i 0.423876 + 0.0747408i 0.381517 0.924362i \(-0.375402\pi\)
0.0423588 + 0.999102i \(0.486513\pi\)
\(710\) 0 0
\(711\) 11.8416 0.933440i 0.444095 0.0350067i
\(712\) 0 0
\(713\) −15.6406 42.9723i −0.585746 1.60932i
\(714\) 0 0
\(715\) −4.13252 + 3.46760i −0.154548 + 0.129681i
\(716\) 0 0
\(717\) −8.80188 + 38.9100i −0.328712 + 1.45312i
\(718\) 0 0
\(719\) 14.6250 + 25.3313i 0.545421 + 0.944697i 0.998580 + 0.0532673i \(0.0169635\pi\)
−0.453159 + 0.891430i \(0.649703\pi\)
\(720\) 0 0
\(721\) 20.3569 35.2591i 0.758129 1.31312i
\(722\) 0 0
\(723\) −17.2045 33.3995i −0.639843 1.24214i
\(724\) 0 0
\(725\) −4.96752 28.1722i −0.184489 1.04629i
\(726\) 0 0
\(727\) −32.7533 + 39.0339i −1.21475 + 1.44769i −0.356628 + 0.934246i \(0.616074\pi\)
−0.858125 + 0.513440i \(0.828371\pi\)
\(728\) 0 0
\(729\) −19.5782 + 18.5929i −0.725117 + 0.688626i
\(730\) 0 0
\(731\) −9.10664 + 10.8529i −0.336821 + 0.401408i
\(732\) 0 0
\(733\) −2.54100 + 0.448046i −0.0938538 + 0.0165490i −0.220378 0.975415i \(-0.570729\pi\)
0.126524 + 0.991964i \(0.459618\pi\)
\(734\) 0 0
\(735\) −37.3052 72.4213i −1.37602 2.67130i
\(736\) 0 0
\(737\) 6.33034 + 3.65482i 0.233181 + 0.134627i
\(738\) 0 0
\(739\) −3.86165 6.68857i −0.142053 0.246043i 0.786217 0.617951i \(-0.212037\pi\)
−0.928270 + 0.371908i \(0.878704\pi\)
\(740\) 0 0
\(741\) −1.09934 0.248682i −0.0403851 0.00913557i
\(742\) 0 0
\(743\) −9.80501 + 8.22738i −0.359711 + 0.301833i −0.804676 0.593715i \(-0.797661\pi\)
0.444965 + 0.895548i \(0.353216\pi\)
\(744\) 0 0
\(745\) −26.6479 + 9.69906i −0.976305 + 0.355346i
\(746\) 0 0
\(747\) −41.4557 + 3.26783i −1.51679 + 0.119564i
\(748\) 0 0
\(749\) −2.61279 + 14.8179i −0.0954693 + 0.541433i
\(750\) 0 0
\(751\) −15.0834 + 41.4413i −0.550401 + 1.51221i 0.282763 + 0.959190i \(0.408749\pi\)
−0.833165 + 0.553025i \(0.813473\pi\)
\(752\) 0 0
\(753\) −8.31434 10.9325i −0.302991 0.398402i
\(754\) 0 0
\(755\) 9.38096i 0.341408i
\(756\) 0 0
\(757\) 27.9094i 1.01438i −0.861833 0.507192i \(-0.830684\pi\)
0.861833 0.507192i \(-0.169316\pi\)
\(758\) 0 0
\(759\) 8.79138 1.11896i 0.319107 0.0406157i
\(760\) 0 0
\(761\) −7.20399 + 19.7928i −0.261145 + 0.717489i 0.737946 + 0.674859i \(0.235796\pi\)
−0.999091 + 0.0426294i \(0.986427\pi\)
\(762\) 0 0
\(763\) 8.78916 49.8458i 0.318189 1.80454i
\(764\) 0 0
\(765\) −36.4229 25.9734i −1.31687 0.939070i
\(766\) 0 0
\(767\) −12.6983 + 4.62181i −0.458509 + 0.166884i
\(768\) 0 0
\(769\) −9.76794 + 8.19627i −0.352241 + 0.295565i −0.801689 0.597741i \(-0.796065\pi\)
0.449448 + 0.893306i \(0.351621\pi\)
\(770\) 0 0
\(771\) −0.0638161 0.205476i −0.00229828 0.00740004i
\(772\) 0 0
\(773\) −24.3894 42.2437i −0.877226 1.51940i −0.854372 0.519661i \(-0.826058\pi\)
−0.0228536 0.999739i \(-0.507275\pi\)
\(774\) 0 0
\(775\) −36.0896 20.8363i −1.29638 0.748463i
\(776\) 0 0
\(777\) 21.5656 + 1.03453i 0.773663 + 0.0371134i
\(778\) 0 0
\(779\) 0.0182112 0.00321113i 0.000652484 0.000115051i
\(780\) 0 0
\(781\) −0.213023 + 0.253871i −0.00762256 + 0.00908421i
\(782\) 0 0
\(783\) −8.85160 + 26.8602i −0.316330 + 0.959905i
\(784\) 0 0
\(785\) 22.4739 26.7833i 0.802127 0.955938i
\(786\) 0 0
\(787\) 4.56672 + 25.8991i 0.162786 + 0.923205i 0.951318 + 0.308211i \(0.0997304\pi\)
−0.788532 + 0.614994i \(0.789159\pi\)
\(788\) 0 0
\(789\) −5.18695 + 8.06512i −0.184660 + 0.287126i
\(790\) 0 0
\(791\) 25.3209 43.8570i 0.900306 1.55938i
\(792\) 0 0
\(793\) 7.89615 + 13.6765i 0.280401 + 0.485668i
\(794\) 0 0
\(795\) −5.19019 4.79716i −0.184077 0.170138i
\(796\) 0 0
\(797\) 27.3124 22.9179i 0.967456 0.811792i −0.0146935 0.999892i \(-0.504677\pi\)
0.982150 + 0.188100i \(0.0602328\pi\)
\(798\) 0 0
\(799\) 17.4415 + 47.9201i 0.617036 + 1.69529i
\(800\) 0 0
\(801\) −5.51037 21.2961i −0.194700 0.752460i
\(802\) 0 0
\(803\) 11.0000 + 1.93959i 0.388180 + 0.0684467i
\(804\) 0 0
\(805\) −29.4200 + 80.8307i −1.03692 + 2.84891i
\(806\) 0 0
\(807\) 8.94199 + 3.74903i 0.314773 + 0.131972i
\(808\) 0 0
\(809\) 41.4917i 1.45877i −0.684103 0.729385i \(-0.739806\pi\)
0.684103 0.729385i \(-0.260194\pi\)
\(810\) 0 0
\(811\) −29.0442 −1.01988 −0.509940 0.860210i \(-0.670333\pi\)
−0.509940 + 0.860210i \(0.670333\pi\)
\(812\) 0 0
\(813\) 1.04845 2.50071i 0.0367708 0.0877036i
\(814\) 0 0
\(815\) 2.95951 + 1.07717i 0.103667 + 0.0377318i
\(816\) 0 0
\(817\) 0.181065 1.02687i 0.00633467 0.0359257i
\(818\) 0 0
\(819\) −7.08619 + 25.5643i −0.247611 + 0.893290i
\(820\) 0 0
\(821\) 47.7187 17.3682i 1.66539 0.606153i 0.674196 0.738552i \(-0.264490\pi\)
0.991197 + 0.132399i \(0.0422679\pi\)
\(822\) 0 0
\(823\) −10.2372 12.2002i −0.356847 0.425274i 0.557518 0.830165i \(-0.311754\pi\)
−0.914365 + 0.404891i \(0.867309\pi\)
\(824\) 0 0
\(825\) 5.48162 5.93072i 0.190845 0.206481i
\(826\) 0 0
\(827\) −26.8166 + 15.4826i −0.932504 + 0.538381i −0.887603 0.460610i \(-0.847631\pi\)
−0.0449012 + 0.998991i \(0.514297\pi\)
\(828\) 0 0
\(829\) 5.02207 + 2.89949i 0.174424 + 0.100704i 0.584670 0.811271i \(-0.301224\pi\)
−0.410246 + 0.911975i \(0.634557\pi\)
\(830\) 0 0
\(831\) 40.8422 + 26.2670i 1.41680 + 0.911193i
\(832\) 0 0
\(833\) −67.3461 + 11.8749i −2.33340 + 0.411442i
\(834\) 0 0
\(835\) 3.92720 + 3.29531i 0.135906 + 0.114039i
\(836\) 0 0
\(837\) 21.6856 + 35.0289i 0.749565 + 1.21078i
\(838\) 0 0
\(839\) −11.9037 9.98841i −0.410962 0.344838i 0.413750 0.910390i \(-0.364219\pi\)
−0.824712 + 0.565552i \(0.808663\pi\)
\(840\) 0 0
\(841\) 0.108181 + 0.613526i 0.00373038 + 0.0211561i
\(842\) 0 0
\(843\) 0.746695 15.5655i 0.0257175 0.536106i
\(844\) 0 0
\(845\) 15.0427 26.0547i 0.517484 0.896309i
\(846\) 0 0
\(847\) 41.1889 23.7804i 1.41527 0.817106i
\(848\) 0 0
\(849\) −47.7755 + 14.8380i −1.63965 + 0.509237i
\(850\) 0 0
\(851\) −9.92382 11.8268i −0.340184 0.405416i
\(852\) 0 0
\(853\) −5.27000 14.4792i −0.180441 0.495758i 0.816189 0.577785i \(-0.196083\pi\)
−0.996630 + 0.0820269i \(0.973861\pi\)
\(854\) 0 0
\(855\) 3.27737 + 0.315163i 0.112084 + 0.0107783i
\(856\) 0 0
\(857\) −43.4090 7.65418i −1.48282 0.261462i −0.627118 0.778924i \(-0.715766\pi\)
−0.855706 + 0.517463i \(0.826877\pi\)
\(858\) 0 0
\(859\) −49.6251 18.0621i −1.69319 0.616270i −0.698166 0.715936i \(-0.746000\pi\)
−0.995021 + 0.0996665i \(0.968222\pi\)
\(860\) 0 0
\(861\) −0.0549538 0.431757i −0.00187282 0.0147143i
\(862\) 0 0
\(863\) 51.1622 1.74158 0.870791 0.491653i \(-0.163607\pi\)
0.870791 + 0.491653i \(0.163607\pi\)
\(864\) 0 0
\(865\) −45.4048 −1.54381
\(866\) 0 0
\(867\) −6.45353 + 4.90801i −0.219173 + 0.166685i
\(868\) 0 0
\(869\) 3.30066 + 1.20134i 0.111967 + 0.0407527i
\(870\) 0 0
\(871\) 15.4085 + 2.71693i 0.522097 + 0.0920597i
\(872\) 0 0
\(873\) −2.40151 1.14509i −0.0812788 0.0387556i
\(874\) 0 0
\(875\) 1.30578 + 3.58759i 0.0441433 + 0.121283i
\(876\) 0 0
\(877\) 21.3535 + 25.4481i 0.721055 + 0.859320i 0.994733 0.102501i \(-0.0326845\pi\)
−0.273678 + 0.961822i \(0.588240\pi\)
\(878\) 0 0
\(879\) −6.83190 + 30.2014i −0.230434 + 1.01867i
\(880\) 0 0
\(881\) −24.0135 + 13.8642i −0.809034 + 0.467096i −0.846620 0.532197i \(-0.821366\pi\)
0.0375862 + 0.999293i \(0.488033\pi\)
\(882\) 0 0
\(883\) −7.38127 + 12.7847i −0.248400 + 0.430241i −0.963082 0.269208i \(-0.913238\pi\)
0.714682 + 0.699449i \(0.246571\pi\)
\(884\) 0 0
\(885\) 35.0924 18.0766i 1.17962 0.607637i
\(886\) 0 0
\(887\) −3.08832 17.5147i −0.103695 0.588086i −0.991733 0.128316i \(-0.959043\pi\)
0.888038 0.459770i \(-0.152068\pi\)
\(888\) 0 0
\(889\) −50.4081 42.2974i −1.69063 1.41861i
\(890\) 0 0
\(891\) −7.54841 + 2.60123i −0.252881 + 0.0871445i
\(892\) 0 0
\(893\) −2.87515 2.41254i −0.0962132 0.0807324i
\(894\) 0 0
\(895\) 19.1975 3.38504i 0.641702 0.113149i
\(896\) 0 0
\(897\) 16.8638 8.68675i 0.563066 0.290042i
\(898\) 0 0
\(899\) 37.3716 + 21.5765i 1.24641 + 0.719616i
\(900\) 0 0
\(901\) −5.13798 + 2.96642i −0.171171 + 0.0988256i
\(902\) 0 0
\(903\) −23.9370 5.41483i −0.796574 0.180194i
\(904\) 0 0
\(905\) 27.1116 + 32.3104i 0.901221 + 1.07403i
\(906\) 0 0
\(907\) 33.8368 12.3156i 1.12353 0.408932i 0.287591 0.957753i \(-0.407146\pi\)
0.835940 + 0.548821i \(0.184923\pi\)
\(908\) 0 0
\(909\) 15.5901 10.7177i 0.517093 0.355483i
\(910\) 0 0
\(911\) 0.0484884 0.274992i 0.00160649 0.00911088i −0.983994 0.178202i \(-0.942972\pi\)
0.985600 + 0.169091i \(0.0540831\pi\)
\(912\) 0 0
\(913\) −11.5551 4.20572i −0.382418 0.139189i
\(914\) 0 0
\(915\) −27.9258 36.7195i −0.923197 1.21391i
\(916\) 0 0
\(917\) 16.8153 0.555290
\(918\) 0 0
\(919\) 19.5234i 0.644017i −0.946737 0.322008i \(-0.895642\pi\)
0.946737 0.322008i \(-0.104358\pi\)
\(920\) 0 0
\(921\) 1.16730 + 9.17118i 0.0384639 + 0.302201i
\(922\) 0 0
\(923\) −0.242618 + 0.666587i −0.00798586 + 0.0219410i
\(924\) 0 0
\(925\) −13.8552 2.44304i −0.455555 0.0803267i
\(926\) 0 0
\(927\) 23.8652 10.8796i 0.783835 0.357332i
\(928\) 0 0
\(929\) −12.7507 35.0323i −0.418338 1.14937i −0.952645 0.304083i \(-0.901650\pi\)
0.534308 0.845290i \(-0.320572\pi\)
\(930\) 0 0
\(931\) 3.85557 3.23521i 0.126361 0.106030i
\(932\) 0 0
\(933\) 16.1559 5.01763i 0.528919 0.164270i
\(934\) 0 0
\(935\) −6.61423 11.4562i −0.216308 0.374657i
\(936\) 0 0
\(937\) −1.65449 + 2.86566i −0.0540499 + 0.0936171i −0.891784 0.452461i \(-0.850546\pi\)
0.837735 + 0.546078i \(0.183880\pi\)
\(938\) 0 0
\(939\) 38.5482 + 1.84920i 1.25797 + 0.0603462i
\(940\) 0 0
\(941\) 8.25196 + 46.7992i 0.269006 + 1.52561i 0.757379 + 0.652975i \(0.226479\pi\)
−0.488373 + 0.872635i \(0.662409\pi\)
\(942\) 0 0
\(943\) −0.200054 + 0.238415i −0.00651465 + 0.00776386i
\(944\) 0 0
\(945\) 11.1054 76.6938i 0.361260 2.49485i
\(946\) 0 0
\(947\) −15.7887 + 18.8162i −0.513063 + 0.611444i −0.958926 0.283657i \(-0.908452\pi\)
0.445863 + 0.895101i \(0.352897\pi\)
\(948\) 0 0
\(949\) 23.5453 4.15167i 0.764312 0.134769i
\(950\) 0 0
\(951\) −14.8602 + 23.1059i −0.481874 + 0.749259i
\(952\) 0 0
\(953\) −5.53399 3.19505i −0.179264 0.103498i 0.407683 0.913124i \(-0.366337\pi\)
−0.586947 + 0.809626i \(0.699670\pi\)
\(954\) 0 0
\(955\) 34.2360 + 59.2984i 1.10785 + 1.91885i
\(956\) 0 0
\(957\) −5.67634 + 6.14139i −0.183490 + 0.198523i
\(958\) 0 0
\(959\) −46.9654 + 39.4086i −1.51659 + 1.27257i
\(960\) 0 0
\(961\) 29.9411 10.8977i 0.965843 0.351538i
\(962\) 0 0
\(963\) −6.91272 + 6.79480i −0.222759 + 0.218959i
\(964\) 0 0
\(965\) −11.6746 + 66.2101i −0.375819 + 2.13138i
\(966\) 0 0
\(967\) −7.29798 + 20.0510i −0.234687 + 0.644798i 0.765312 + 0.643659i \(0.222585\pi\)
−0.999999 + 0.00113855i \(0.999638\pi\)
\(968\) 0 0
\(969\) 1.06865 2.54889i 0.0343301 0.0818823i
\(970\) 0 0
\(971\) 18.8858i 0.606074i −0.952979 0.303037i \(-0.901999\pi\)
0.952979 0.303037i \(-0.0980006\pi\)
\(972\) 0 0
\(973\) 55.8507i 1.79049i
\(974\) 0 0
\(975\) 6.68390 15.9421i 0.214056 0.510555i
\(976\) 0 0
\(977\) −12.8528 + 35.3129i −0.411199 + 1.12976i 0.545355 + 0.838205i \(0.316395\pi\)
−0.956554 + 0.291555i \(0.905827\pi\)
\(978\) 0 0
\(979\) 1.12954 6.40593i 0.0361002 0.204735i
\(980\) 0 0
\(981\) 23.2537 22.8570i 0.742432 0.729768i
\(982\) 0 0
\(983\) −0.0615360 + 0.0223973i −0.00196269 + 0.000714362i −0.343001 0.939335i \(-0.611444\pi\)
0.341039 + 0.940049i \(0.389221\pi\)
\(984\) 0 0
\(985\) 25.6749 21.5438i 0.818069 0.686441i
\(986\) 0 0
\(987\) −59.9600 + 64.8724i −1.90855 + 2.06491i
\(988\) 0 0
\(989\) 8.77459 + 15.1980i 0.279016 + 0.483269i
\(990\) 0 0
\(991\) 2.32285 + 1.34110i 0.0737876 + 0.0426013i 0.536440 0.843939i \(-0.319769\pi\)
−0.462652 + 0.886540i \(0.653102\pi\)
\(992\) 0 0
\(993\) 26.5094 41.2191i 0.841249 1.30805i
\(994\) 0 0
\(995\) 52.3264 9.22655i 1.65886 0.292501i
\(996\) 0 0
\(997\) −6.81445 + 8.12114i −0.215816 + 0.257199i −0.863081 0.505066i \(-0.831468\pi\)
0.647265 + 0.762265i \(0.275913\pi\)
\(998\) 0 0
\(999\) 10.9244 + 8.60876i 0.345632 + 0.272369i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bh.b.335.4 192
4.3 odd 2 216.2.v.b.11.24 192
8.3 odd 2 inner 864.2.bh.b.335.3 192
8.5 even 2 216.2.v.b.11.25 yes 192
12.11 even 2 648.2.v.b.35.9 192
24.5 odd 2 648.2.v.b.35.8 192
27.5 odd 18 inner 864.2.bh.b.815.3 192
108.59 even 18 216.2.v.b.59.25 yes 192
108.103 odd 18 648.2.v.b.611.8 192
216.5 odd 18 216.2.v.b.59.24 yes 192
216.59 even 18 inner 864.2.bh.b.815.4 192
216.157 even 18 648.2.v.b.611.9 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.24 192 4.3 odd 2
216.2.v.b.11.25 yes 192 8.5 even 2
216.2.v.b.59.24 yes 192 216.5 odd 18
216.2.v.b.59.25 yes 192 108.59 even 18
648.2.v.b.35.8 192 24.5 odd 2
648.2.v.b.35.9 192 12.11 even 2
648.2.v.b.611.8 192 108.103 odd 18
648.2.v.b.611.9 192 216.157 even 18
864.2.bh.b.335.3 192 8.3 odd 2 inner
864.2.bh.b.335.4 192 1.1 even 1 trivial
864.2.bh.b.815.3 192 27.5 odd 18 inner
864.2.bh.b.815.4 192 216.59 even 18 inner