Properties

Label 864.2.bf.a.529.16
Level $864$
Weight $2$
Character 864.529
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 529.16
Character \(\chi\) \(=\) 864.529
Dual form 864.2.bf.a.49.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.195652 + 1.72096i) q^{3} +(1.34802 - 3.70366i) q^{5} +(-0.00177522 + 0.0100678i) q^{7} +(-2.92344 - 0.673422i) q^{9} +(-0.343808 - 0.944604i) q^{11} +(2.57400 + 3.06757i) q^{13} +(6.11013 + 3.04453i) q^{15} +(-0.948987 - 1.64369i) q^{17} +(3.76245 + 2.17225i) q^{19} +(-0.0169790 - 0.00502488i) q^{21} +(-1.19728 - 6.79010i) q^{23} +(-8.06972 - 6.77130i) q^{25} +(1.73091 - 4.89938i) q^{27} +(3.82827 - 4.56236i) q^{29} +(-1.38501 - 7.85480i) q^{31} +(1.69290 - 0.406867i) q^{33} +(0.0348946 + 0.0201464i) q^{35} +(6.65823 - 3.84413i) q^{37} +(-5.78279 + 3.82958i) q^{39} +(4.44753 - 3.73192i) q^{41} +(1.42511 + 3.91546i) q^{43} +(-6.43499 + 9.91964i) q^{45} +(-1.37530 + 7.79973i) q^{47} +(6.57775 + 2.39411i) q^{49} +(3.01441 - 1.31158i) q^{51} -2.25567i q^{53} -3.96195 q^{55} +(-4.47450 + 6.05004i) q^{57} +(-2.24610 + 6.17111i) q^{59} +(-0.106836 - 0.0188381i) q^{61} +(0.0119696 - 0.0282371i) q^{63} +(14.8311 - 5.39806i) q^{65} +(-2.47342 - 2.94771i) q^{67} +(11.9198 - 0.731973i) q^{69} +(-0.442665 - 0.766718i) q^{71} +(-7.26116 + 12.5767i) q^{73} +(13.2320 - 12.5629i) q^{75} +(0.0101204 - 0.00178450i) q^{77} +(-2.46319 - 2.06686i) q^{79} +(8.09301 + 3.93742i) q^{81} +(9.76904 - 11.6423i) q^{83} +(-7.36694 + 1.29899i) q^{85} +(7.10265 + 7.48096i) q^{87} +(-1.45362 + 2.51775i) q^{89} +(-0.0354530 + 0.0204688i) q^{91} +(13.7888 - 0.846748i) q^{93} +(13.1172 - 11.0066i) q^{95} +(-12.0217 + 4.37554i) q^{97} +(0.368984 + 2.99302i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.195652 + 1.72096i −0.112960 + 0.993600i
\(4\) 0 0
\(5\) 1.34802 3.70366i 0.602854 1.65633i −0.142608 0.989779i \(-0.545549\pi\)
0.745462 0.666548i \(-0.232229\pi\)
\(6\) 0 0
\(7\) −0.00177522 + 0.0100678i −0.000670970 + 0.00380526i −0.985141 0.171745i \(-0.945059\pi\)
0.984470 + 0.175550i \(0.0561705\pi\)
\(8\) 0 0
\(9\) −2.92344 0.673422i −0.974480 0.224474i
\(10\) 0 0
\(11\) −0.343808 0.944604i −0.103662 0.284809i 0.877009 0.480474i \(-0.159535\pi\)
−0.980671 + 0.195666i \(0.937313\pi\)
\(12\) 0 0
\(13\) 2.57400 + 3.06757i 0.713899 + 0.850792i 0.994023 0.109172i \(-0.0348200\pi\)
−0.280124 + 0.959964i \(0.590376\pi\)
\(14\) 0 0
\(15\) 6.11013 + 3.04453i 1.57763 + 0.786094i
\(16\) 0 0
\(17\) −0.948987 1.64369i −0.230163 0.398654i 0.727693 0.685903i \(-0.240593\pi\)
−0.957856 + 0.287249i \(0.907259\pi\)
\(18\) 0 0
\(19\) 3.76245 + 2.17225i 0.863166 + 0.498349i 0.865071 0.501649i \(-0.167273\pi\)
−0.00190536 + 0.999998i \(0.500606\pi\)
\(20\) 0 0
\(21\) −0.0169790 0.00502488i −0.00370511 0.00109652i
\(22\) 0 0
\(23\) −1.19728 6.79010i −0.249650 1.41583i −0.809442 0.587200i \(-0.800230\pi\)
0.559792 0.828633i \(-0.310881\pi\)
\(24\) 0 0
\(25\) −8.06972 6.77130i −1.61394 1.35426i
\(26\) 0 0
\(27\) 1.73091 4.89938i 0.333115 0.942886i
\(28\) 0 0
\(29\) 3.82827 4.56236i 0.710892 0.847208i −0.282820 0.959173i \(-0.591270\pi\)
0.993712 + 0.111965i \(0.0357143\pi\)
\(30\) 0 0
\(31\) −1.38501 7.85480i −0.248756 1.41076i −0.811606 0.584205i \(-0.801406\pi\)
0.562850 0.826559i \(-0.309705\pi\)
\(32\) 0 0
\(33\) 1.69290 0.406867i 0.294696 0.0708264i
\(34\) 0 0
\(35\) 0.0348946 + 0.0201464i 0.00589826 + 0.00340536i
\(36\) 0 0
\(37\) 6.65823 3.84413i 1.09461 0.631971i 0.159807 0.987148i \(-0.448913\pi\)
0.934799 + 0.355177i \(0.115579\pi\)
\(38\) 0 0
\(39\) −5.78279 + 3.82958i −0.925988 + 0.613224i
\(40\) 0 0
\(41\) 4.44753 3.73192i 0.694588 0.582828i −0.225641 0.974211i \(-0.572447\pi\)
0.920228 + 0.391382i \(0.128003\pi\)
\(42\) 0 0
\(43\) 1.42511 + 3.91546i 0.217327 + 0.597102i 0.999668 0.0257481i \(-0.00819679\pi\)
−0.782341 + 0.622850i \(0.785975\pi\)
\(44\) 0 0
\(45\) −6.43499 + 9.91964i −0.959272 + 1.47873i
\(46\) 0 0
\(47\) −1.37530 + 7.79973i −0.200608 + 1.13771i 0.703594 + 0.710602i \(0.251578\pi\)
−0.904202 + 0.427105i \(0.859534\pi\)
\(48\) 0 0
\(49\) 6.57775 + 2.39411i 0.939679 + 0.342015i
\(50\) 0 0
\(51\) 3.01441 1.31158i 0.422102 0.183658i
\(52\) 0 0
\(53\) 2.25567i 0.309840i −0.987927 0.154920i \(-0.950488\pi\)
0.987927 0.154920i \(-0.0495120\pi\)
\(54\) 0 0
\(55\) −3.96195 −0.534230
\(56\) 0 0
\(57\) −4.47450 + 6.05004i −0.592663 + 0.801348i
\(58\) 0 0
\(59\) −2.24610 + 6.17111i −0.292417 + 0.803410i 0.703294 + 0.710899i \(0.251712\pi\)
−0.995712 + 0.0925111i \(0.970511\pi\)
\(60\) 0 0
\(61\) −0.106836 0.0188381i −0.0136789 0.00241197i 0.166805 0.985990i \(-0.446655\pi\)
−0.180483 + 0.983578i \(0.557766\pi\)
\(62\) 0 0
\(63\) 0.0119696 0.0282371i 0.00150803 0.00355754i
\(64\) 0 0
\(65\) 14.8311 5.39806i 1.83957 0.669547i
\(66\) 0 0
\(67\) −2.47342 2.94771i −0.302177 0.360120i 0.593494 0.804839i \(-0.297748\pi\)
−0.895670 + 0.444718i \(0.853304\pi\)
\(68\) 0 0
\(69\) 11.9198 0.731973i 1.43497 0.0881192i
\(70\) 0 0
\(71\) −0.442665 0.766718i −0.0525346 0.0909926i 0.838562 0.544806i \(-0.183397\pi\)
−0.891097 + 0.453813i \(0.850063\pi\)
\(72\) 0 0
\(73\) −7.26116 + 12.5767i −0.849854 + 1.47199i 0.0314838 + 0.999504i \(0.489977\pi\)
−0.881338 + 0.472486i \(0.843357\pi\)
\(74\) 0 0
\(75\) 13.2320 12.5629i 1.52790 1.45064i
\(76\) 0 0
\(77\) 0.0101204 0.00178450i 0.00115333 0.000203362i
\(78\) 0 0
\(79\) −2.46319 2.06686i −0.277131 0.232540i 0.493619 0.869678i \(-0.335674\pi\)
−0.770750 + 0.637138i \(0.780118\pi\)
\(80\) 0 0
\(81\) 8.09301 + 3.93742i 0.899223 + 0.437491i
\(82\) 0 0
\(83\) 9.76904 11.6423i 1.07229 1.27791i 0.113579 0.993529i \(-0.463768\pi\)
0.958712 0.284378i \(-0.0917872\pi\)
\(84\) 0 0
\(85\) −7.36694 + 1.29899i −0.799057 + 0.140895i
\(86\) 0 0
\(87\) 7.10265 + 7.48096i 0.761483 + 0.802043i
\(88\) 0 0
\(89\) −1.45362 + 2.51775i −0.154084 + 0.266881i −0.932725 0.360588i \(-0.882576\pi\)
0.778641 + 0.627469i \(0.215909\pi\)
\(90\) 0 0
\(91\) −0.0354530 + 0.0204688i −0.00371649 + 0.00214572i
\(92\) 0 0
\(93\) 13.7888 0.846748i 1.42983 0.0878037i
\(94\) 0 0
\(95\) 13.1172 11.0066i 1.34579 1.12925i
\(96\) 0 0
\(97\) −12.0217 + 4.37554i −1.22062 + 0.444269i −0.870375 0.492389i \(-0.836124\pi\)
−0.350244 + 0.936658i \(0.613901\pi\)
\(98\) 0 0
\(99\) 0.368984 + 2.99302i 0.0370843 + 0.300810i
\(100\) 0 0
\(101\) −8.25225 1.45509i −0.821129 0.144787i −0.252727 0.967538i \(-0.581327\pi\)
−0.568403 + 0.822751i \(0.692438\pi\)
\(102\) 0 0
\(103\) −6.53199 2.37745i −0.643617 0.234257i −0.000469418 1.00000i \(-0.500149\pi\)
−0.643147 + 0.765743i \(0.722372\pi\)
\(104\) 0 0
\(105\) −0.0414985 + 0.0561107i −0.00404984 + 0.00547584i
\(106\) 0 0
\(107\) 14.2756i 1.38007i 0.723776 + 0.690035i \(0.242405\pi\)
−0.723776 + 0.690035i \(0.757595\pi\)
\(108\) 0 0
\(109\) 4.88426i 0.467827i 0.972257 + 0.233914i \(0.0751533\pi\)
−0.972257 + 0.233914i \(0.924847\pi\)
\(110\) 0 0
\(111\) 5.31292 + 12.2107i 0.504280 + 1.15899i
\(112\) 0 0
\(113\) 4.20463 + 1.53036i 0.395538 + 0.143964i 0.532129 0.846663i \(-0.321392\pi\)
−0.136591 + 0.990628i \(0.543614\pi\)
\(114\) 0 0
\(115\) −26.7622 4.71889i −2.49559 0.440039i
\(116\) 0 0
\(117\) −5.45916 10.7013i −0.504700 0.989331i
\(118\) 0 0
\(119\) 0.0182330 0.00663627i 0.00167142 0.000608346i
\(120\) 0 0
\(121\) 7.65242 6.42114i 0.695674 0.583740i
\(122\) 0 0
\(123\) 5.55233 + 8.38420i 0.500637 + 0.755978i
\(124\) 0 0
\(125\) −18.8902 + 10.9063i −1.68959 + 0.975485i
\(126\) 0 0
\(127\) 0.733337 1.27018i 0.0650731 0.112710i −0.831653 0.555295i \(-0.812605\pi\)
0.896726 + 0.442585i \(0.145939\pi\)
\(128\) 0 0
\(129\) −7.01720 + 1.68650i −0.617830 + 0.148488i
\(130\) 0 0
\(131\) 11.2373 1.98143i 0.981805 0.173119i 0.340366 0.940293i \(-0.389449\pi\)
0.641439 + 0.767174i \(0.278338\pi\)
\(132\) 0 0
\(133\) −0.0285489 + 0.0340233i −0.00247551 + 0.00295019i
\(134\) 0 0
\(135\) −15.8123 13.0152i −1.36091 1.12017i
\(136\) 0 0
\(137\) 3.27137 + 2.74501i 0.279492 + 0.234522i 0.771748 0.635929i \(-0.219383\pi\)
−0.492255 + 0.870451i \(0.663827\pi\)
\(138\) 0 0
\(139\) −1.04893 + 0.184955i −0.0889693 + 0.0156877i −0.217956 0.975959i \(-0.569939\pi\)
0.128986 + 0.991646i \(0.458828\pi\)
\(140\) 0 0
\(141\) −13.1540 3.89288i −1.10776 0.327840i
\(142\) 0 0
\(143\) 2.01268 3.48606i 0.168309 0.291519i
\(144\) 0 0
\(145\) −11.7368 20.3288i −0.974690 1.68821i
\(146\) 0 0
\(147\) −5.40712 + 10.8517i −0.445972 + 0.895030i
\(148\) 0 0
\(149\) 1.34236 + 1.59976i 0.109970 + 0.131058i 0.818222 0.574903i \(-0.194960\pi\)
−0.708251 + 0.705960i \(0.750516\pi\)
\(150\) 0 0
\(151\) −9.89970 + 3.60320i −0.805626 + 0.293224i −0.711816 0.702366i \(-0.752127\pi\)
−0.0938105 + 0.995590i \(0.529905\pi\)
\(152\) 0 0
\(153\) 1.66741 + 5.44431i 0.134802 + 0.440146i
\(154\) 0 0
\(155\) −30.9586 5.45883i −2.48665 0.438464i
\(156\) 0 0
\(157\) −7.61747 + 20.9288i −0.607940 + 1.67030i 0.126779 + 0.991931i \(0.459536\pi\)
−0.734720 + 0.678371i \(0.762686\pi\)
\(158\) 0 0
\(159\) 3.88193 + 0.441328i 0.307857 + 0.0349996i
\(160\) 0 0
\(161\) 0.0704866 0.00555512
\(162\) 0 0
\(163\) 8.64571i 0.677184i −0.940933 0.338592i \(-0.890049\pi\)
0.940933 0.338592i \(-0.109951\pi\)
\(164\) 0 0
\(165\) 0.775166 6.81838i 0.0603466 0.530810i
\(166\) 0 0
\(167\) 7.93163 + 2.88688i 0.613768 + 0.223393i 0.630151 0.776473i \(-0.282993\pi\)
−0.0163833 + 0.999866i \(0.505215\pi\)
\(168\) 0 0
\(169\) −0.527105 + 2.98936i −0.0405465 + 0.229951i
\(170\) 0 0
\(171\) −9.53646 8.88417i −0.729271 0.679389i
\(172\) 0 0
\(173\) 4.65008 + 12.7760i 0.353539 + 0.971340i 0.981224 + 0.192872i \(0.0617803\pi\)
−0.627685 + 0.778467i \(0.715997\pi\)
\(174\) 0 0
\(175\) 0.0824974 0.0692236i 0.00623622 0.00523281i
\(176\) 0 0
\(177\) −10.1808 5.07285i −0.765236 0.381299i
\(178\) 0 0
\(179\) 0.257187 0.148487i 0.0192231 0.0110985i −0.490358 0.871521i \(-0.663134\pi\)
0.509581 + 0.860423i \(0.329801\pi\)
\(180\) 0 0
\(181\) −1.63626 0.944694i −0.121622 0.0702186i 0.437955 0.898997i \(-0.355703\pi\)
−0.559577 + 0.828778i \(0.689036\pi\)
\(182\) 0 0
\(183\) 0.0533224 0.180175i 0.00394170 0.0133189i
\(184\) 0 0
\(185\) −5.26192 29.8418i −0.386864 2.19401i
\(186\) 0 0
\(187\) −1.22637 + 1.46153i −0.0896811 + 0.106878i
\(188\) 0 0
\(189\) 0.0462531 + 0.0261239i 0.00336442 + 0.00190024i
\(190\) 0 0
\(191\) −10.6897 8.96976i −0.773483 0.649029i 0.168116 0.985767i \(-0.446232\pi\)
−0.941598 + 0.336738i \(0.890676\pi\)
\(192\) 0 0
\(193\) 1.65530 + 9.38768i 0.119151 + 0.675740i 0.984611 + 0.174761i \(0.0559153\pi\)
−0.865460 + 0.500979i \(0.832974\pi\)
\(194\) 0 0
\(195\) 6.38814 + 26.5799i 0.457465 + 1.90342i
\(196\) 0 0
\(197\) −7.61046 4.39390i −0.542223 0.313052i 0.203757 0.979022i \(-0.434685\pi\)
−0.745979 + 0.665969i \(0.768018\pi\)
\(198\) 0 0
\(199\) −4.70991 8.15780i −0.333876 0.578291i 0.649392 0.760454i \(-0.275023\pi\)
−0.983268 + 0.182163i \(0.941690\pi\)
\(200\) 0 0
\(201\) 5.55684 3.67995i 0.391949 0.259563i
\(202\) 0 0
\(203\) 0.0391368 + 0.0466414i 0.00274686 + 0.00327358i
\(204\) 0 0
\(205\) −7.82640 21.5029i −0.546619 1.50182i
\(206\) 0 0
\(207\) −1.07243 + 20.6567i −0.0745393 + 1.43574i
\(208\) 0 0
\(209\) 0.758358 4.30086i 0.0524567 0.297497i
\(210\) 0 0
\(211\) −4.12560 + 11.3350i −0.284018 + 0.780333i 0.712855 + 0.701311i \(0.247402\pi\)
−0.996873 + 0.0790214i \(0.974820\pi\)
\(212\) 0 0
\(213\) 1.40610 0.611800i 0.0963445 0.0419198i
\(214\) 0 0
\(215\) 16.4226 1.12001
\(216\) 0 0
\(217\) 0.0815391 0.00553524
\(218\) 0 0
\(219\) −20.2234 14.9569i −1.36657 1.01069i
\(220\) 0 0
\(221\) 2.59946 7.14195i 0.174858 0.480420i
\(222\) 0 0
\(223\) −0.616341 + 3.49544i −0.0412732 + 0.234072i −0.998465 0.0553815i \(-0.982362\pi\)
0.957192 + 0.289454i \(0.0934736\pi\)
\(224\) 0 0
\(225\) 19.0314 + 25.2298i 1.26876 + 1.68199i
\(226\) 0 0
\(227\) −3.72066 10.2224i −0.246949 0.678486i −0.999794 0.0202886i \(-0.993542\pi\)
0.752846 0.658197i \(-0.228681\pi\)
\(228\) 0 0
\(229\) 5.05083 + 6.01935i 0.333769 + 0.397770i 0.906661 0.421861i \(-0.138623\pi\)
−0.572892 + 0.819631i \(0.694179\pi\)
\(230\) 0 0
\(231\) 0.00109098 + 0.0177660i 7.17811e−5 + 0.00116892i
\(232\) 0 0
\(233\) 12.0985 + 20.9553i 0.792602 + 1.37283i 0.924351 + 0.381544i \(0.124608\pi\)
−0.131749 + 0.991283i \(0.542059\pi\)
\(234\) 0 0
\(235\) 27.0336 + 15.6079i 1.76348 + 1.01814i
\(236\) 0 0
\(237\) 4.03893 3.83468i 0.262357 0.249089i
\(238\) 0 0
\(239\) 5.23764 + 29.7041i 0.338795 + 1.92140i 0.385963 + 0.922514i \(0.373869\pi\)
−0.0471684 + 0.998887i \(0.515020\pi\)
\(240\) 0 0
\(241\) −1.91756 1.60903i −0.123521 0.103647i 0.578935 0.815374i \(-0.303469\pi\)
−0.702456 + 0.711727i \(0.747913\pi\)
\(242\) 0 0
\(243\) −8.35958 + 13.1574i −0.536267 + 0.844048i
\(244\) 0 0
\(245\) 17.7339 21.1344i 1.13298 1.35023i
\(246\) 0 0
\(247\) 3.02101 + 17.1330i 0.192222 + 1.09015i
\(248\) 0 0
\(249\) 18.1246 + 19.0900i 1.14860 + 1.20978i
\(250\) 0 0
\(251\) −14.5027 8.37314i −0.915402 0.528508i −0.0332368 0.999448i \(-0.510582\pi\)
−0.882165 + 0.470940i \(0.843915\pi\)
\(252\) 0 0
\(253\) −6.00232 + 3.46544i −0.377363 + 0.217870i
\(254\) 0 0
\(255\) −0.794157 12.9324i −0.0497320 0.809858i
\(256\) 0 0
\(257\) −20.4870 + 17.1907i −1.27795 + 1.07232i −0.284423 + 0.958699i \(0.591802\pi\)
−0.993524 + 0.113626i \(0.963753\pi\)
\(258\) 0 0
\(259\) 0.0268820 + 0.0738578i 0.00167037 + 0.00458930i
\(260\) 0 0
\(261\) −14.2641 + 10.7597i −0.882927 + 0.666011i
\(262\) 0 0
\(263\) 0.762315 4.32330i 0.0470064 0.266586i −0.952242 0.305343i \(-0.901229\pi\)
0.999249 + 0.0387571i \(0.0123398\pi\)
\(264\) 0 0
\(265\) −8.35424 3.04070i −0.513197 0.186788i
\(266\) 0 0
\(267\) −4.04855 2.99424i −0.247767 0.183244i
\(268\) 0 0
\(269\) 0.741050i 0.0451826i 0.999745 + 0.0225913i \(0.00719165\pi\)
−0.999745 + 0.0225913i \(0.992808\pi\)
\(270\) 0 0
\(271\) 14.1450 0.859245 0.429622 0.903009i \(-0.358647\pi\)
0.429622 + 0.903009i \(0.358647\pi\)
\(272\) 0 0
\(273\) −0.0282897 0.0650182i −0.00171217 0.00393508i
\(274\) 0 0
\(275\) −3.62176 + 9.95071i −0.218400 + 0.600050i
\(276\) 0 0
\(277\) 8.42697 + 1.48590i 0.506327 + 0.0892792i 0.420976 0.907072i \(-0.361688\pi\)
0.0853514 + 0.996351i \(0.472799\pi\)
\(278\) 0 0
\(279\) −1.24059 + 23.8958i −0.0742724 + 1.43060i
\(280\) 0 0
\(281\) −17.6483 + 6.42344i −1.05281 + 0.383191i −0.809722 0.586814i \(-0.800382\pi\)
−0.243086 + 0.970005i \(0.578160\pi\)
\(282\) 0 0
\(283\) 16.5234 + 19.6918i 0.982214 + 1.17056i 0.985347 + 0.170562i \(0.0545582\pi\)
−0.00313343 + 0.999995i \(0.500997\pi\)
\(284\) 0 0
\(285\) 16.3756 + 24.7276i 0.970005 + 1.46474i
\(286\) 0 0
\(287\) 0.0296768 + 0.0514017i 0.00175177 + 0.00303415i
\(288\) 0 0
\(289\) 6.69885 11.6027i 0.394050 0.682514i
\(290\) 0 0
\(291\) −5.17808 21.5450i −0.303544 1.26299i
\(292\) 0 0
\(293\) 14.3663 2.53317i 0.839288 0.147989i 0.262550 0.964918i \(-0.415436\pi\)
0.576738 + 0.816929i \(0.304325\pi\)
\(294\) 0 0
\(295\) 19.8279 + 16.6376i 1.15442 + 0.968678i
\(296\) 0 0
\(297\) −5.22308 + 0.0494167i −0.303074 + 0.00286745i
\(298\) 0 0
\(299\) 17.7473 21.1504i 1.02635 1.22316i
\(300\) 0 0
\(301\) −0.0419499 + 0.00739689i −0.00241795 + 0.000426350i
\(302\) 0 0
\(303\) 4.11874 13.9171i 0.236615 0.799518i
\(304\) 0 0
\(305\) −0.213787 + 0.370290i −0.0122414 + 0.0212028i
\(306\) 0 0
\(307\) 8.07578 4.66255i 0.460909 0.266106i −0.251517 0.967853i \(-0.580930\pi\)
0.712426 + 0.701747i \(0.247596\pi\)
\(308\) 0 0
\(309\) 5.36951 10.7762i 0.305461 0.613035i
\(310\) 0 0
\(311\) 6.15253 5.16259i 0.348878 0.292743i −0.451461 0.892291i \(-0.649097\pi\)
0.800339 + 0.599547i \(0.204653\pi\)
\(312\) 0 0
\(313\) 31.0694 11.3083i 1.75615 0.639185i 0.756261 0.654269i \(-0.227024\pi\)
0.999886 + 0.0150840i \(0.00480156\pi\)
\(314\) 0 0
\(315\) −0.0884452 0.0823956i −0.00498332 0.00464247i
\(316\) 0 0
\(317\) −25.6721 4.52669i −1.44189 0.254244i −0.602650 0.798006i \(-0.705888\pi\)
−0.839240 + 0.543762i \(0.817000\pi\)
\(318\) 0 0
\(319\) −5.62581 2.04763i −0.314985 0.114645i
\(320\) 0 0
\(321\) −24.5677 2.79305i −1.37124 0.155893i
\(322\) 0 0
\(323\) 8.24576i 0.458806i
\(324\) 0 0
\(325\) 42.1838i 2.33993i
\(326\) 0 0
\(327\) −8.40564 0.955617i −0.464833 0.0528457i
\(328\) 0 0
\(329\) −0.0760844 0.0276925i −0.00419467 0.00152674i
\(330\) 0 0
\(331\) 2.73256 + 0.481823i 0.150195 + 0.0264834i 0.248240 0.968699i \(-0.420148\pi\)
−0.0980451 + 0.995182i \(0.531259\pi\)
\(332\) 0 0
\(333\) −22.0537 + 6.75429i −1.20853 + 0.370133i
\(334\) 0 0
\(335\) −14.2516 + 5.18714i −0.778645 + 0.283404i
\(336\) 0 0
\(337\) −10.0326 + 8.41837i −0.546512 + 0.458578i −0.873758 0.486361i \(-0.838324\pi\)
0.327246 + 0.944939i \(0.393879\pi\)
\(338\) 0 0
\(339\) −3.45634 + 6.93660i −0.187723 + 0.376744i
\(340\) 0 0
\(341\) −6.94350 + 4.00883i −0.376012 + 0.217090i
\(342\) 0 0
\(343\) −0.0715611 + 0.123947i −0.00386393 + 0.00669253i
\(344\) 0 0
\(345\) 13.3571 45.1335i 0.719124 2.42991i
\(346\) 0 0
\(347\) 14.2864 2.51907i 0.766932 0.135231i 0.223523 0.974699i \(-0.428244\pi\)
0.543409 + 0.839468i \(0.317133\pi\)
\(348\) 0 0
\(349\) −15.0245 + 17.9055i −0.804242 + 0.958459i −0.999753 0.0222430i \(-0.992919\pi\)
0.195510 + 0.980702i \(0.437364\pi\)
\(350\) 0 0
\(351\) 19.4846 7.30130i 1.04001 0.389714i
\(352\) 0 0
\(353\) −26.1780 21.9660i −1.39332 1.16913i −0.963976 0.265988i \(-0.914302\pi\)
−0.429340 0.903143i \(-0.641254\pi\)
\(354\) 0 0
\(355\) −3.43638 + 0.605927i −0.182384 + 0.0321593i
\(356\) 0 0
\(357\) 0.00785346 + 0.0326768i 0.000415649 + 0.00172944i
\(358\) 0 0
\(359\) 13.5391 23.4504i 0.714565 1.23766i −0.248562 0.968616i \(-0.579958\pi\)
0.963127 0.269047i \(-0.0867088\pi\)
\(360\) 0 0
\(361\) −0.0626343 0.108486i −0.00329654 0.00570978i
\(362\) 0 0
\(363\) 9.55334 + 14.4259i 0.501420 + 0.757161i
\(364\) 0 0
\(365\) 36.7916 + 43.8465i 1.92576 + 2.29503i
\(366\) 0 0
\(367\) −4.30354 + 1.56636i −0.224643 + 0.0817633i −0.451890 0.892074i \(-0.649250\pi\)
0.227247 + 0.973837i \(0.427028\pi\)
\(368\) 0 0
\(369\) −15.5152 + 7.91498i −0.807691 + 0.412038i
\(370\) 0 0
\(371\) 0.0227096 + 0.00400432i 0.00117902 + 0.000207894i
\(372\) 0 0
\(373\) −5.86591 + 16.1165i −0.303725 + 0.834479i 0.690119 + 0.723696i \(0.257558\pi\)
−0.993845 + 0.110783i \(0.964664\pi\)
\(374\) 0 0
\(375\) −15.0734 34.6432i −0.778385 1.78897i
\(376\) 0 0
\(377\) 23.8493 1.22830
\(378\) 0 0
\(379\) 0.380673i 0.0195538i −0.999952 0.00977692i \(-0.996888\pi\)
0.999952 0.00977692i \(-0.00311214\pi\)
\(380\) 0 0
\(381\) 2.04245 + 1.51056i 0.104638 + 0.0773884i
\(382\) 0 0
\(383\) −34.6697 12.6187i −1.77154 0.644788i −0.999963 0.00865253i \(-0.997246\pi\)
−0.771578 0.636135i \(-0.780532\pi\)
\(384\) 0 0
\(385\) 0.00703334 0.0398880i 0.000358452 0.00203288i
\(386\) 0 0
\(387\) −1.52947 12.4063i −0.0777473 0.630649i
\(388\) 0 0
\(389\) −2.44660 6.72197i −0.124047 0.340817i 0.862088 0.506758i \(-0.169156\pi\)
−0.986136 + 0.165941i \(0.946934\pi\)
\(390\) 0 0
\(391\) −10.0246 + 8.41167i −0.506968 + 0.425397i
\(392\) 0 0
\(393\) 1.21138 + 19.7266i 0.0611060 + 0.995077i
\(394\) 0 0
\(395\) −10.9754 + 6.33665i −0.552233 + 0.318832i
\(396\) 0 0
\(397\) 22.6986 + 13.1051i 1.13921 + 0.657724i 0.946235 0.323479i \(-0.104853\pi\)
0.192976 + 0.981203i \(0.438186\pi\)
\(398\) 0 0
\(399\) −0.0529672 0.0557885i −0.00265168 0.00279292i
\(400\) 0 0
\(401\) 3.00071 + 17.0179i 0.149848 + 0.849832i 0.963346 + 0.268263i \(0.0864497\pi\)
−0.813497 + 0.581569i \(0.802439\pi\)
\(402\) 0 0
\(403\) 20.5302 24.4669i 1.02268 1.21878i
\(404\) 0 0
\(405\) 25.4924 24.6660i 1.26673 1.22566i
\(406\) 0 0
\(407\) −5.92033 4.96775i −0.293460 0.246242i
\(408\) 0 0
\(409\) −4.27076 24.2207i −0.211176 1.19764i −0.887421 0.460960i \(-0.847505\pi\)
0.676245 0.736677i \(-0.263606\pi\)
\(410\) 0 0
\(411\) −5.36412 + 5.09285i −0.264592 + 0.251212i
\(412\) 0 0
\(413\) −0.0581420 0.0335683i −0.00286098 0.00165179i
\(414\) 0 0
\(415\) −29.9502 51.8753i −1.47020 2.54646i
\(416\) 0 0
\(417\) −0.113075 1.84136i −0.00553731 0.0901720i
\(418\) 0 0
\(419\) 8.86909 + 10.5698i 0.433283 + 0.516367i 0.937867 0.346996i \(-0.112798\pi\)
−0.504583 + 0.863363i \(0.668354\pi\)
\(420\) 0 0
\(421\) −12.5029 34.3515i −0.609355 1.67419i −0.731637 0.681695i \(-0.761243\pi\)
0.122281 0.992496i \(-0.460979\pi\)
\(422\) 0 0
\(423\) 9.27312 21.8759i 0.450875 1.06364i
\(424\) 0 0
\(425\) −3.47188 + 19.6900i −0.168411 + 0.955106i
\(426\) 0 0
\(427\) 0.000379315 0.00104216i 1.83563e−5 5.04336e-5i
\(428\) 0 0
\(429\) 5.60561 + 4.14581i 0.270641 + 0.200162i
\(430\) 0 0
\(431\) −7.44743 −0.358730 −0.179365 0.983783i \(-0.557404\pi\)
−0.179365 + 0.983783i \(0.557404\pi\)
\(432\) 0 0
\(433\) 20.9407 1.00634 0.503172 0.864186i \(-0.332166\pi\)
0.503172 + 0.864186i \(0.332166\pi\)
\(434\) 0 0
\(435\) 37.2815 16.2213i 1.78751 0.777751i
\(436\) 0 0
\(437\) 10.2451 28.1482i 0.490090 1.34651i
\(438\) 0 0
\(439\) −4.88555 + 27.7073i −0.233174 + 1.32240i 0.613250 + 0.789889i \(0.289862\pi\)
−0.846424 + 0.532509i \(0.821249\pi\)
\(440\) 0 0
\(441\) −17.6174 11.4286i −0.838925 0.544220i
\(442\) 0 0
\(443\) 5.98423 + 16.4415i 0.284319 + 0.781161i 0.996835 + 0.0795043i \(0.0253338\pi\)
−0.712515 + 0.701657i \(0.752444\pi\)
\(444\) 0 0
\(445\) 7.36537 + 8.77771i 0.349152 + 0.416103i
\(446\) 0 0
\(447\) −3.01577 + 1.99716i −0.142641 + 0.0944624i
\(448\) 0 0
\(449\) −2.99357 5.18501i −0.141275 0.244696i 0.786702 0.617333i \(-0.211787\pi\)
−0.927977 + 0.372637i \(0.878454\pi\)
\(450\) 0 0
\(451\) −5.05428 2.91809i −0.237997 0.137408i
\(452\) 0 0
\(453\) −4.26407 17.7420i −0.200344 0.833593i
\(454\) 0 0
\(455\) 0.0280181 + 0.158899i 0.00131351 + 0.00744928i
\(456\) 0 0
\(457\) 18.6279 + 15.6306i 0.871375 + 0.731170i 0.964387 0.264495i \(-0.0852052\pi\)
−0.0930125 + 0.995665i \(0.529650\pi\)
\(458\) 0 0
\(459\) −9.69570 + 1.80436i −0.452556 + 0.0842201i
\(460\) 0 0
\(461\) −10.3010 + 12.2762i −0.479764 + 0.571761i −0.950584 0.310469i \(-0.899514\pi\)
0.470819 + 0.882230i \(0.343958\pi\)
\(462\) 0 0
\(463\) −0.124840 0.708003i −0.00580181 0.0329037i 0.981769 0.190076i \(-0.0608734\pi\)
−0.987571 + 0.157172i \(0.949762\pi\)
\(464\) 0 0
\(465\) 15.4516 52.2106i 0.716550 2.42121i
\(466\) 0 0
\(467\) 16.8793 + 9.74528i 0.781082 + 0.450958i 0.836814 0.547488i \(-0.184416\pi\)
−0.0557318 + 0.998446i \(0.517749\pi\)
\(468\) 0 0
\(469\) 0.0340678 0.0196690i 0.00157310 0.000908231i
\(470\) 0 0
\(471\) −34.5274 17.2042i −1.59094 0.792726i
\(472\) 0 0
\(473\) 3.20859 2.69233i 0.147531 0.123794i
\(474\) 0 0
\(475\) −15.6530 43.0062i −0.718207 1.97326i
\(476\) 0 0
\(477\) −1.51902 + 6.59432i −0.0695511 + 0.301933i
\(478\) 0 0
\(479\) −1.69552 + 9.61575i −0.0774701 + 0.439355i 0.921259 + 0.388950i \(0.127162\pi\)
−0.998729 + 0.0504046i \(0.983949\pi\)
\(480\) 0 0
\(481\) 28.9304 + 10.5298i 1.31911 + 0.480118i
\(482\) 0 0
\(483\) −0.0137909 + 0.121305i −0.000627507 + 0.00551957i
\(484\) 0 0
\(485\) 50.4227i 2.28958i
\(486\) 0 0
\(487\) 40.7197 1.84519 0.922594 0.385773i \(-0.126065\pi\)
0.922594 + 0.385773i \(0.126065\pi\)
\(488\) 0 0
\(489\) 14.8790 + 1.69155i 0.672850 + 0.0764947i
\(490\) 0 0
\(491\) −4.27622 + 11.7488i −0.192983 + 0.530217i −0.998012 0.0630180i \(-0.979927\pi\)
0.805029 + 0.593235i \(0.202150\pi\)
\(492\) 0 0
\(493\) −11.1321 1.96289i −0.501365 0.0884041i
\(494\) 0 0
\(495\) 11.5825 + 2.66807i 0.520596 + 0.119921i
\(496\) 0 0
\(497\) 0.00850497 0.00309555i 0.000381500 0.000138855i
\(498\) 0 0
\(499\) −2.94192 3.50604i −0.131698 0.156952i 0.696165 0.717882i \(-0.254888\pi\)
−0.827863 + 0.560930i \(0.810444\pi\)
\(500\) 0 0
\(501\) −6.52006 + 13.0852i −0.291295 + 0.584605i
\(502\) 0 0
\(503\) 9.68900 + 16.7818i 0.432011 + 0.748265i 0.997046 0.0768015i \(-0.0244708\pi\)
−0.565035 + 0.825067i \(0.691137\pi\)
\(504\) 0 0
\(505\) −16.5134 + 28.6020i −0.734836 + 1.27277i
\(506\) 0 0
\(507\) −5.04145 1.49200i −0.223899 0.0662622i
\(508\) 0 0
\(509\) 2.30682 0.406755i 0.102248 0.0180291i −0.122290 0.992494i \(-0.539024\pi\)
0.224538 + 0.974465i \(0.427913\pi\)
\(510\) 0 0
\(511\) −0.113729 0.0954301i −0.00503108 0.00422158i
\(512\) 0 0
\(513\) 17.1552 14.6737i 0.757420 0.647860i
\(514\) 0 0
\(515\) −17.6105 + 20.9874i −0.776014 + 0.924817i
\(516\) 0 0
\(517\) 7.84049 1.38249i 0.344824 0.0608018i
\(518\) 0 0
\(519\) −22.8968 + 5.50296i −1.00506 + 0.241553i
\(520\) 0 0
\(521\) −3.33988 + 5.78485i −0.146323 + 0.253439i −0.929866 0.367899i \(-0.880077\pi\)
0.783543 + 0.621338i \(0.213411\pi\)
\(522\) 0 0
\(523\) 25.4719 14.7062i 1.11381 0.643057i 0.173994 0.984747i \(-0.444333\pi\)
0.939813 + 0.341690i \(0.110999\pi\)
\(524\) 0 0
\(525\) 0.102990 + 0.155519i 0.00449487 + 0.00678740i
\(526\) 0 0
\(527\) −11.5965 + 9.73065i −0.505153 + 0.423874i
\(528\) 0 0
\(529\) −23.0590 + 8.39280i −1.00257 + 0.364904i
\(530\) 0 0
\(531\) 10.7221 16.5283i 0.465299 0.717267i
\(532\) 0 0
\(533\) 22.8959 + 4.03716i 0.991731 + 0.174869i
\(534\) 0 0
\(535\) 52.8718 + 19.2438i 2.28585 + 0.831980i
\(536\) 0 0
\(537\) 0.205222 + 0.471662i 0.00885598 + 0.0203537i
\(538\) 0 0
\(539\) 7.03648i 0.303083i
\(540\) 0 0
\(541\) 1.09392i 0.0470312i −0.999723 0.0235156i \(-0.992514\pi\)
0.999723 0.0235156i \(-0.00748594\pi\)
\(542\) 0 0
\(543\) 1.94592 2.63111i 0.0835076 0.112912i
\(544\) 0 0
\(545\) 18.0896 + 6.58409i 0.774875 + 0.282031i
\(546\) 0 0
\(547\) −11.4033 2.01070i −0.487568 0.0859714i −0.0755403 0.997143i \(-0.524068\pi\)
−0.412028 + 0.911171i \(0.635179\pi\)
\(548\) 0 0
\(549\) 0.299643 + 0.127018i 0.0127884 + 0.00542098i
\(550\) 0 0
\(551\) 24.3143 8.84968i 1.03582 0.377009i
\(552\) 0 0
\(553\) 0.0251814 0.0211297i 0.00107082 0.000898528i
\(554\) 0 0
\(555\) 52.3862 3.21695i 2.22367 0.136552i
\(556\) 0 0
\(557\) 11.9979 6.92697i 0.508366 0.293505i −0.223796 0.974636i \(-0.571845\pi\)
0.732162 + 0.681131i \(0.238512\pi\)
\(558\) 0 0
\(559\) −8.34273 + 14.4500i −0.352860 + 0.611171i
\(560\) 0 0
\(561\) −2.27530 2.39649i −0.0960633 0.101180i
\(562\) 0 0
\(563\) 29.5384 5.20841i 1.24489 0.219508i 0.487882 0.872910i \(-0.337770\pi\)
0.757012 + 0.653401i \(0.226659\pi\)
\(564\) 0 0
\(565\) 11.3359 13.5096i 0.476903 0.568351i
\(566\) 0 0
\(567\) −0.0540079 + 0.0744888i −0.00226812 + 0.00312823i
\(568\) 0 0
\(569\) −13.1491 11.0334i −0.551241 0.462546i 0.324120 0.946016i \(-0.394932\pi\)
−0.875361 + 0.483470i \(0.839376\pi\)
\(570\) 0 0
\(571\) −16.7116 + 2.94670i −0.699357 + 0.123316i −0.512012 0.858978i \(-0.671100\pi\)
−0.187346 + 0.982294i \(0.559988\pi\)
\(572\) 0 0
\(573\) 17.5281 16.6417i 0.732248 0.695218i
\(574\) 0 0
\(575\) −36.3161 + 62.9013i −1.51449 + 2.62317i
\(576\) 0 0
\(577\) −4.49809 7.79092i −0.187258 0.324340i 0.757077 0.653326i \(-0.226627\pi\)
−0.944335 + 0.328985i \(0.893293\pi\)
\(578\) 0 0
\(579\) −16.4797 + 1.01199i −0.684874 + 0.0420570i
\(580\) 0 0
\(581\) 0.0998698 + 0.119020i 0.00414330 + 0.00493779i
\(582\) 0 0
\(583\) −2.13072 + 0.775517i −0.0882453 + 0.0321186i
\(584\) 0 0
\(585\) −46.9929 + 5.79335i −1.94292 + 0.239526i
\(586\) 0 0
\(587\) 29.2734 + 5.16169i 1.20824 + 0.213046i 0.741258 0.671220i \(-0.234229\pi\)
0.466984 + 0.884266i \(0.345340\pi\)
\(588\) 0 0
\(589\) 11.8516 32.5619i 0.488336 1.34169i
\(590\) 0 0
\(591\) 9.05075 12.2376i 0.372298 0.503390i
\(592\) 0 0
\(593\) −21.5451 −0.884750 −0.442375 0.896830i \(-0.645864\pi\)
−0.442375 + 0.896830i \(0.645864\pi\)
\(594\) 0 0
\(595\) 0.0764747i 0.00313516i
\(596\) 0 0
\(597\) 14.9608 6.50949i 0.612304 0.266416i
\(598\) 0 0
\(599\) 10.2586 + 3.73384i 0.419156 + 0.152560i 0.542983 0.839743i \(-0.317295\pi\)
−0.123827 + 0.992304i \(0.539517\pi\)
\(600\) 0 0
\(601\) −2.62710 + 14.8990i −0.107162 + 0.607744i 0.883173 + 0.469047i \(0.155403\pi\)
−0.990335 + 0.138697i \(0.955709\pi\)
\(602\) 0 0
\(603\) 5.24585 + 10.2831i 0.213628 + 0.418761i
\(604\) 0 0
\(605\) −13.4661 36.9978i −0.547475 1.50417i
\(606\) 0 0
\(607\) 18.8283 15.7988i 0.764216 0.641253i −0.175005 0.984568i \(-0.555994\pi\)
0.939221 + 0.343314i \(0.111550\pi\)
\(608\) 0 0
\(609\) −0.0879254 + 0.0582275i −0.00356292 + 0.00235950i
\(610\) 0 0
\(611\) −27.4663 + 15.8577i −1.11117 + 0.641532i
\(612\) 0 0
\(613\) 15.6018 + 9.00768i 0.630149 + 0.363817i 0.780810 0.624769i \(-0.214807\pi\)
−0.150661 + 0.988586i \(0.548140\pi\)
\(614\) 0 0
\(615\) 38.5369 9.26187i 1.55396 0.373475i
\(616\) 0 0
\(617\) −4.06887 23.0757i −0.163807 0.928994i −0.950286 0.311378i \(-0.899210\pi\)
0.786480 0.617616i \(-0.211902\pi\)
\(618\) 0 0
\(619\) −21.6871 + 25.8457i −0.871679 + 1.03883i 0.127219 + 0.991875i \(0.459395\pi\)
−0.998897 + 0.0469514i \(0.985049\pi\)
\(620\) 0 0
\(621\) −35.3397 5.88716i −1.41813 0.236244i
\(622\) 0 0
\(623\) −0.0227676 0.0191043i −0.000912166 0.000765398i
\(624\) 0 0
\(625\) 5.78239 + 32.7936i 0.231296 + 1.31174i
\(626\) 0 0
\(627\) 7.25326 + 2.14658i 0.289667 + 0.0857263i
\(628\) 0 0
\(629\) −12.6372 7.29606i −0.503876 0.290913i
\(630\) 0 0
\(631\) 3.55095 + 6.15043i 0.141361 + 0.244845i 0.928009 0.372557i \(-0.121519\pi\)
−0.786648 + 0.617401i \(0.788185\pi\)
\(632\) 0 0
\(633\) −18.6999 9.31773i −0.743256 0.370346i
\(634\) 0 0
\(635\) −3.71575 4.42826i −0.147455 0.175730i
\(636\) 0 0
\(637\) 9.58703 + 26.3402i 0.379852 + 1.04363i
\(638\) 0 0
\(639\) 0.777779 + 2.53955i 0.0307685 + 0.100463i
\(640\) 0 0
\(641\) −0.826096 + 4.68502i −0.0326288 + 0.185047i −0.996766 0.0803565i \(-0.974394\pi\)
0.964137 + 0.265404i \(0.0855052\pi\)
\(642\) 0 0
\(643\) −5.88956 + 16.1814i −0.232262 + 0.638134i −0.999997 0.00263392i \(-0.999162\pi\)
0.767735 + 0.640768i \(0.221384\pi\)
\(644\) 0 0
\(645\) −3.21313 + 28.2628i −0.126517 + 1.11284i
\(646\) 0 0
\(647\) −38.9704 −1.53208 −0.766042 0.642791i \(-0.777776\pi\)
−0.766042 + 0.642791i \(0.777776\pi\)
\(648\) 0 0
\(649\) 6.60148 0.259131
\(650\) 0 0
\(651\) −0.0159533 + 0.140326i −0.000625260 + 0.00549981i
\(652\) 0 0
\(653\) −7.50821 + 20.6286i −0.293819 + 0.807261i 0.701680 + 0.712492i \(0.252434\pi\)
−0.995499 + 0.0947692i \(0.969789\pi\)
\(654\) 0 0
\(655\) 7.80953 44.2901i 0.305144 1.73056i
\(656\) 0 0
\(657\) 29.6970 31.8774i 1.15859 1.24366i
\(658\) 0 0
\(659\) −10.8064 29.6905i −0.420960 1.15658i −0.951158 0.308703i \(-0.900105\pi\)
0.530199 0.847873i \(-0.322117\pi\)
\(660\) 0 0
\(661\) 0.564964 + 0.673298i 0.0219746 + 0.0261883i 0.776920 0.629600i \(-0.216781\pi\)
−0.754945 + 0.655788i \(0.772337\pi\)
\(662\) 0 0
\(663\) 11.7825 + 5.87092i 0.457593 + 0.228008i
\(664\) 0 0
\(665\) 0.0875262 + 0.151600i 0.00339412 + 0.00587879i
\(666\) 0 0
\(667\) −35.5624 20.5319i −1.37698 0.795000i
\(668\) 0 0
\(669\) −5.89494 1.74459i −0.227912 0.0674498i
\(670\) 0 0
\(671\) 0.0189365 + 0.107394i 0.000731036 + 0.00414591i
\(672\) 0 0
\(673\) 2.60760 + 2.18804i 0.100516 + 0.0843426i 0.691661 0.722223i \(-0.256879\pi\)
−0.591145 + 0.806565i \(0.701324\pi\)
\(674\) 0 0
\(675\) −47.1432 + 27.8161i −1.81454 + 1.07064i
\(676\) 0 0
\(677\) 12.0910 14.4095i 0.464695 0.553802i −0.481900 0.876226i \(-0.660053\pi\)
0.946595 + 0.322424i \(0.104498\pi\)
\(678\) 0 0
\(679\) −0.0227108 0.128799i −0.000871561 0.00494287i
\(680\) 0 0
\(681\) 18.3204 4.40308i 0.702038 0.168726i
\(682\) 0 0
\(683\) 19.4488 + 11.2288i 0.744188 + 0.429657i 0.823590 0.567186i \(-0.191968\pi\)
−0.0794021 + 0.996843i \(0.525301\pi\)
\(684\) 0 0
\(685\) 14.5765 8.41573i 0.556938 0.321548i
\(686\) 0 0
\(687\) −11.3473 + 7.51461i −0.432926 + 0.286700i
\(688\) 0 0
\(689\) 6.91944 5.80610i 0.263610 0.221195i
\(690\) 0 0
\(691\) 14.6665 + 40.2960i 0.557941 + 1.53293i 0.822618 + 0.568594i \(0.192512\pi\)
−0.264677 + 0.964337i \(0.585265\pi\)
\(692\) 0 0
\(693\) −0.0307881 0.00159842i −0.00116954 6.07191e-5i
\(694\) 0 0
\(695\) −0.728974 + 4.13422i −0.0276515 + 0.156820i
\(696\) 0 0
\(697\) −10.3548 3.76883i −0.392215 0.142755i
\(698\) 0 0
\(699\) −38.4304 + 16.7212i −1.45357 + 0.632455i
\(700\) 0 0
\(701\) 30.9274i 1.16811i −0.811714 0.584055i \(-0.801465\pi\)
0.811714 0.584055i \(-0.198535\pi\)
\(702\) 0 0
\(703\) 33.4017 1.25977
\(704\) 0 0
\(705\) −32.1498 + 43.4702i −1.21083 + 1.63718i
\(706\) 0 0
\(707\) 0.0292991 0.0804987i 0.00110191 0.00302746i
\(708\) 0 0
\(709\) 10.5402 + 1.85852i 0.395845 + 0.0697982i 0.368028 0.929815i \(-0.380033\pi\)
0.0278175 + 0.999613i \(0.491144\pi\)
\(710\) 0 0
\(711\) 5.80913 + 7.70112i 0.217859 + 0.288815i
\(712\) 0 0
\(713\) −51.6766 + 18.8088i −1.93531 + 0.704394i
\(714\) 0 0
\(715\) −10.1981 12.1536i −0.381386 0.454518i
\(716\) 0 0
\(717\) −52.1445 + 3.20211i −1.94737 + 0.119585i
\(718\) 0 0
\(719\) −7.98318 13.8273i −0.297723 0.515671i 0.677892 0.735161i \(-0.262894\pi\)
−0.975615 + 0.219491i \(0.929560\pi\)
\(720\) 0 0
\(721\) 0.0355314 0.0615422i 0.00132326 0.00229195i
\(722\) 0 0
\(723\) 3.14426 2.98525i 0.116936 0.111023i
\(724\) 0 0
\(725\) −61.7861 + 10.8946i −2.29468 + 0.404614i
\(726\) 0 0
\(727\) −18.0652 15.1585i −0.670002 0.562198i 0.243064 0.970010i \(-0.421847\pi\)
−0.913066 + 0.407812i \(0.866292\pi\)
\(728\) 0 0
\(729\) −21.0079 16.9608i −0.778069 0.628178i
\(730\) 0 0
\(731\) 5.08341 6.05817i 0.188017 0.224069i
\(732\) 0 0
\(733\) 5.12011 0.902813i 0.189115 0.0333462i −0.0782882 0.996931i \(-0.524945\pi\)
0.267404 + 0.963585i \(0.413834\pi\)
\(734\) 0 0
\(735\) 32.9020 + 34.6544i 1.21361 + 1.27825i
\(736\) 0 0
\(737\) −1.93404 + 3.34985i −0.0712412 + 0.123393i
\(738\) 0 0
\(739\) −10.5638 + 6.09903i −0.388596 + 0.224356i −0.681552 0.731770i \(-0.738695\pi\)
0.292955 + 0.956126i \(0.405361\pi\)
\(740\) 0 0
\(741\) −30.0763 + 1.84694i −1.10488 + 0.0678489i
\(742\) 0 0
\(743\) 11.5486 9.69040i 0.423676 0.355506i −0.405883 0.913925i \(-0.633036\pi\)
0.829559 + 0.558419i \(0.188592\pi\)
\(744\) 0 0
\(745\) 7.73451 2.81513i 0.283371 0.103138i
\(746\) 0 0
\(747\) −36.3994 + 27.4568i −1.33178 + 1.00459i
\(748\) 0 0
\(749\) −0.143723 0.0253422i −0.00525153 0.000925986i
\(750\) 0 0
\(751\) 1.35242 + 0.492239i 0.0493504 + 0.0179621i 0.366577 0.930388i \(-0.380529\pi\)
−0.317227 + 0.948350i \(0.602752\pi\)
\(752\) 0 0
\(753\) 17.2474 23.3204i 0.628529 0.849843i
\(754\) 0 0
\(755\) 41.5223i 1.51115i
\(756\) 0 0
\(757\) 15.3476i 0.557818i 0.960318 + 0.278909i \(0.0899727\pi\)
−0.960318 + 0.278909i \(0.910027\pi\)
\(758\) 0 0
\(759\) −4.78953 11.0078i −0.173849 0.399558i
\(760\) 0 0
\(761\) −3.86991 1.40853i −0.140284 0.0510593i 0.270924 0.962601i \(-0.412671\pi\)
−0.411208 + 0.911541i \(0.634893\pi\)
\(762\) 0 0
\(763\) −0.0491736 0.00867063i −0.00178020 0.000313898i
\(764\) 0 0
\(765\) 22.4116 + 1.16354i 0.810292 + 0.0420679i
\(766\) 0 0
\(767\) −24.7118 + 8.99435i −0.892291 + 0.324767i
\(768\) 0 0
\(769\) 36.4911 30.6197i 1.31590 1.10417i 0.328748 0.944418i \(-0.393373\pi\)
0.987156 0.159757i \(-0.0510710\pi\)
\(770\) 0 0
\(771\) −25.5762 38.6209i −0.921104 1.39090i
\(772\) 0 0
\(773\) 4.04314 2.33431i 0.145422 0.0839592i −0.425524 0.904947i \(-0.639910\pi\)
0.570945 + 0.820988i \(0.306577\pi\)
\(774\) 0 0
\(775\) −42.0105 + 72.7644i −1.50906 + 2.61377i
\(776\) 0 0
\(777\) −0.132366 + 0.0318126i −0.00474861 + 0.00114127i
\(778\) 0 0
\(779\) 24.8403 4.38001i 0.889996 0.156930i
\(780\) 0 0
\(781\) −0.572053 + 0.681746i −0.0204697 + 0.0243948i
\(782\) 0 0
\(783\) −15.7263 26.6532i −0.562013 0.952508i
\(784\) 0 0
\(785\) 67.2447 + 56.4250i 2.40007 + 2.01390i
\(786\) 0 0
\(787\) 16.1106 2.84073i 0.574279 0.101261i 0.121037 0.992648i \(-0.461378\pi\)
0.453243 + 0.891387i \(0.350267\pi\)
\(788\) 0 0
\(789\) 7.29111 + 2.15778i 0.259570 + 0.0768191i
\(790\) 0 0
\(791\) −0.0228715 + 0.0396145i −0.000813215 + 0.00140853i
\(792\) 0 0
\(793\) −0.217209 0.376216i −0.00771330 0.0133598i
\(794\) 0 0
\(795\) 6.86746 13.7824i 0.243564 0.488813i
\(796\) 0 0
\(797\) −6.71611 8.00395i −0.237897 0.283514i 0.633866 0.773443i \(-0.281467\pi\)
−0.871762 + 0.489929i \(0.837023\pi\)
\(798\) 0 0
\(799\) 14.1255 5.14126i 0.499725 0.181885i
\(800\) 0 0
\(801\) 5.94509 6.38159i 0.210059 0.225482i
\(802\) 0 0
\(803\) 14.3764 + 2.53495i 0.507333 + 0.0894566i
\(804\) 0 0
\(805\) 0.0950175 0.261058i 0.00334893 0.00920110i
\(806\) 0 0
\(807\) −1.27532 0.144988i −0.0448934 0.00510383i
\(808\) 0 0
\(809\) 5.87774 0.206650 0.103325 0.994648i \(-0.467052\pi\)
0.103325 + 0.994648i \(0.467052\pi\)
\(810\) 0 0
\(811\) 40.3341i 1.41632i −0.706052 0.708160i \(-0.749525\pi\)
0.706052 0.708160i \(-0.250475\pi\)
\(812\) 0 0
\(813\) −2.76750 + 24.3430i −0.0970603 + 0.853745i
\(814\) 0 0
\(815\) −32.0208 11.6546i −1.12164 0.408243i
\(816\) 0 0
\(817\) −3.14346 + 17.8274i −0.109976 + 0.623703i
\(818\) 0 0
\(819\) 0.117429 0.0359645i 0.00410330 0.00125670i
\(820\) 0 0
\(821\) −8.31903 22.8563i −0.290336 0.797692i −0.996017 0.0891622i \(-0.971581\pi\)
0.705681 0.708530i \(-0.250641\pi\)
\(822\) 0 0
\(823\) 22.0384 18.4924i 0.768211 0.644605i −0.172039 0.985090i \(-0.555036\pi\)
0.940250 + 0.340485i \(0.110591\pi\)
\(824\) 0 0
\(825\) −16.4162 8.17981i −0.571539 0.284784i
\(826\) 0 0
\(827\) −12.6598 + 7.30915i −0.440225 + 0.254164i −0.703693 0.710504i \(-0.748467\pi\)
0.263468 + 0.964668i \(0.415134\pi\)
\(828\) 0 0
\(829\) 38.2098 + 22.0604i 1.32708 + 0.766191i 0.984847 0.173424i \(-0.0554830\pi\)
0.342234 + 0.939615i \(0.388816\pi\)
\(830\) 0 0
\(831\) −4.20594 + 14.2118i −0.145903 + 0.493002i
\(832\) 0 0
\(833\) −2.30702 13.0838i −0.0799336 0.453326i
\(834\) 0 0
\(835\) 21.3840 25.4845i 0.740025 0.881927i
\(836\) 0 0
\(837\) −40.8810 6.81028i −1.41305 0.235398i
\(838\) 0 0
\(839\) 28.2388 + 23.6951i 0.974911 + 0.818047i 0.983314 0.181917i \(-0.0582303\pi\)
−0.00840301 + 0.999965i \(0.502675\pi\)
\(840\) 0 0
\(841\) −1.12364 6.37246i −0.0387461 0.219740i
\(842\) 0 0
\(843\) −7.60159 31.6288i −0.261813 1.08935i
\(844\) 0 0
\(845\) 10.3610 + 5.98194i 0.356430 + 0.205785i
\(846\) 0 0
\(847\) 0.0510619 + 0.0884417i 0.00175451 + 0.00303889i
\(848\) 0 0
\(849\) −37.1218 + 24.5834i −1.27402 + 0.843701i
\(850\) 0 0
\(851\) −34.0738 40.6075i −1.16803 1.39201i
\(852\) 0 0
\(853\) 12.7574 + 35.0506i 0.436804 + 1.20011i 0.941560 + 0.336846i \(0.109360\pi\)
−0.504756 + 0.863262i \(0.668417\pi\)
\(854\) 0 0
\(855\) −45.7593 + 23.3438i −1.56494 + 0.798340i
\(856\) 0 0
\(857\) −2.38265 + 13.5127i −0.0813899 + 0.461585i 0.916687 + 0.399605i \(0.130853\pi\)
−0.998077 + 0.0619803i \(0.980258\pi\)
\(858\) 0 0
\(859\) −10.4655 + 28.7538i −0.357079 + 0.981067i 0.622958 + 0.782255i \(0.285931\pi\)
−0.980038 + 0.198812i \(0.936292\pi\)
\(860\) 0 0
\(861\) −0.0942669 + 0.0410158i −0.00321261 + 0.00139782i
\(862\) 0 0
\(863\) 7.80840 0.265801 0.132900 0.991129i \(-0.457571\pi\)
0.132900 + 0.991129i \(0.457571\pi\)
\(864\) 0 0
\(865\) 53.5863 1.82199
\(866\) 0 0
\(867\) 18.6573 + 13.7986i 0.633634 + 0.468625i
\(868\) 0 0
\(869\) −1.10550 + 3.03735i −0.0375016 + 0.103035i
\(870\) 0 0
\(871\) 2.67573 15.1748i 0.0906636 0.514179i
\(872\) 0 0
\(873\) 38.0913 4.69596i 1.28920 0.158934i
\(874\) 0 0
\(875\) −0.0762675 0.209543i −0.00257831 0.00708385i
\(876\) 0 0
\(877\) −22.5373 26.8589i −0.761029 0.906959i 0.236883 0.971538i \(-0.423874\pi\)
−0.997913 + 0.0645787i \(0.979430\pi\)
\(878\) 0 0
\(879\) 1.54869 + 25.2195i 0.0522359 + 0.850633i
\(880\) 0 0
\(881\) −17.3596 30.0677i −0.584859 1.01301i −0.994893 0.100936i \(-0.967816\pi\)
0.410034 0.912070i \(-0.365517\pi\)
\(882\) 0 0
\(883\) 48.4749 + 27.9870i 1.63131 + 0.941837i 0.983690 + 0.179874i \(0.0575690\pi\)
0.647620 + 0.761963i \(0.275764\pi\)
\(884\) 0 0
\(885\) −32.5121 + 30.8679i −1.09288 + 1.03761i
\(886\) 0 0
\(887\) −5.13500 29.1221i −0.172417 0.977823i −0.941084 0.338174i \(-0.890191\pi\)
0.768667 0.639649i \(-0.220920\pi\)
\(888\) 0 0
\(889\) 0.0114860 + 0.00963792i 0.000385229 + 0.000323245i
\(890\) 0 0
\(891\) 0.936863 8.99840i 0.0313861 0.301458i
\(892\) 0 0
\(893\) −22.1175 + 26.3586i −0.740134 + 0.882057i
\(894\) 0 0
\(895\) −0.203252 1.15270i −0.00679396 0.0385305i
\(896\) 0 0
\(897\) 32.9269 + 34.6807i 1.09940 + 1.15795i
\(898\) 0 0
\(899\) −41.1386 23.7514i −1.37205 0.792154i
\(900\) 0 0
\(901\) −3.70763 + 2.14060i −0.123519 + 0.0713138i
\(902\) 0 0
\(903\) −0.00452220 0.0736415i −0.000150489 0.00245063i
\(904\) 0 0
\(905\) −5.70454 + 4.78668i −0.189625 + 0.159115i
\(906\) 0 0
\(907\) −11.8324 32.5093i −0.392889 1.07945i −0.965676 0.259749i \(-0.916360\pi\)
0.572787 0.819704i \(-0.305862\pi\)
\(908\) 0 0
\(909\) 23.1451 + 9.81113i 0.767673 + 0.325414i
\(910\) 0 0
\(911\) 2.10465 11.9361i 0.0697303 0.395460i −0.929888 0.367842i \(-0.880097\pi\)
0.999619 0.0276180i \(-0.00879219\pi\)
\(912\) 0 0
\(913\) −14.3560 5.22516i −0.475115 0.172928i
\(914\) 0 0
\(915\) −0.595428 0.440368i −0.0196843 0.0145581i
\(916\) 0 0
\(917\) 0.116652i 0.00385218i
\(918\) 0 0
\(919\) −11.2018 −0.369514 −0.184757 0.982784i \(-0.559150\pi\)
−0.184757 + 0.982784i \(0.559150\pi\)
\(920\) 0 0
\(921\) 6.44404 + 14.8104i 0.212338 + 0.488018i
\(922\) 0 0
\(923\) 1.21254 3.33144i 0.0399114 0.109656i
\(924\) 0 0
\(925\) −79.7598 14.0638i −2.62249 0.462415i
\(926\) 0 0
\(927\) 17.4949 + 11.3491i 0.574607 + 0.372754i
\(928\) 0 0
\(929\) 33.5582 12.2142i 1.10101 0.400734i 0.273320 0.961923i \(-0.411878\pi\)
0.827687 + 0.561189i \(0.189656\pi\)
\(930\) 0 0
\(931\) 19.5479 + 23.2962i 0.640656 + 0.763504i
\(932\) 0 0
\(933\) 7.68087 + 11.5984i 0.251460 + 0.379713i
\(934\) 0 0
\(935\) 3.75984 + 6.51224i 0.122960 + 0.212973i
\(936\) 0 0
\(937\) −13.9023 + 24.0795i −0.454169 + 0.786643i −0.998640 0.0521363i \(-0.983397\pi\)
0.544471 + 0.838779i \(0.316730\pi\)
\(938\) 0 0
\(939\) 13.3825 + 55.6819i 0.436720 + 1.81711i
\(940\) 0 0
\(941\) 17.4040 3.06880i 0.567355 0.100040i 0.117390 0.993086i \(-0.462547\pi\)
0.449965 + 0.893046i \(0.351436\pi\)
\(942\) 0 0
\(943\) −30.6650 25.7310i −0.998591 0.837917i
\(944\) 0 0
\(945\) 0.159104 0.136090i 0.00517567 0.00442701i
\(946\) 0 0
\(947\) −31.1472 + 37.1197i −1.01215 + 1.20623i −0.0337637 + 0.999430i \(0.510749\pi\)
−0.978383 + 0.206800i \(0.933695\pi\)
\(948\) 0 0
\(949\) −57.2701 + 10.0983i −1.85907 + 0.327804i
\(950\) 0 0
\(951\) 12.8131 43.2951i 0.415493 1.40394i
\(952\) 0 0
\(953\) 6.84000 11.8472i 0.221569 0.383770i −0.733715 0.679457i \(-0.762215\pi\)
0.955285 + 0.295688i \(0.0955487\pi\)
\(954\) 0 0
\(955\) −47.6310 + 27.4998i −1.54130 + 0.889871i
\(956\) 0 0
\(957\) 4.62460 9.28120i 0.149492 0.300018i
\(958\) 0 0
\(959\) −0.0334435 + 0.0280625i −0.00107995 + 0.000906184i
\(960\) 0 0
\(961\) −30.6492 + 11.1554i −0.988684 + 0.359852i
\(962\) 0 0
\(963\) 9.61347 41.7337i 0.309790 1.34485i
\(964\) 0 0
\(965\) 37.0002 + 6.52413i 1.19108 + 0.210019i
\(966\) 0 0
\(967\) −28.0120 10.1955i −0.900806 0.327867i −0.150230 0.988651i \(-0.548001\pi\)
−0.750576 + 0.660785i \(0.770224\pi\)
\(968\) 0 0
\(969\) 14.1907 + 1.61330i 0.455870 + 0.0518268i
\(970\) 0 0
\(971\) 31.5563i 1.01269i −0.862331 0.506345i \(-0.830996\pi\)
0.862331 0.506345i \(-0.169004\pi\)
\(972\) 0 0
\(973\) 0.0108888i 0.000349078i
\(974\) 0 0
\(975\) 72.5968 + 8.25336i 2.32496 + 0.264319i
\(976\) 0 0
\(977\) 26.2819 + 9.56585i 0.840834 + 0.306039i 0.726297 0.687381i \(-0.241240\pi\)
0.114536 + 0.993419i \(0.463462\pi\)
\(978\) 0 0
\(979\) 2.87804 + 0.507477i 0.0919827 + 0.0162190i
\(980\) 0 0
\(981\) 3.28917 14.2788i 0.105015 0.455888i
\(982\) 0 0
\(983\) −23.5384 + 8.56727i −0.750758 + 0.273253i −0.688925 0.724833i \(-0.741917\pi\)
−0.0618331 + 0.998087i \(0.519695\pi\)
\(984\) 0 0
\(985\) −26.5326 + 22.2635i −0.845398 + 0.709373i
\(986\) 0 0
\(987\) 0.0625439 0.125521i 0.00199079 0.00399536i
\(988\) 0 0
\(989\) 24.8801 14.3645i 0.791141 0.456766i
\(990\) 0 0
\(991\) −11.3147 + 19.5976i −0.359422 + 0.622537i −0.987864 0.155319i \(-0.950359\pi\)
0.628442 + 0.777856i \(0.283693\pi\)
\(992\) 0 0
\(993\) −1.36383 + 4.60836i −0.0432799 + 0.146242i
\(994\) 0 0
\(995\) −36.5628 + 6.44700i −1.15912 + 0.204384i
\(996\) 0 0
\(997\) −6.16806 + 7.35081i −0.195344 + 0.232802i −0.854821 0.518922i \(-0.826333\pi\)
0.659477 + 0.751725i \(0.270778\pi\)
\(998\) 0 0
\(999\) −7.30904 39.2751i −0.231248 1.24261i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.529.16 204
4.3 odd 2 216.2.t.a.205.13 yes 204
8.3 odd 2 216.2.t.a.205.4 yes 204
8.5 even 2 inner 864.2.bf.a.529.19 204
12.11 even 2 648.2.t.a.613.22 204
24.11 even 2 648.2.t.a.613.31 204
27.22 even 9 inner 864.2.bf.a.49.19 204
108.59 even 18 648.2.t.a.37.31 204
108.103 odd 18 216.2.t.a.157.4 204
216.59 even 18 648.2.t.a.37.22 204
216.157 even 18 inner 864.2.bf.a.49.16 204
216.211 odd 18 216.2.t.a.157.13 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.4 204 108.103 odd 18
216.2.t.a.157.13 yes 204 216.211 odd 18
216.2.t.a.205.4 yes 204 8.3 odd 2
216.2.t.a.205.13 yes 204 4.3 odd 2
648.2.t.a.37.22 204 216.59 even 18
648.2.t.a.37.31 204 108.59 even 18
648.2.t.a.613.22 204 12.11 even 2
648.2.t.a.613.31 204 24.11 even 2
864.2.bf.a.49.16 204 216.157 even 18 inner
864.2.bf.a.49.19 204 27.22 even 9 inner
864.2.bf.a.529.16 204 1.1 even 1 trivial
864.2.bf.a.529.19 204 8.5 even 2 inner