Properties

Label 864.2.bf.a.529.7
Level $864$
Weight $2$
Character 864.529
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 529.7
Character \(\chi\) \(=\) 864.529
Dual form 864.2.bf.a.49.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40645 + 1.01088i) q^{3} +(-1.34230 + 3.68793i) q^{5} +(0.499959 - 2.83541i) q^{7} +(0.956226 - 2.84352i) q^{9} +(-0.996019 - 2.73654i) q^{11} +(-2.55767 - 3.04812i) q^{13} +(-1.84019 - 6.54382i) q^{15} +(2.48745 + 4.30839i) q^{17} +(-1.78004 - 1.02771i) q^{19} +(2.16310 + 4.49327i) q^{21} +(-0.165146 - 0.936587i) q^{23} +(-7.96887 - 6.68667i) q^{25} +(1.52959 + 4.96592i) q^{27} +(5.18495 - 6.17919i) q^{29} +(-0.331534 - 1.88022i) q^{31} +(4.16718 + 2.84196i) q^{33} +(9.78570 + 5.64977i) q^{35} +(8.31066 - 4.79816i) q^{37} +(6.67855 + 1.70152i) q^{39} +(0.581151 - 0.487644i) q^{41} +(2.14125 + 5.88303i) q^{43} +(9.20319 + 7.34336i) q^{45} +(-0.932102 + 5.28621i) q^{47} +(-1.21172 - 0.441031i) q^{49} +(-7.85378 - 3.54503i) q^{51} -3.54207i q^{53} +11.4291 q^{55} +(3.54244 - 0.353992i) q^{57} +(2.13303 - 5.86045i) q^{59} +(-3.22446 - 0.568559i) q^{61} +(-7.58447 - 4.13293i) q^{63} +(14.6744 - 5.34105i) q^{65} +(-4.40861 - 5.25398i) q^{67} +(1.17905 + 1.15032i) q^{69} +(-3.83709 - 6.64603i) q^{71} +(3.46824 - 6.00718i) q^{73} +(17.9673 + 1.34890i) q^{75} +(-8.25717 + 1.45596i) q^{77} +(-0.205269 - 0.172241i) q^{79} +(-7.17126 - 5.43811i) q^{81} +(7.91149 - 9.42855i) q^{83} +(-19.2280 + 3.39041i) q^{85} +(-1.04596 + 13.9321i) q^{87} +(-4.11349 + 7.12477i) q^{89} +(-9.92138 + 5.72811i) q^{91} +(2.36698 + 2.30931i) q^{93} +(6.17946 - 5.18518i) q^{95} +(5.06123 - 1.84214i) q^{97} +(-8.73384 + 0.215453i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.40645 + 1.01088i −0.812017 + 0.583634i
\(4\) 0 0
\(5\) −1.34230 + 3.68793i −0.600294 + 1.64929i 0.150386 + 0.988627i \(0.451948\pi\)
−0.750679 + 0.660667i \(0.770274\pi\)
\(6\) 0 0
\(7\) 0.499959 2.83541i 0.188967 1.07168i −0.731786 0.681535i \(-0.761313\pi\)
0.920752 0.390148i \(-0.127576\pi\)
\(8\) 0 0
\(9\) 0.956226 2.84352i 0.318742 0.947841i
\(10\) 0 0
\(11\) −0.996019 2.73654i −0.300311 0.825098i −0.994446 0.105252i \(-0.966435\pi\)
0.694135 0.719845i \(-0.255787\pi\)
\(12\) 0 0
\(13\) −2.55767 3.04812i −0.709371 0.845396i 0.284181 0.958771i \(-0.408278\pi\)
−0.993552 + 0.113375i \(0.963834\pi\)
\(14\) 0 0
\(15\) −1.84019 6.54382i −0.475136 1.68961i
\(16\) 0 0
\(17\) 2.48745 + 4.30839i 0.603296 + 1.04494i 0.992318 + 0.123711i \(0.0394795\pi\)
−0.389022 + 0.921228i \(0.627187\pi\)
\(18\) 0 0
\(19\) −1.78004 1.02771i −0.408369 0.235772i 0.281720 0.959497i \(-0.409095\pi\)
−0.690089 + 0.723725i \(0.742429\pi\)
\(20\) 0 0
\(21\) 2.16310 + 4.49327i 0.472027 + 0.980512i
\(22\) 0 0
\(23\) −0.165146 0.936587i −0.0344352 0.195292i 0.962737 0.270438i \(-0.0871687\pi\)
−0.997173 + 0.0751465i \(0.976058\pi\)
\(24\) 0 0
\(25\) −7.96887 6.68667i −1.59377 1.33733i
\(26\) 0 0
\(27\) 1.52959 + 4.96592i 0.294369 + 0.955692i
\(28\) 0 0
\(29\) 5.18495 6.17919i 0.962821 1.14745i −0.0261974 0.999657i \(-0.508340\pi\)
0.989019 0.147789i \(-0.0472157\pi\)
\(30\) 0 0
\(31\) −0.331534 1.88022i −0.0595453 0.337698i 0.940452 0.339926i \(-0.110402\pi\)
−0.999998 + 0.00222778i \(0.999291\pi\)
\(32\) 0 0
\(33\) 4.16718 + 2.84196i 0.725413 + 0.494721i
\(34\) 0 0
\(35\) 9.78570 + 5.64977i 1.65408 + 0.954986i
\(36\) 0 0
\(37\) 8.31066 4.79816i 1.36626 0.788813i 0.375816 0.926694i \(-0.377363\pi\)
0.990449 + 0.137881i \(0.0440293\pi\)
\(38\) 0 0
\(39\) 6.67855 + 1.70152i 1.06942 + 0.272462i
\(40\) 0 0
\(41\) 0.581151 0.487644i 0.0907605 0.0761571i −0.596278 0.802778i \(-0.703355\pi\)
0.687039 + 0.726621i \(0.258910\pi\)
\(42\) 0 0
\(43\) 2.14125 + 5.88303i 0.326537 + 0.897154i 0.988981 + 0.148042i \(0.0472972\pi\)
−0.662444 + 0.749112i \(0.730481\pi\)
\(44\) 0 0
\(45\) 9.20319 + 7.34336i 1.37193 + 1.09468i
\(46\) 0 0
\(47\) −0.932102 + 5.28621i −0.135961 + 0.771073i 0.838225 + 0.545325i \(0.183594\pi\)
−0.974186 + 0.225748i \(0.927517\pi\)
\(48\) 0 0
\(49\) −1.21172 0.441031i −0.173103 0.0630044i
\(50\) 0 0
\(51\) −7.85378 3.54503i −1.09975 0.496404i
\(52\) 0 0
\(53\) 3.54207i 0.486541i −0.969959 0.243270i \(-0.921780\pi\)
0.969959 0.243270i \(-0.0782202\pi\)
\(54\) 0 0
\(55\) 11.4291 1.54110
\(56\) 0 0
\(57\) 3.54244 0.353992i 0.469207 0.0468874i
\(58\) 0 0
\(59\) 2.13303 5.86045i 0.277697 0.762966i −0.719926 0.694051i \(-0.755824\pi\)
0.997623 0.0689146i \(-0.0219536\pi\)
\(60\) 0 0
\(61\) −3.22446 0.568559i −0.412849 0.0727965i −0.0366341 0.999329i \(-0.511664\pi\)
−0.376215 + 0.926532i \(0.622775\pi\)
\(62\) 0 0
\(63\) −7.58447 4.13293i −0.955554 0.520701i
\(64\) 0 0
\(65\) 14.6744 5.34105i 1.82014 0.662476i
\(66\) 0 0
\(67\) −4.40861 5.25398i −0.538598 0.641876i 0.426275 0.904594i \(-0.359826\pi\)
−0.964873 + 0.262718i \(0.915381\pi\)
\(68\) 0 0
\(69\) 1.17905 + 1.15032i 0.141941 + 0.138483i
\(70\) 0 0
\(71\) −3.83709 6.64603i −0.455378 0.788738i 0.543332 0.839518i \(-0.317163\pi\)
−0.998710 + 0.0507798i \(0.983829\pi\)
\(72\) 0 0
\(73\) 3.46824 6.00718i 0.405927 0.703087i −0.588502 0.808496i \(-0.700282\pi\)
0.994429 + 0.105409i \(0.0336153\pi\)
\(74\) 0 0
\(75\) 17.9673 + 1.34890i 2.07468 + 0.155757i
\(76\) 0 0
\(77\) −8.25717 + 1.45596i −0.940992 + 0.165922i
\(78\) 0 0
\(79\) −0.205269 0.172241i −0.0230945 0.0193786i 0.631167 0.775647i \(-0.282576\pi\)
−0.654262 + 0.756268i \(0.727021\pi\)
\(80\) 0 0
\(81\) −7.17126 5.43811i −0.796807 0.604234i
\(82\) 0 0
\(83\) 7.91149 9.42855i 0.868399 1.03492i −0.130655 0.991428i \(-0.541708\pi\)
0.999054 0.0434896i \(-0.0138475\pi\)
\(84\) 0 0
\(85\) −19.2280 + 3.39041i −2.08557 + 0.367742i
\(86\) 0 0
\(87\) −1.04596 + 13.9321i −0.112138 + 1.49368i
\(88\) 0 0
\(89\) −4.11349 + 7.12477i −0.436029 + 0.755224i −0.997379 0.0723541i \(-0.976949\pi\)
0.561350 + 0.827578i \(0.310282\pi\)
\(90\) 0 0
\(91\) −9.92138 + 5.72811i −1.04004 + 0.600469i
\(92\) 0 0
\(93\) 2.36698 + 2.30931i 0.245444 + 0.239464i
\(94\) 0 0
\(95\) 6.17946 5.18518i 0.633999 0.531988i
\(96\) 0 0
\(97\) 5.06123 1.84214i 0.513891 0.187041i −0.0720406 0.997402i \(-0.522951\pi\)
0.585931 + 0.810361i \(0.300729\pi\)
\(98\) 0 0
\(99\) −8.73384 + 0.215453i −0.877784 + 0.0216539i
\(100\) 0 0
\(101\) −3.98336 0.702375i −0.396360 0.0698889i −0.0280840 0.999606i \(-0.508941\pi\)
−0.368276 + 0.929717i \(0.620052\pi\)
\(102\) 0 0
\(103\) −1.07241 0.390325i −0.105668 0.0384599i 0.288645 0.957436i \(-0.406795\pi\)
−0.394313 + 0.918976i \(0.629017\pi\)
\(104\) 0 0
\(105\) −19.4744 + 1.94606i −1.90051 + 0.189916i
\(106\) 0 0
\(107\) 4.87553i 0.471335i −0.971834 0.235667i \(-0.924272\pi\)
0.971834 0.235667i \(-0.0757276\pi\)
\(108\) 0 0
\(109\) 2.52010i 0.241382i 0.992690 + 0.120691i \(0.0385111\pi\)
−0.992690 + 0.120691i \(0.961489\pi\)
\(110\) 0 0
\(111\) −6.83818 + 15.1495i −0.649051 + 1.43793i
\(112\) 0 0
\(113\) −6.79620 2.47361i −0.639332 0.232698i 0.00195583 0.999998i \(-0.499377\pi\)
−0.641288 + 0.767300i \(0.721600\pi\)
\(114\) 0 0
\(115\) 3.67575 + 0.648133i 0.342765 + 0.0604387i
\(116\) 0 0
\(117\) −11.1131 + 4.35812i −1.02741 + 0.402908i
\(118\) 0 0
\(119\) 13.4597 4.89892i 1.23385 0.449083i
\(120\) 0 0
\(121\) 1.92989 1.61937i 0.175445 0.147216i
\(122\) 0 0
\(123\) −0.324411 + 1.27332i −0.0292511 + 0.114812i
\(124\) 0 0
\(125\) 18.3625 10.6016i 1.64239 0.948236i
\(126\) 0 0
\(127\) 2.38507 4.13106i 0.211641 0.366573i −0.740587 0.671960i \(-0.765453\pi\)
0.952228 + 0.305387i \(0.0987860\pi\)
\(128\) 0 0
\(129\) −8.95864 6.10966i −0.788764 0.537926i
\(130\) 0 0
\(131\) 3.45051 0.608417i 0.301472 0.0531577i −0.0208660 0.999782i \(-0.506642\pi\)
0.322338 + 0.946625i \(0.395531\pi\)
\(132\) 0 0
\(133\) −3.80391 + 4.53333i −0.329841 + 0.393089i
\(134\) 0 0
\(135\) −20.3671 1.02473i −1.75292 0.0881951i
\(136\) 0 0
\(137\) −12.6574 10.6208i −1.08140 0.907400i −0.0853611 0.996350i \(-0.527204\pi\)
−0.996036 + 0.0889501i \(0.971649\pi\)
\(138\) 0 0
\(139\) −19.5648 + 3.44981i −1.65947 + 0.292609i −0.923268 0.384157i \(-0.874492\pi\)
−0.736199 + 0.676765i \(0.763381\pi\)
\(140\) 0 0
\(141\) −4.03279 8.37706i −0.339622 0.705476i
\(142\) 0 0
\(143\) −5.79380 + 10.0352i −0.484502 + 0.839182i
\(144\) 0 0
\(145\) 15.8287 + 27.4161i 1.31450 + 2.27678i
\(146\) 0 0
\(147\) 2.15006 0.604622i 0.177334 0.0498683i
\(148\) 0 0
\(149\) 7.39950 + 8.81838i 0.606190 + 0.722429i 0.978630 0.205627i \(-0.0659233\pi\)
−0.372440 + 0.928056i \(0.621479\pi\)
\(150\) 0 0
\(151\) 3.42462 1.24646i 0.278692 0.101436i −0.198893 0.980021i \(-0.563735\pi\)
0.477585 + 0.878586i \(0.341512\pi\)
\(152\) 0 0
\(153\) 14.6296 2.95333i 1.18273 0.238763i
\(154\) 0 0
\(155\) 7.37916 + 1.30114i 0.592708 + 0.104510i
\(156\) 0 0
\(157\) 5.00630 13.7547i 0.399546 1.09774i −0.562960 0.826484i \(-0.690338\pi\)
0.962506 0.271259i \(-0.0874402\pi\)
\(158\) 0 0
\(159\) 3.58062 + 4.98176i 0.283962 + 0.395079i
\(160\) 0 0
\(161\) −2.73817 −0.215798
\(162\) 0 0
\(163\) 5.93891i 0.465171i 0.972576 + 0.232586i \(0.0747186\pi\)
−0.972576 + 0.232586i \(0.925281\pi\)
\(164\) 0 0
\(165\) −16.0745 + 11.5535i −1.25140 + 0.899441i
\(166\) 0 0
\(167\) 18.7096 + 6.80974i 1.44779 + 0.526953i 0.941974 0.335687i \(-0.108968\pi\)
0.505818 + 0.862640i \(0.331191\pi\)
\(168\) 0 0
\(169\) −0.491897 + 2.78968i −0.0378382 + 0.214591i
\(170\) 0 0
\(171\) −4.62443 + 4.07887i −0.353639 + 0.311919i
\(172\) 0 0
\(173\) 3.76876 + 10.3546i 0.286534 + 0.787245i 0.996545 + 0.0830547i \(0.0264676\pi\)
−0.710011 + 0.704190i \(0.751310\pi\)
\(174\) 0 0
\(175\) −22.9435 + 19.2519i −1.73437 + 1.45531i
\(176\) 0 0
\(177\) 2.92423 + 10.3987i 0.219799 + 0.781614i
\(178\) 0 0
\(179\) −3.66363 + 2.11520i −0.273832 + 0.158097i −0.630628 0.776085i \(-0.717203\pi\)
0.356796 + 0.934182i \(0.383869\pi\)
\(180\) 0 0
\(181\) −16.4676 9.50759i −1.22403 0.706694i −0.258255 0.966077i \(-0.583147\pi\)
−0.965775 + 0.259383i \(0.916481\pi\)
\(182\) 0 0
\(183\) 5.10980 2.45990i 0.377727 0.181841i
\(184\) 0 0
\(185\) 6.53992 + 37.0897i 0.480825 + 2.72689i
\(186\) 0 0
\(187\) 9.31254 11.0983i 0.681000 0.811585i
\(188\) 0 0
\(189\) 14.8451 1.85424i 1.07982 0.134876i
\(190\) 0 0
\(191\) −6.22796 5.22588i −0.450639 0.378131i 0.389034 0.921224i \(-0.372809\pi\)
−0.839673 + 0.543092i \(0.817253\pi\)
\(192\) 0 0
\(193\) −2.29037 12.9893i −0.164864 0.934993i −0.949204 0.314661i \(-0.898109\pi\)
0.784340 0.620332i \(-0.213002\pi\)
\(194\) 0 0
\(195\) −15.2397 + 22.3461i −1.09134 + 1.60024i
\(196\) 0 0
\(197\) −5.35211 3.09004i −0.381322 0.220156i 0.297071 0.954855i \(-0.403990\pi\)
−0.678393 + 0.734699i \(0.737323\pi\)
\(198\) 0 0
\(199\) −4.43708 7.68525i −0.314537 0.544793i 0.664802 0.747019i \(-0.268516\pi\)
−0.979339 + 0.202226i \(0.935182\pi\)
\(200\) 0 0
\(201\) 11.5117 + 2.93289i 0.811971 + 0.206870i
\(202\) 0 0
\(203\) −14.9282 17.7908i −1.04776 1.24867i
\(204\) 0 0
\(205\) 1.01832 + 2.79781i 0.0711225 + 0.195407i
\(206\) 0 0
\(207\) −2.82113 0.425994i −0.196082 0.0296086i
\(208\) 0 0
\(209\) −1.03941 + 5.89477i −0.0718972 + 0.407750i
\(210\) 0 0
\(211\) 6.04444 16.6070i 0.416116 1.14327i −0.537767 0.843093i \(-0.680732\pi\)
0.953884 0.300177i \(-0.0970457\pi\)
\(212\) 0 0
\(213\) 12.1151 + 5.46848i 0.830110 + 0.374694i
\(214\) 0 0
\(215\) −24.5704 −1.67569
\(216\) 0 0
\(217\) −5.49695 −0.373157
\(218\) 0 0
\(219\) 1.19463 + 11.9548i 0.0807258 + 0.807831i
\(220\) 0 0
\(221\) 6.77040 18.6015i 0.455426 1.25127i
\(222\) 0 0
\(223\) 4.05080 22.9732i 0.271262 1.53840i −0.479330 0.877635i \(-0.659120\pi\)
0.750592 0.660767i \(-0.229769\pi\)
\(224\) 0 0
\(225\) −26.6338 + 16.2657i −1.77558 + 1.08438i
\(226\) 0 0
\(227\) 8.48739 + 23.3189i 0.563328 + 1.54773i 0.814726 + 0.579846i \(0.196887\pi\)
−0.251398 + 0.967884i \(0.580890\pi\)
\(228\) 0 0
\(229\) 3.58229 + 4.26921i 0.236724 + 0.282117i 0.871307 0.490738i \(-0.163273\pi\)
−0.634583 + 0.772855i \(0.718828\pi\)
\(230\) 0 0
\(231\) 10.1415 10.3948i 0.667263 0.683927i
\(232\) 0 0
\(233\) −3.32571 5.76031i −0.217875 0.377370i 0.736283 0.676673i \(-0.236579\pi\)
−0.954158 + 0.299303i \(0.903246\pi\)
\(234\) 0 0
\(235\) −18.2440 10.5332i −1.19011 0.687110i
\(236\) 0 0
\(237\) 0.462816 + 0.0347460i 0.0300631 + 0.00225699i
\(238\) 0 0
\(239\) 4.54329 + 25.7663i 0.293881 + 1.66668i 0.671717 + 0.740808i \(0.265557\pi\)
−0.377836 + 0.925872i \(0.623332\pi\)
\(240\) 0 0
\(241\) −19.2391 16.1435i −1.23930 1.03989i −0.997579 0.0695464i \(-0.977845\pi\)
−0.241718 0.970347i \(-0.577711\pi\)
\(242\) 0 0
\(243\) 15.5833 + 0.399129i 0.999672 + 0.0256041i
\(244\) 0 0
\(245\) 3.25299 3.87676i 0.207826 0.247677i
\(246\) 0 0
\(247\) 1.42019 + 8.05431i 0.0903647 + 0.512484i
\(248\) 0 0
\(249\) −1.59598 + 21.2584i −0.101141 + 1.34720i
\(250\) 0 0
\(251\) −25.2441 14.5747i −1.59339 0.919945i −0.992719 0.120450i \(-0.961566\pi\)
−0.600672 0.799495i \(-0.705100\pi\)
\(252\) 0 0
\(253\) −2.39852 + 1.38479i −0.150794 + 0.0870608i
\(254\) 0 0
\(255\) 23.6159 24.2057i 1.47889 1.51582i
\(256\) 0 0
\(257\) −5.42626 + 4.55318i −0.338481 + 0.284019i −0.796145 0.605106i \(-0.793131\pi\)
0.457664 + 0.889125i \(0.348686\pi\)
\(258\) 0 0
\(259\) −9.44975 25.9630i −0.587179 1.61326i
\(260\) 0 0
\(261\) −12.6127 20.6522i −0.780705 1.27834i
\(262\) 0 0
\(263\) −1.99223 + 11.2985i −0.122846 + 0.696695i 0.859718 + 0.510770i \(0.170639\pi\)
−0.982564 + 0.185926i \(0.940472\pi\)
\(264\) 0 0
\(265\) 13.0629 + 4.75451i 0.802449 + 0.292067i
\(266\) 0 0
\(267\) −1.41689 14.1789i −0.0867120 0.867736i
\(268\) 0 0
\(269\) 15.1820i 0.925661i −0.886447 0.462831i \(-0.846834\pi\)
0.886447 0.462831i \(-0.153166\pi\)
\(270\) 0 0
\(271\) −13.2808 −0.806753 −0.403376 0.915034i \(-0.632163\pi\)
−0.403376 + 0.915034i \(0.632163\pi\)
\(272\) 0 0
\(273\) 8.16351 18.0857i 0.494078 1.09460i
\(274\) 0 0
\(275\) −10.3612 + 28.4672i −0.624804 + 1.71664i
\(276\) 0 0
\(277\) 2.53413 + 0.446836i 0.152261 + 0.0268478i 0.249259 0.968437i \(-0.419813\pi\)
−0.0969979 + 0.995285i \(0.530924\pi\)
\(278\) 0 0
\(279\) −5.66348 0.855194i −0.339064 0.0511991i
\(280\) 0 0
\(281\) 25.4277 9.25491i 1.51689 0.552102i 0.556518 0.830835i \(-0.312137\pi\)
0.960368 + 0.278734i \(0.0899147\pi\)
\(282\) 0 0
\(283\) 17.1845 + 20.4797i 1.02151 + 1.21739i 0.975851 + 0.218436i \(0.0700955\pi\)
0.0456626 + 0.998957i \(0.485460\pi\)
\(284\) 0 0
\(285\) −3.44951 + 13.5394i −0.204331 + 0.802007i
\(286\) 0 0
\(287\) −1.09212 1.89160i −0.0644656 0.111658i
\(288\) 0 0
\(289\) −3.87484 + 6.71142i −0.227932 + 0.394789i
\(290\) 0 0
\(291\) −5.25621 + 7.70721i −0.308124 + 0.451804i
\(292\) 0 0
\(293\) −17.3330 + 3.05628i −1.01261 + 0.178550i −0.655245 0.755416i \(-0.727435\pi\)
−0.357361 + 0.933966i \(0.616323\pi\)
\(294\) 0 0
\(295\) 18.7498 + 15.7329i 1.09166 + 0.916007i
\(296\) 0 0
\(297\) 12.0659 9.13192i 0.700137 0.529888i
\(298\) 0 0
\(299\) −2.43244 + 2.89887i −0.140672 + 0.167646i
\(300\) 0 0
\(301\) 17.7513 3.13004i 1.02317 0.180412i
\(302\) 0 0
\(303\) 6.31244 3.03886i 0.362640 0.174578i
\(304\) 0 0
\(305\) 6.42499 11.1284i 0.367894 0.637211i
\(306\) 0 0
\(307\) 10.1962 5.88676i 0.581926 0.335975i −0.179972 0.983672i \(-0.557601\pi\)
0.761898 + 0.647696i \(0.224268\pi\)
\(308\) 0 0
\(309\) 1.90287 0.535107i 0.108250 0.0304412i
\(310\) 0 0
\(311\) −26.0496 + 21.8582i −1.47714 + 1.23947i −0.567965 + 0.823053i \(0.692269\pi\)
−0.909175 + 0.416414i \(0.863287\pi\)
\(312\) 0 0
\(313\) 6.64081 2.41706i 0.375361 0.136620i −0.147449 0.989070i \(-0.547106\pi\)
0.522809 + 0.852450i \(0.324884\pi\)
\(314\) 0 0
\(315\) 25.4226 22.4234i 1.43240 1.26342i
\(316\) 0 0
\(317\) 5.34112 + 0.941783i 0.299987 + 0.0528958i 0.321616 0.946870i \(-0.395774\pi\)
−0.0216287 + 0.999766i \(0.506885\pi\)
\(318\) 0 0
\(319\) −22.0739 8.03424i −1.23590 0.449831i
\(320\) 0 0
\(321\) 4.92859 + 6.85720i 0.275087 + 0.382732i
\(322\) 0 0
\(323\) 10.2255i 0.568961i
\(324\) 0 0
\(325\) 41.3924i 2.29604i
\(326\) 0 0
\(327\) −2.54753 3.54441i −0.140879 0.196006i
\(328\) 0 0
\(329\) 14.5225 + 5.28577i 0.800654 + 0.291414i
\(330\) 0 0
\(331\) −5.34260 0.942044i −0.293656 0.0517794i 0.0248795 0.999690i \(-0.492080\pi\)
−0.318535 + 0.947911i \(0.603191\pi\)
\(332\) 0 0
\(333\) −5.69682 28.2197i −0.312184 1.54643i
\(334\) 0 0
\(335\) 25.2940 9.20627i 1.38196 0.502992i
\(336\) 0 0
\(337\) −22.3325 + 18.7392i −1.21653 + 1.02079i −0.217528 + 0.976054i \(0.569799\pi\)
−0.998999 + 0.0447328i \(0.985756\pi\)
\(338\) 0 0
\(339\) 12.0591 3.39114i 0.654959 0.184182i
\(340\) 0 0
\(341\) −4.81509 + 2.77999i −0.260752 + 0.150545i
\(342\) 0 0
\(343\) 8.22070 14.2387i 0.443876 0.768816i
\(344\) 0 0
\(345\) −5.82496 + 2.80418i −0.313605 + 0.150972i
\(346\) 0 0
\(347\) 17.1238 3.01939i 0.919255 0.162089i 0.306052 0.952015i \(-0.400992\pi\)
0.613203 + 0.789925i \(0.289881\pi\)
\(348\) 0 0
\(349\) 3.38478 4.03383i 0.181183 0.215926i −0.667807 0.744335i \(-0.732767\pi\)
0.848990 + 0.528409i \(0.177211\pi\)
\(350\) 0 0
\(351\) 11.2245 17.3636i 0.599121 0.926799i
\(352\) 0 0
\(353\) −7.22029 6.05854i −0.384297 0.322463i 0.430090 0.902786i \(-0.358482\pi\)
−0.814387 + 0.580323i \(0.802926\pi\)
\(354\) 0 0
\(355\) 29.6606 5.22997i 1.57422 0.277578i
\(356\) 0 0
\(357\) −13.9782 + 20.4963i −0.739803 + 1.08478i
\(358\) 0 0
\(359\) 8.12377 14.0708i 0.428756 0.742628i −0.568007 0.823024i \(-0.692285\pi\)
0.996763 + 0.0803962i \(0.0256186\pi\)
\(360\) 0 0
\(361\) −7.38764 12.7958i −0.388823 0.673461i
\(362\) 0 0
\(363\) −1.07731 + 4.22847i −0.0565440 + 0.221937i
\(364\) 0 0
\(365\) 17.4986 + 20.8541i 0.915921 + 1.09155i
\(366\) 0 0
\(367\) −12.0315 + 4.37912i −0.628042 + 0.228588i −0.636379 0.771377i \(-0.719568\pi\)
0.00833711 + 0.999965i \(0.497346\pi\)
\(368\) 0 0
\(369\) −0.830915 2.11881i −0.0432557 0.110301i
\(370\) 0 0
\(371\) −10.0432 1.77089i −0.521417 0.0919400i
\(372\) 0 0
\(373\) −2.16442 + 5.94669i −0.112069 + 0.307908i −0.983030 0.183445i \(-0.941275\pi\)
0.870961 + 0.491353i \(0.163497\pi\)
\(374\) 0 0
\(375\) −15.1090 + 33.4730i −0.780227 + 1.72854i
\(376\) 0 0
\(377\) −32.0963 −1.65304
\(378\) 0 0
\(379\) 28.5066i 1.46428i 0.681152 + 0.732142i \(0.261479\pi\)
−0.681152 + 0.732142i \(0.738521\pi\)
\(380\) 0 0
\(381\) 0.821535 + 8.22118i 0.0420885 + 0.421184i
\(382\) 0 0
\(383\) 29.5410 + 10.7521i 1.50948 + 0.549405i 0.958494 0.285112i \(-0.0920308\pi\)
0.550983 + 0.834517i \(0.314253\pi\)
\(384\) 0 0
\(385\) 5.71409 32.4062i 0.291217 1.65157i
\(386\) 0 0
\(387\) 18.7761 0.463183i 0.954441 0.0235449i
\(388\) 0 0
\(389\) 1.34416 + 3.69306i 0.0681518 + 0.187246i 0.969093 0.246696i \(-0.0793448\pi\)
−0.900941 + 0.433941i \(0.857123\pi\)
\(390\) 0 0
\(391\) 3.62440 3.04123i 0.183294 0.153802i
\(392\) 0 0
\(393\) −4.23794 + 4.34377i −0.213776 + 0.219114i
\(394\) 0 0
\(395\) 0.910744 0.525818i 0.0458245 0.0264568i
\(396\) 0 0
\(397\) 17.9961 + 10.3901i 0.903200 + 0.521463i 0.878237 0.478226i \(-0.158720\pi\)
0.0249629 + 0.999688i \(0.492053\pi\)
\(398\) 0 0
\(399\) 0.767360 10.2212i 0.0384161 0.511702i
\(400\) 0 0
\(401\) −4.02373 22.8197i −0.200935 1.13956i −0.903709 0.428147i \(-0.859166\pi\)
0.702774 0.711413i \(-0.251945\pi\)
\(402\) 0 0
\(403\) −4.88319 + 5.81955i −0.243249 + 0.289893i
\(404\) 0 0
\(405\) 29.6813 19.1476i 1.47488 0.951451i
\(406\) 0 0
\(407\) −21.4079 17.9634i −1.06115 0.890412i
\(408\) 0 0
\(409\) 5.07096 + 28.7589i 0.250743 + 1.42203i 0.806768 + 0.590868i \(0.201215\pi\)
−0.556025 + 0.831165i \(0.687674\pi\)
\(410\) 0 0
\(411\) 28.5385 + 2.14253i 1.40770 + 0.105683i
\(412\) 0 0
\(413\) −15.5503 8.97799i −0.765182 0.441778i
\(414\) 0 0
\(415\) 24.1523 + 41.8330i 1.18559 + 2.05350i
\(416\) 0 0
\(417\) 24.0297 24.6298i 1.17674 1.20612i
\(418\) 0 0
\(419\) −8.33906 9.93810i −0.407390 0.485508i 0.522869 0.852413i \(-0.324862\pi\)
−0.930258 + 0.366905i \(0.880417\pi\)
\(420\) 0 0
\(421\) −1.49536 4.10848i −0.0728795 0.200235i 0.897904 0.440191i \(-0.145089\pi\)
−0.970784 + 0.239956i \(0.922867\pi\)
\(422\) 0 0
\(423\) 14.1402 + 7.70527i 0.687519 + 0.374643i
\(424\) 0 0
\(425\) 8.98665 50.9658i 0.435916 2.47220i
\(426\) 0 0
\(427\) −3.22419 + 8.85839i −0.156030 + 0.428688i
\(428\) 0 0
\(429\) −1.99567 19.9709i −0.0963517 0.964202i
\(430\) 0 0
\(431\) −1.15854 −0.0558051 −0.0279025 0.999611i \(-0.508883\pi\)
−0.0279025 + 0.999611i \(0.508883\pi\)
\(432\) 0 0
\(433\) 37.7498 1.81414 0.907069 0.420982i \(-0.138314\pi\)
0.907069 + 0.420982i \(0.138314\pi\)
\(434\) 0 0
\(435\) −49.9768 22.5585i −2.39620 1.08160i
\(436\) 0 0
\(437\) −0.668571 + 1.83688i −0.0319821 + 0.0878701i
\(438\) 0 0
\(439\) 4.69964 26.6530i 0.224301 1.27208i −0.639715 0.768612i \(-0.720948\pi\)
0.864016 0.503464i \(-0.167941\pi\)
\(440\) 0 0
\(441\) −2.41276 + 3.02384i −0.114894 + 0.143992i
\(442\) 0 0
\(443\) 10.3614 + 28.4677i 0.492285 + 1.35254i 0.898584 + 0.438802i \(0.144597\pi\)
−0.406299 + 0.913740i \(0.633181\pi\)
\(444\) 0 0
\(445\) −20.7542 24.7338i −0.983841 1.17250i
\(446\) 0 0
\(447\) −19.3214 4.92261i −0.913871 0.232831i
\(448\) 0 0
\(449\) −1.70434 2.95201i −0.0804330 0.139314i 0.823003 0.568037i \(-0.192297\pi\)
−0.903436 + 0.428723i \(0.858964\pi\)
\(450\) 0 0
\(451\) −1.91329 1.10464i −0.0900934 0.0520155i
\(452\) 0 0
\(453\) −3.55655 + 5.21499i −0.167101 + 0.245021i
\(454\) 0 0
\(455\) −7.80745 44.2782i −0.366019 2.07580i
\(456\) 0 0
\(457\) 7.27754 + 6.10658i 0.340429 + 0.285654i 0.796933 0.604068i \(-0.206454\pi\)
−0.456504 + 0.889721i \(0.650899\pi\)
\(458\) 0 0
\(459\) −17.5904 + 18.9425i −0.821048 + 0.884162i
\(460\) 0 0
\(461\) −19.8885 + 23.7021i −0.926298 + 1.10392i 0.0680433 + 0.997682i \(0.478324\pi\)
−0.994341 + 0.106236i \(0.966120\pi\)
\(462\) 0 0
\(463\) 4.27095 + 24.2217i 0.198488 + 1.12568i 0.907364 + 0.420347i \(0.138092\pi\)
−0.708876 + 0.705333i \(0.750797\pi\)
\(464\) 0 0
\(465\) −11.6938 + 5.62947i −0.542285 + 0.261061i
\(466\) 0 0
\(467\) 0.849394 + 0.490398i 0.0393052 + 0.0226929i 0.519524 0.854456i \(-0.326109\pi\)
−0.480219 + 0.877149i \(0.659443\pi\)
\(468\) 0 0
\(469\) −17.1013 + 9.87344i −0.789665 + 0.455913i
\(470\) 0 0
\(471\) 6.86327 + 24.4061i 0.316243 + 1.12457i
\(472\) 0 0
\(473\) 13.9664 11.7192i 0.642177 0.538851i
\(474\) 0 0
\(475\) 7.31297 + 20.0922i 0.335542 + 0.921894i
\(476\) 0 0
\(477\) −10.0720 3.38702i −0.461164 0.155081i
\(478\) 0 0
\(479\) 1.26087 7.15074i 0.0576105 0.326726i −0.942358 0.334605i \(-0.891397\pi\)
0.999969 + 0.00787960i \(0.00250818\pi\)
\(480\) 0 0
\(481\) −35.8813 13.0597i −1.63605 0.595473i
\(482\) 0 0
\(483\) 3.85111 2.76797i 0.175232 0.125947i
\(484\) 0 0
\(485\) 21.1382i 0.959836i
\(486\) 0 0
\(487\) −0.153837 −0.00697103 −0.00348552 0.999994i \(-0.501109\pi\)
−0.00348552 + 0.999994i \(0.501109\pi\)
\(488\) 0 0
\(489\) −6.00355 8.35280i −0.271490 0.377727i
\(490\) 0 0
\(491\) −7.10851 + 19.5305i −0.320802 + 0.881398i 0.669543 + 0.742774i \(0.266490\pi\)
−0.990345 + 0.138624i \(0.955732\pi\)
\(492\) 0 0
\(493\) 39.5197 + 6.96839i 1.77988 + 0.313840i
\(494\) 0 0
\(495\) 10.9288 32.4990i 0.491215 1.46072i
\(496\) 0 0
\(497\) −20.7626 + 7.55696i −0.931329 + 0.338976i
\(498\) 0 0
\(499\) −12.0312 14.3382i −0.538588 0.641865i 0.426282 0.904590i \(-0.359823\pi\)
−0.964871 + 0.262726i \(0.915379\pi\)
\(500\) 0 0
\(501\) −33.1980 + 9.33565i −1.48318 + 0.417086i
\(502\) 0 0
\(503\) −15.2553 26.4230i −0.680200 1.17814i −0.974919 0.222558i \(-0.928559\pi\)
0.294719 0.955584i \(-0.404774\pi\)
\(504\) 0 0
\(505\) 7.93717 13.7476i 0.353200 0.611760i
\(506\) 0 0
\(507\) −2.12822 4.42081i −0.0945175 0.196335i
\(508\) 0 0
\(509\) 25.1247 4.43017i 1.11363 0.196364i 0.413590 0.910463i \(-0.364275\pi\)
0.700044 + 0.714099i \(0.253164\pi\)
\(510\) 0 0
\(511\) −15.2988 12.8372i −0.676779 0.567885i
\(512\) 0 0
\(513\) 2.38079 10.4115i 0.105114 0.459679i
\(514\) 0 0
\(515\) 2.87899 3.43104i 0.126863 0.151190i
\(516\) 0 0
\(517\) 15.3943 2.71443i 0.677041 0.119381i
\(518\) 0 0
\(519\) −15.7679 10.7535i −0.692133 0.472025i
\(520\) 0 0
\(521\) −8.58140 + 14.8634i −0.375958 + 0.651178i −0.990470 0.137729i \(-0.956020\pi\)
0.614512 + 0.788908i \(0.289353\pi\)
\(522\) 0 0
\(523\) 35.9656 20.7647i 1.57266 0.907978i 0.576824 0.816869i \(-0.304292\pi\)
0.995841 0.0911099i \(-0.0290415\pi\)
\(524\) 0 0
\(525\) 12.8076 50.2702i 0.558969 2.19397i
\(526\) 0 0
\(527\) 7.27607 6.10535i 0.316950 0.265953i
\(528\) 0 0
\(529\) 20.7630 7.55712i 0.902739 0.328570i
\(530\) 0 0
\(531\) −14.6247 11.6692i −0.634657 0.506402i
\(532\) 0 0
\(533\) −2.97279 0.524183i −0.128766 0.0227049i
\(534\) 0 0
\(535\) 17.9806 + 6.54441i 0.777370 + 0.282939i
\(536\) 0 0
\(537\) 3.01451 6.67843i 0.130086 0.288196i
\(538\) 0 0
\(539\) 3.75520i 0.161748i
\(540\) 0 0
\(541\) 11.2309i 0.482852i 0.970419 + 0.241426i \(0.0776152\pi\)
−0.970419 + 0.241426i \(0.922385\pi\)
\(542\) 0 0
\(543\) 32.7720 3.27488i 1.40638 0.140538i
\(544\) 0 0
\(545\) −9.29398 3.38273i −0.398110 0.144900i
\(546\) 0 0
\(547\) 19.8704 + 3.50369i 0.849599 + 0.149807i 0.581462 0.813574i \(-0.302481\pi\)
0.268137 + 0.963381i \(0.413592\pi\)
\(548\) 0 0
\(549\) −4.70002 + 8.62515i −0.200592 + 0.368113i
\(550\) 0 0
\(551\) −15.5798 + 5.67059i −0.663722 + 0.241575i
\(552\) 0 0
\(553\) −0.590998 + 0.495906i −0.0251318 + 0.0210881i
\(554\) 0 0
\(555\) −46.6915 45.5539i −1.98194 1.93366i
\(556\) 0 0
\(557\) −26.7781 + 15.4604i −1.13463 + 0.655076i −0.945094 0.326798i \(-0.894030\pi\)
−0.189532 + 0.981875i \(0.560697\pi\)
\(558\) 0 0
\(559\) 12.4556 21.5737i 0.526814 0.912469i
\(560\) 0 0
\(561\) −1.87861 + 25.0231i −0.0793150 + 1.05648i
\(562\) 0 0
\(563\) −20.3052 + 3.58035i −0.855761 + 0.150894i −0.584282 0.811551i \(-0.698624\pi\)
−0.271479 + 0.962444i \(0.587513\pi\)
\(564\) 0 0
\(565\) 18.2450 21.7436i 0.767575 0.914760i
\(566\) 0 0
\(567\) −19.0046 + 17.6146i −0.798117 + 0.739744i
\(568\) 0 0
\(569\) −3.82688 3.21114i −0.160431 0.134618i 0.559038 0.829142i \(-0.311171\pi\)
−0.719469 + 0.694524i \(0.755615\pi\)
\(570\) 0 0
\(571\) 7.54047 1.32959i 0.315559 0.0556415i −0.0136257 0.999907i \(-0.504337\pi\)
0.329184 + 0.944266i \(0.393226\pi\)
\(572\) 0 0
\(573\) 14.0421 + 1.05421i 0.586617 + 0.0440404i
\(574\) 0 0
\(575\) −4.94663 + 8.56781i −0.206289 + 0.357303i
\(576\) 0 0
\(577\) 6.53703 + 11.3225i 0.272140 + 0.471361i 0.969410 0.245449i \(-0.0789352\pi\)
−0.697269 + 0.716809i \(0.745602\pi\)
\(578\) 0 0
\(579\) 16.3520 + 15.9536i 0.679567 + 0.663009i
\(580\) 0 0
\(581\) −22.7783 27.1462i −0.945005 1.12621i
\(582\) 0 0
\(583\) −9.69302 + 3.52797i −0.401444 + 0.146114i
\(584\) 0 0
\(585\) −1.15535 46.8343i −0.0477677 1.93636i
\(586\) 0 0
\(587\) 20.2706 + 3.57425i 0.836657 + 0.147525i 0.575532 0.817780i \(-0.304795\pi\)
0.261126 + 0.965305i \(0.415906\pi\)
\(588\) 0 0
\(589\) −1.34217 + 3.68759i −0.0553033 + 0.151945i
\(590\) 0 0
\(591\) 10.6512 1.06436i 0.438130 0.0437819i
\(592\) 0 0
\(593\) 35.4674 1.45647 0.728237 0.685326i \(-0.240340\pi\)
0.728237 + 0.685326i \(0.240340\pi\)
\(594\) 0 0
\(595\) 56.2142i 2.30456i
\(596\) 0 0
\(597\) 14.0095 + 6.32358i 0.573369 + 0.258807i
\(598\) 0 0
\(599\) −4.95171 1.80227i −0.202321 0.0736389i 0.238872 0.971051i \(-0.423222\pi\)
−0.441193 + 0.897412i \(0.645445\pi\)
\(600\) 0 0
\(601\) −6.16086 + 34.9400i −0.251307 + 1.42523i 0.554071 + 0.832469i \(0.313074\pi\)
−0.805378 + 0.592762i \(0.798038\pi\)
\(602\) 0 0
\(603\) −19.1555 + 7.51201i −0.780071 + 0.305913i
\(604\) 0 0
\(605\) 3.38165 + 9.29100i 0.137484 + 0.377733i
\(606\) 0 0
\(607\) 6.68660 5.61072i 0.271401 0.227732i −0.496922 0.867795i \(-0.665536\pi\)
0.768322 + 0.640063i \(0.221092\pi\)
\(608\) 0 0
\(609\) 38.9803 + 9.93120i 1.57956 + 0.402432i
\(610\) 0 0
\(611\) 18.4970 10.6793i 0.748309 0.432036i
\(612\) 0 0
\(613\) −28.4795 16.4426i −1.15028 0.664112i −0.201321 0.979525i \(-0.564523\pi\)
−0.948954 + 0.315414i \(0.897857\pi\)
\(614\) 0 0
\(615\) −4.26048 2.90559i −0.171799 0.117165i
\(616\) 0 0
\(617\) 5.77150 + 32.7318i 0.232352 + 1.31773i 0.848119 + 0.529805i \(0.177735\pi\)
−0.615767 + 0.787928i \(0.711154\pi\)
\(618\) 0 0
\(619\) 22.6481 26.9910i 0.910305 1.08486i −0.0857667 0.996315i \(-0.527334\pi\)
0.996072 0.0885446i \(-0.0282216\pi\)
\(620\) 0 0
\(621\) 4.39841 2.25269i 0.176502 0.0903974i
\(622\) 0 0
\(623\) 18.1451 + 15.2255i 0.726966 + 0.609997i
\(624\) 0 0
\(625\) 5.41806 + 30.7273i 0.216722 + 1.22909i
\(626\) 0 0
\(627\) −4.49705 9.34144i −0.179595 0.373061i
\(628\) 0 0
\(629\) 41.3448 + 23.8704i 1.64852 + 0.951775i
\(630\) 0 0
\(631\) 20.3613 + 35.2667i 0.810569 + 1.40395i 0.912466 + 0.409152i \(0.134175\pi\)
−0.101898 + 0.994795i \(0.532491\pi\)
\(632\) 0 0
\(633\) 8.28649 + 29.4672i 0.329358 + 1.17121i
\(634\) 0 0
\(635\) 12.0336 + 14.3411i 0.477539 + 0.569109i
\(636\) 0 0
\(637\) 1.75488 + 4.82149i 0.0695308 + 0.191034i
\(638\) 0 0
\(639\) −22.5673 + 4.55574i −0.892747 + 0.180222i
\(640\) 0 0
\(641\) −8.76821 + 49.7270i −0.346323 + 1.96410i −0.0995006 + 0.995038i \(0.531725\pi\)
−0.246823 + 0.969061i \(0.579387\pi\)
\(642\) 0 0
\(643\) −15.1261 + 41.5587i −0.596517 + 1.63892i 0.161645 + 0.986849i \(0.448320\pi\)
−0.758162 + 0.652067i \(0.773902\pi\)
\(644\) 0 0
\(645\) 34.5572 24.8379i 1.36069 0.977990i
\(646\) 0 0
\(647\) −2.96214 −0.116454 −0.0582268 0.998303i \(-0.518545\pi\)
−0.0582268 + 0.998303i \(0.518545\pi\)
\(648\) 0 0
\(649\) −18.1619 −0.712917
\(650\) 0 0
\(651\) 7.73121 5.55678i 0.303010 0.217787i
\(652\) 0 0
\(653\) −0.829258 + 2.27837i −0.0324514 + 0.0891594i −0.954860 0.297055i \(-0.903995\pi\)
0.922409 + 0.386215i \(0.126218\pi\)
\(654\) 0 0
\(655\) −2.38780 + 13.5419i −0.0932992 + 0.529126i
\(656\) 0 0
\(657\) −13.7651 15.6063i −0.537029 0.608858i
\(658\) 0 0
\(659\) −14.7728 40.5879i −0.575466 1.58108i −0.795738 0.605641i \(-0.792917\pi\)
0.220272 0.975438i \(-0.429305\pi\)
\(660\) 0 0
\(661\) 11.3612 + 13.5398i 0.441901 + 0.526637i 0.940317 0.340301i \(-0.110529\pi\)
−0.498415 + 0.866938i \(0.666085\pi\)
\(662\) 0 0
\(663\) 9.28173 + 33.0063i 0.360472 + 1.28186i
\(664\) 0 0
\(665\) −11.6126 20.1137i −0.450318 0.779974i
\(666\) 0 0
\(667\) −6.64362 3.83570i −0.257242 0.148519i
\(668\) 0 0
\(669\) 17.5260 + 36.4057i 0.677595 + 1.40753i
\(670\) 0 0
\(671\) 1.65574 + 9.39015i 0.0639190 + 0.362503i
\(672\) 0 0
\(673\) 1.22568 + 1.02847i 0.0472465 + 0.0396445i 0.666105 0.745858i \(-0.267960\pi\)
−0.618859 + 0.785502i \(0.712405\pi\)
\(674\) 0 0
\(675\) 21.0164 49.8006i 0.808923 1.91683i
\(676\) 0 0
\(677\) 4.41092 5.25673i 0.169526 0.202033i −0.674592 0.738191i \(-0.735680\pi\)
0.844118 + 0.536158i \(0.180125\pi\)
\(678\) 0 0
\(679\) −2.69280 15.2717i −0.103340 0.586072i
\(680\) 0 0
\(681\) −35.5098 24.2172i −1.36074 0.928005i
\(682\) 0 0
\(683\) 4.11971 + 2.37852i 0.157636 + 0.0910113i 0.576743 0.816926i \(-0.304323\pi\)
−0.419107 + 0.907937i \(0.637657\pi\)
\(684\) 0 0
\(685\) 56.1590 32.4234i 2.14573 1.23884i
\(686\) 0 0
\(687\) −9.35400 2.38316i −0.356877 0.0909233i
\(688\) 0 0
\(689\) −10.7966 + 9.05946i −0.411320 + 0.345138i
\(690\) 0 0
\(691\) 4.35017 + 11.9520i 0.165488 + 0.454675i 0.994523 0.104523i \(-0.0333315\pi\)
−0.829034 + 0.559198i \(0.811109\pi\)
\(692\) 0 0
\(693\) −3.75566 + 24.8717i −0.142666 + 0.944798i
\(694\) 0 0
\(695\) 13.5392 76.7844i 0.513570 2.91260i
\(696\) 0 0
\(697\) 3.54655 + 1.29084i 0.134335 + 0.0488939i
\(698\) 0 0
\(699\) 10.5005 + 4.73969i 0.397164 + 0.179272i
\(700\) 0 0
\(701\) 12.2688i 0.463386i −0.972789 0.231693i \(-0.925573\pi\)
0.972789 0.231693i \(-0.0744265\pi\)
\(702\) 0 0
\(703\) −19.7244 −0.743921
\(704\) 0 0
\(705\) 36.3072 3.62815i 1.36741 0.136644i
\(706\) 0 0
\(707\) −3.98304 + 10.9433i −0.149797 + 0.411565i
\(708\) 0 0
\(709\) 25.9792 + 4.58083i 0.975668 + 0.172037i 0.638680 0.769473i \(-0.279481\pi\)
0.336988 + 0.941509i \(0.390592\pi\)
\(710\) 0 0
\(711\) −0.686054 + 0.418985i −0.0257290 + 0.0157132i
\(712\) 0 0
\(713\) −1.70624 + 0.621021i −0.0638993 + 0.0232574i
\(714\) 0 0
\(715\) −29.2320 34.8373i −1.09321 1.30284i
\(716\) 0 0
\(717\) −32.4366 31.6463i −1.21137 1.18185i
\(718\) 0 0
\(719\) 15.9411 + 27.6108i 0.594502 + 1.02971i 0.993617 + 0.112807i \(0.0359841\pi\)
−0.399115 + 0.916901i \(0.630683\pi\)
\(720\) 0 0
\(721\) −1.64289 + 2.84557i −0.0611845 + 0.105975i
\(722\) 0 0
\(723\) 43.3780 + 3.25661i 1.61325 + 0.121115i
\(724\) 0 0
\(725\) −82.6364 + 14.5710i −3.06904 + 0.541154i
\(726\) 0 0
\(727\) −30.8679 25.9013i −1.14483 0.960625i −0.145243 0.989396i \(-0.546396\pi\)
−0.999586 + 0.0287706i \(0.990841\pi\)
\(728\) 0 0
\(729\) −22.3207 + 15.1916i −0.826694 + 0.562652i
\(730\) 0 0
\(731\) −20.0202 + 23.8591i −0.740473 + 0.882461i
\(732\) 0 0
\(733\) 0.103428 0.0182371i 0.00382018 0.000673601i −0.171738 0.985143i \(-0.554938\pi\)
0.175558 + 0.984469i \(0.443827\pi\)
\(734\) 0 0
\(735\) −0.656222 + 8.74087i −0.0242051 + 0.322412i
\(736\) 0 0
\(737\) −9.98667 + 17.2974i −0.367864 + 0.637158i
\(738\) 0 0
\(739\) 26.3545 15.2158i 0.969466 0.559722i 0.0703928 0.997519i \(-0.477575\pi\)
0.899074 + 0.437798i \(0.144241\pi\)
\(740\) 0 0
\(741\) −10.1394 9.89237i −0.372481 0.363405i
\(742\) 0 0
\(743\) −12.9183 + 10.8397i −0.473926 + 0.397671i −0.848224 0.529637i \(-0.822328\pi\)
0.374298 + 0.927308i \(0.377884\pi\)
\(744\) 0 0
\(745\) −42.4539 + 15.4520i −1.55539 + 0.566116i
\(746\) 0 0
\(747\) −19.2451 31.5123i −0.704143 1.15298i
\(748\) 0 0
\(749\) −13.8241 2.43756i −0.505122 0.0890666i
\(750\) 0 0
\(751\) −14.6848 5.34482i −0.535855 0.195035i 0.0598958 0.998205i \(-0.480923\pi\)
−0.595751 + 0.803169i \(0.703145\pi\)
\(752\) 0 0
\(753\) 50.2379 5.02023i 1.83077 0.182947i
\(754\) 0 0
\(755\) 14.3029i 0.520536i
\(756\) 0 0
\(757\) 27.3201i 0.992967i −0.868046 0.496484i \(-0.834624\pi\)
0.868046 0.496484i \(-0.165376\pi\)
\(758\) 0 0
\(759\) 1.97355 4.37226i 0.0716353 0.158703i
\(760\) 0 0
\(761\) −14.1817 5.16172i −0.514086 0.187112i 0.0719327 0.997409i \(-0.477083\pi\)
−0.586019 + 0.810297i \(0.699306\pi\)
\(762\) 0 0
\(763\) 7.14552 + 1.25995i 0.258685 + 0.0456132i
\(764\) 0 0
\(765\) −8.74558 + 57.9172i −0.316197 + 2.09400i
\(766\) 0 0
\(767\) −23.3189 + 8.48740i −0.841998 + 0.306462i
\(768\) 0 0
\(769\) −11.4199 + 9.58242i −0.411811 + 0.345551i −0.825038 0.565077i \(-0.808846\pi\)
0.413226 + 0.910628i \(0.364402\pi\)
\(770\) 0 0
\(771\) 3.02906 11.8892i 0.109089 0.428178i
\(772\) 0 0
\(773\) −27.9615 + 16.1436i −1.00571 + 0.580644i −0.909931 0.414759i \(-0.863866\pi\)
−0.0957742 + 0.995403i \(0.530533\pi\)
\(774\) 0 0
\(775\) −9.93049 + 17.2001i −0.356714 + 0.617846i
\(776\) 0 0
\(777\) 39.5362 + 26.9631i 1.41835 + 0.967297i
\(778\) 0 0
\(779\) −1.53563 + 0.270772i −0.0550195 + 0.00970143i
\(780\) 0 0
\(781\) −14.3653 + 17.1199i −0.514031 + 0.612598i
\(782\) 0 0
\(783\) 38.6162 + 16.2965i 1.38003 + 0.582388i
\(784\) 0 0
\(785\) 44.0064 + 36.9258i 1.57066 + 1.31794i
\(786\) 0 0
\(787\) −39.6718 + 6.99522i −1.41415 + 0.249353i −0.827944 0.560811i \(-0.810490\pi\)
−0.586204 + 0.810163i \(0.699378\pi\)
\(788\) 0 0
\(789\) −8.61949 17.9047i −0.306862 0.637425i
\(790\) 0 0
\(791\) −10.4115 + 18.0333i −0.370191 + 0.641189i
\(792\) 0 0
\(793\) 6.51408 + 11.2827i 0.231322 + 0.400661i
\(794\) 0 0
\(795\) −23.1787 + 6.51809i −0.822062 + 0.231173i
\(796\) 0 0
\(797\) 2.35451 + 2.80599i 0.0834009 + 0.0993934i 0.806131 0.591737i \(-0.201558\pi\)
−0.722730 + 0.691130i \(0.757113\pi\)
\(798\) 0 0
\(799\) −25.0936 + 9.13334i −0.887749 + 0.323114i
\(800\) 0 0
\(801\) 16.3260 + 18.5097i 0.576852 + 0.654008i
\(802\) 0 0
\(803\) −19.8933 3.50773i −0.702020 0.123785i
\(804\) 0 0
\(805\) 3.67544 10.0982i 0.129542 0.355915i
\(806\) 0 0
\(807\) 15.3472 + 21.3527i 0.540248 + 0.751652i
\(808\) 0 0
\(809\) −41.2691 −1.45094 −0.725472 0.688252i \(-0.758378\pi\)
−0.725472 + 0.688252i \(0.758378\pi\)
\(810\) 0 0
\(811\) 25.6578i 0.900966i −0.892785 0.450483i \(-0.851252\pi\)
0.892785 0.450483i \(-0.148748\pi\)
\(812\) 0 0
\(813\) 18.6789 13.4254i 0.655097 0.470849i
\(814\) 0 0
\(815\) −21.9023 7.97178i −0.767204 0.279239i
\(816\) 0 0
\(817\) 2.23452 12.6726i 0.0781761 0.443359i
\(818\) 0 0
\(819\) 6.80094 + 33.6891i 0.237644 + 1.17719i
\(820\) 0 0
\(821\) −8.61194 23.6611i −0.300559 0.825778i −0.994403 0.105653i \(-0.966307\pi\)
0.693844 0.720125i \(-0.255916\pi\)
\(822\) 0 0
\(823\) −10.3916 + 8.71956i −0.362227 + 0.303945i −0.805678 0.592354i \(-0.798199\pi\)
0.443450 + 0.896299i \(0.353754\pi\)
\(824\) 0 0
\(825\) −14.2045 50.5117i −0.494536 1.75859i
\(826\) 0 0
\(827\) −9.62668 + 5.55796i −0.334752 + 0.193269i −0.657949 0.753062i \(-0.728576\pi\)
0.323197 + 0.946332i \(0.395242\pi\)
\(828\) 0 0
\(829\) −26.4493 15.2705i −0.918621 0.530366i −0.0354262 0.999372i \(-0.511279\pi\)
−0.883195 + 0.469006i \(0.844612\pi\)
\(830\) 0 0
\(831\) −4.01584 + 1.93326i −0.139308 + 0.0670640i
\(832\) 0 0
\(833\) −1.11397 6.31762i −0.0385967 0.218893i
\(834\) 0 0
\(835\) −50.2277 + 59.8590i −1.73820 + 2.07151i
\(836\) 0 0
\(837\) 8.82993 4.52233i 0.305207 0.156315i
\(838\) 0 0
\(839\) 3.67221 + 3.08135i 0.126779 + 0.106380i 0.703972 0.710227i \(-0.251408\pi\)
−0.577194 + 0.816607i \(0.695852\pi\)
\(840\) 0 0
\(841\) −6.26281 35.5181i −0.215959 1.22476i
\(842\) 0 0
\(843\) −26.4072 + 38.7210i −0.909512 + 1.33362i
\(844\) 0 0
\(845\) −9.62790 5.55867i −0.331210 0.191224i
\(846\) 0 0
\(847\) −3.62672 6.28165i −0.124615 0.215840i
\(848\) 0 0
\(849\) −44.8719 11.4322i −1.54000 0.392353i
\(850\) 0 0
\(851\) −5.86637 6.99127i −0.201097 0.239657i
\(852\) 0 0
\(853\) 7.52367 + 20.6711i 0.257605 + 0.707765i 0.999314 + 0.0370424i \(0.0117937\pi\)
−0.741708 + 0.670723i \(0.765984\pi\)
\(854\) 0 0
\(855\) −8.83523 22.5296i −0.302159 0.770498i
\(856\) 0 0
\(857\) −1.54554 + 8.76520i −0.0527947 + 0.299414i −0.999760 0.0219232i \(-0.993021\pi\)
0.946965 + 0.321337i \(0.104132\pi\)
\(858\) 0 0
\(859\) 7.12897 19.5867i 0.243237 0.668289i −0.756658 0.653811i \(-0.773169\pi\)
0.999895 0.0144780i \(-0.00460866\pi\)
\(860\) 0 0
\(861\) 3.44820 + 1.55645i 0.117514 + 0.0530436i
\(862\) 0 0
\(863\) 21.4666 0.730731 0.365365 0.930864i \(-0.380944\pi\)
0.365365 + 0.930864i \(0.380944\pi\)
\(864\) 0 0
\(865\) −43.2459 −1.47040
\(866\) 0 0
\(867\) −1.33468 13.3563i −0.0453282 0.453604i
\(868\) 0 0
\(869\) −0.266892 + 0.733280i −0.00905370 + 0.0248748i
\(870\) 0 0
\(871\) −4.73896 + 26.8760i −0.160573 + 0.910657i
\(872\) 0 0
\(873\) −0.398481 16.1532i −0.0134866 0.546705i
\(874\) 0 0
\(875\) −20.8794 57.3655i −0.705851 1.93931i
\(876\) 0 0
\(877\) 0.176559 + 0.210415i 0.00596198 + 0.00710521i 0.769017 0.639228i \(-0.220746\pi\)
−0.763055 + 0.646333i \(0.776302\pi\)
\(878\) 0 0
\(879\) 21.2886 21.8202i 0.718045 0.735977i
\(880\) 0 0
\(881\) −11.9250 20.6547i −0.401763 0.695873i 0.592176 0.805809i \(-0.298269\pi\)
−0.993939 + 0.109935i \(0.964936\pi\)
\(882\) 0 0
\(883\) −4.93626 2.84995i −0.166118 0.0959085i 0.414636 0.909987i \(-0.363909\pi\)
−0.580754 + 0.814079i \(0.697242\pi\)
\(884\) 0 0
\(885\) −42.2749 3.17379i −1.42106 0.106686i
\(886\) 0 0
\(887\) 2.98032 + 16.9022i 0.100069 + 0.567521i 0.993076 + 0.117477i \(0.0374806\pi\)
−0.893006 + 0.450044i \(0.851408\pi\)
\(888\) 0 0
\(889\) −10.5208 8.82801i −0.352857 0.296082i
\(890\) 0 0
\(891\) −7.73888 + 25.0409i −0.259262 + 0.838902i
\(892\) 0 0
\(893\) 7.09185 8.45174i 0.237320 0.282827i
\(894\) 0 0
\(895\) −2.88302 16.3504i −0.0963689 0.546535i
\(896\) 0 0
\(897\) 0.490694 6.53604i 0.0163838 0.218232i
\(898\) 0 0
\(899\) −13.3372 7.70026i −0.444822 0.256818i
\(900\) 0 0
\(901\) 15.2606 8.81073i 0.508405 0.293528i
\(902\) 0 0
\(903\) −21.8023 + 22.3468i −0.725536 + 0.743655i
\(904\) 0 0
\(905\) 57.1678 47.9695i 1.90032 1.59456i
\(906\) 0 0
\(907\) 14.9621 + 41.1081i 0.496809 + 1.36497i 0.894342 + 0.447383i \(0.147644\pi\)
−0.397533 + 0.917588i \(0.630134\pi\)
\(908\) 0 0
\(909\) −5.80622 + 10.6552i −0.192580 + 0.353410i
\(910\) 0 0
\(911\) −0.448255 + 2.54218i −0.0148514 + 0.0842262i −0.991333 0.131376i \(-0.958060\pi\)
0.976481 + 0.215602i \(0.0691715\pi\)
\(912\) 0 0
\(913\) −33.6816 12.2591i −1.11470 0.405717i
\(914\) 0 0
\(915\) 2.21308 + 22.1465i 0.0731622 + 0.732141i
\(916\) 0 0
\(917\) 10.0878i 0.333127i
\(918\) 0 0
\(919\) 59.9068 1.97614 0.988071 0.153998i \(-0.0492148\pi\)
0.988071 + 0.153998i \(0.0492148\pi\)
\(920\) 0 0
\(921\) −8.38961 + 18.5866i −0.276447 + 0.612449i
\(922\) 0 0
\(923\) −10.4439 + 28.6943i −0.343764 + 0.944483i
\(924\) 0 0
\(925\) −98.3103 17.3348i −3.23242 0.569963i
\(926\) 0 0
\(927\) −2.13537 + 2.67618i −0.0701346 + 0.0878974i
\(928\) 0 0
\(929\) −30.1626 + 10.9783i −0.989604 + 0.360186i −0.785567 0.618777i \(-0.787629\pi\)
−0.204037 + 0.978963i \(0.565406\pi\)
\(930\) 0 0
\(931\) 1.70366 + 2.03035i 0.0558354 + 0.0665420i
\(932\) 0 0
\(933\) 14.5415 57.0758i 0.476066 1.86858i
\(934\) 0 0
\(935\) 28.4294 + 49.2412i 0.929741 + 1.61036i
\(936\) 0 0
\(937\) 8.40875 14.5644i 0.274702 0.475797i −0.695358 0.718663i \(-0.744754\pi\)
0.970060 + 0.242866i \(0.0780875\pi\)
\(938\) 0 0
\(939\) −6.89663 + 10.1126i −0.225063 + 0.330011i
\(940\) 0 0
\(941\) −20.4427 + 3.60459i −0.666412 + 0.117506i −0.496613 0.867972i \(-0.665423\pi\)
−0.169799 + 0.985479i \(0.554312\pi\)
\(942\) 0 0
\(943\) −0.552695 0.463766i −0.0179982 0.0151023i
\(944\) 0 0
\(945\) −13.0883 + 57.2368i −0.425761 + 1.86191i
\(946\) 0 0
\(947\) 11.7887 14.0493i 0.383082 0.456540i −0.539702 0.841856i \(-0.681463\pi\)
0.922785 + 0.385316i \(0.125908\pi\)
\(948\) 0 0
\(949\) −27.1812 + 4.79278i −0.882340 + 0.155580i
\(950\) 0 0
\(951\) −8.46407 + 4.07468i −0.274466 + 0.132130i
\(952\) 0 0
\(953\) 1.73534 3.00570i 0.0562133 0.0973643i −0.836549 0.547892i \(-0.815431\pi\)
0.892763 + 0.450527i \(0.148764\pi\)
\(954\) 0 0
\(955\) 27.6325 15.9536i 0.894166 0.516247i
\(956\) 0 0
\(957\) 39.1676 11.0144i 1.26611 0.356044i
\(958\) 0 0
\(959\) −36.4426 + 30.5790i −1.17679 + 0.987447i
\(960\) 0 0
\(961\) 25.7051 9.35591i 0.829198 0.301803i
\(962\) 0 0
\(963\) −13.8637 4.66211i −0.446751 0.150234i
\(964\) 0 0
\(965\) 50.9782 + 8.98883i 1.64105 + 0.289361i
\(966\) 0 0
\(967\) 29.0536 + 10.5747i 0.934301 + 0.340058i 0.763913 0.645319i \(-0.223276\pi\)
0.170388 + 0.985377i \(0.445498\pi\)
\(968\) 0 0
\(969\) 10.3368 + 14.3817i 0.332065 + 0.462006i
\(970\) 0 0
\(971\) 0.278968i 0.00895249i −0.999990 0.00447625i \(-0.998575\pi\)
0.999990 0.00447625i \(-0.00142484\pi\)
\(972\) 0 0
\(973\) 57.1990i 1.83372i
\(974\) 0 0
\(975\) −41.8429 58.2165i −1.34005 1.86442i
\(976\) 0 0
\(977\) 20.1241 + 7.32457i 0.643827 + 0.234334i 0.643238 0.765666i \(-0.277591\pi\)
0.000588326 1.00000i \(0.499813\pi\)
\(978\) 0 0
\(979\) 23.5943 + 4.16032i 0.754078 + 0.132964i
\(980\) 0 0
\(981\) 7.16598 + 2.40979i 0.228792 + 0.0769387i
\(982\) 0 0
\(983\) 5.52983 2.01269i 0.176374 0.0641950i −0.252324 0.967643i \(-0.581195\pi\)
0.428698 + 0.903448i \(0.358973\pi\)
\(984\) 0 0
\(985\) 18.5800 15.5905i 0.592008 0.496753i
\(986\) 0 0
\(987\) −25.7686 + 7.24641i −0.820223 + 0.230656i
\(988\) 0 0
\(989\) 5.15636 2.97702i 0.163963 0.0946639i
\(990\) 0 0
\(991\) −17.5543 + 30.4049i −0.557631 + 0.965845i 0.440063 + 0.897967i \(0.354956\pi\)
−0.997694 + 0.0678778i \(0.978377\pi\)
\(992\) 0 0
\(993\) 8.46642 4.07581i 0.268674 0.129342i
\(994\) 0 0
\(995\) 34.2986 6.04777i 1.08734 0.191727i
\(996\) 0 0
\(997\) 16.1819 19.2848i 0.512485 0.610756i −0.446302 0.894883i \(-0.647259\pi\)
0.958787 + 0.284127i \(0.0917036\pi\)
\(998\) 0 0
\(999\) 36.5392 + 33.9309i 1.15605 + 1.07353i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.529.7 204
4.3 odd 2 216.2.t.a.205.17 yes 204
8.3 odd 2 216.2.t.a.205.31 yes 204
8.5 even 2 inner 864.2.bf.a.529.28 204
12.11 even 2 648.2.t.a.613.18 204
24.11 even 2 648.2.t.a.613.4 204
27.22 even 9 inner 864.2.bf.a.49.28 204
108.59 even 18 648.2.t.a.37.4 204
108.103 odd 18 216.2.t.a.157.31 yes 204
216.59 even 18 648.2.t.a.37.18 204
216.157 even 18 inner 864.2.bf.a.49.7 204
216.211 odd 18 216.2.t.a.157.17 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.17 204 216.211 odd 18
216.2.t.a.157.31 yes 204 108.103 odd 18
216.2.t.a.205.17 yes 204 4.3 odd 2
216.2.t.a.205.31 yes 204 8.3 odd 2
648.2.t.a.37.4 204 108.59 even 18
648.2.t.a.37.18 204 216.59 even 18
648.2.t.a.613.4 204 24.11 even 2
648.2.t.a.613.18 204 12.11 even 2
864.2.bf.a.49.7 204 216.157 even 18 inner
864.2.bf.a.49.28 204 27.22 even 9 inner
864.2.bf.a.529.7 204 1.1 even 1 trivial
864.2.bf.a.529.28 204 8.5 even 2 inner