Properties

Label 864.2.bf.a.529.13
Level $864$
Weight $2$
Character 864.529
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 529.13
Character \(\chi\) \(=\) 864.529
Dual form 864.2.bf.a.49.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.684682 + 1.59098i) q^{3} +(-1.15428 + 3.17134i) q^{5} +(-0.593321 + 3.36489i) q^{7} +(-2.06242 - 2.17863i) q^{9} +(0.197048 + 0.541384i) q^{11} +(4.30199 + 5.12691i) q^{13} +(-4.25523 - 4.00779i) q^{15} +(1.15893 + 2.00733i) q^{17} +(0.353289 + 0.203971i) q^{19} +(-4.94723 - 3.24784i) q^{21} +(-1.15186 - 6.53250i) q^{23} +(-4.89486 - 4.10727i) q^{25} +(4.87825 - 1.78960i) q^{27} +(-2.24644 + 2.67721i) q^{29} +(0.382945 + 2.17179i) q^{31} +(-0.996245 - 0.0571774i) q^{33} +(-9.98637 - 5.76564i) q^{35} +(-1.05249 + 0.607656i) q^{37} +(-11.1023 + 3.33407i) q^{39} +(5.09057 - 4.27150i) q^{41} +(-0.442145 - 1.21478i) q^{43} +(9.28978 - 4.02591i) q^{45} +(0.547022 - 3.10232i) q^{47} +(-4.39261 - 1.59878i) q^{49} +(-3.98712 + 0.469453i) q^{51} -9.35460i q^{53} -1.94436 q^{55} +(-0.566405 + 0.422419i) q^{57} +(3.00302 - 8.25072i) q^{59} +(-4.67459 - 0.824257i) q^{61} +(8.55452 - 5.64720i) q^{63} +(-21.2249 + 7.72523i) q^{65} +(9.67062 + 11.5250i) q^{67} +(11.1817 + 2.64011i) q^{69} +(3.92323 + 6.79524i) q^{71} +(0.641809 - 1.11165i) q^{73} +(9.88600 - 4.97543i) q^{75} +(-1.93861 + 0.341829i) q^{77} +(-3.84081 - 3.22282i) q^{79} +(-0.492839 + 8.98650i) q^{81} +(-6.67152 + 7.95081i) q^{83} +(-7.70366 + 1.35836i) q^{85} +(-2.72128 - 5.40708i) q^{87} +(-2.86501 + 4.96234i) q^{89} +(-19.8040 + 11.4338i) q^{91} +(-3.71746 - 0.877728i) q^{93} +(-1.05466 + 0.884962i) q^{95} +(10.5548 - 3.84165i) q^{97} +(0.773079 - 1.54586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.684682 + 1.59098i −0.395301 + 0.918551i
\(4\) 0 0
\(5\) −1.15428 + 3.17134i −0.516208 + 1.41827i 0.358460 + 0.933545i \(0.383302\pi\)
−0.874667 + 0.484723i \(0.838920\pi\)
\(6\) 0 0
\(7\) −0.593321 + 3.36489i −0.224254 + 1.27181i 0.639851 + 0.768499i \(0.278996\pi\)
−0.864106 + 0.503311i \(0.832115\pi\)
\(8\) 0 0
\(9\) −2.06242 2.17863i −0.687474 0.726209i
\(10\) 0 0
\(11\) 0.197048 + 0.541384i 0.0594121 + 0.163233i 0.965848 0.259111i \(-0.0834295\pi\)
−0.906435 + 0.422344i \(0.861207\pi\)
\(12\) 0 0
\(13\) 4.30199 + 5.12691i 1.19316 + 1.42195i 0.881779 + 0.471664i \(0.156346\pi\)
0.311379 + 0.950286i \(0.399209\pi\)
\(14\) 0 0
\(15\) −4.25523 4.00779i −1.09870 1.03481i
\(16\) 0 0
\(17\) 1.15893 + 2.00733i 0.281082 + 0.486849i 0.971652 0.236417i \(-0.0759732\pi\)
−0.690569 + 0.723266i \(0.742640\pi\)
\(18\) 0 0
\(19\) 0.353289 + 0.203971i 0.0810500 + 0.0467943i 0.539977 0.841680i \(-0.318433\pi\)
−0.458927 + 0.888474i \(0.651766\pi\)
\(20\) 0 0
\(21\) −4.94723 3.24784i −1.07957 0.708737i
\(22\) 0 0
\(23\) −1.15186 6.53250i −0.240178 1.36212i −0.831429 0.555631i \(-0.812477\pi\)
0.591250 0.806488i \(-0.298635\pi\)
\(24\) 0 0
\(25\) −4.89486 4.10727i −0.978971 0.821454i
\(26\) 0 0
\(27\) 4.87825 1.78960i 0.938820 0.344408i
\(28\) 0 0
\(29\) −2.24644 + 2.67721i −0.417154 + 0.497145i −0.933171 0.359434i \(-0.882970\pi\)
0.516016 + 0.856579i \(0.327414\pi\)
\(30\) 0 0
\(31\) 0.382945 + 2.17179i 0.0687790 + 0.390065i 0.999692 + 0.0248236i \(0.00790240\pi\)
−0.930913 + 0.365241i \(0.880986\pi\)
\(32\) 0 0
\(33\) −0.996245 0.0571774i −0.173424 0.00995332i
\(34\) 0 0
\(35\) −9.98637 5.76564i −1.68801 0.974570i
\(36\) 0 0
\(37\) −1.05249 + 0.607656i −0.173028 + 0.0998980i −0.584013 0.811744i \(-0.698518\pi\)
0.410985 + 0.911642i \(0.365185\pi\)
\(38\) 0 0
\(39\) −11.1023 + 3.33407i −1.77779 + 0.533878i
\(40\) 0 0
\(41\) 5.09057 4.27150i 0.795014 0.667096i −0.151967 0.988386i \(-0.548561\pi\)
0.946981 + 0.321290i \(0.104116\pi\)
\(42\) 0 0
\(43\) −0.442145 1.21478i −0.0674265 0.185253i 0.901403 0.432981i \(-0.142538\pi\)
−0.968830 + 0.247728i \(0.920316\pi\)
\(44\) 0 0
\(45\) 9.28978 4.02591i 1.38484 0.600148i
\(46\) 0 0
\(47\) 0.547022 3.10232i 0.0797914 0.452520i −0.918568 0.395263i \(-0.870654\pi\)
0.998359 0.0572567i \(-0.0182354\pi\)
\(48\) 0 0
\(49\) −4.39261 1.59878i −0.627516 0.228397i
\(50\) 0 0
\(51\) −3.98712 + 0.469453i −0.558308 + 0.0657366i
\(52\) 0 0
\(53\) 9.35460i 1.28495i −0.766305 0.642477i \(-0.777907\pi\)
0.766305 0.642477i \(-0.222093\pi\)
\(54\) 0 0
\(55\) −1.94436 −0.262178
\(56\) 0 0
\(57\) −0.566405 + 0.422419i −0.0750221 + 0.0559508i
\(58\) 0 0
\(59\) 3.00302 8.25072i 0.390959 1.07415i −0.575605 0.817728i \(-0.695233\pi\)
0.966564 0.256424i \(-0.0825444\pi\)
\(60\) 0 0
\(61\) −4.67459 0.824257i −0.598520 0.105535i −0.133824 0.991005i \(-0.542726\pi\)
−0.464697 + 0.885470i \(0.653837\pi\)
\(62\) 0 0
\(63\) 8.55452 5.64720i 1.07777 0.711480i
\(64\) 0 0
\(65\) −21.2249 + 7.72523i −2.63262 + 0.958196i
\(66\) 0 0
\(67\) 9.67062 + 11.5250i 1.18145 + 1.40800i 0.892731 + 0.450589i \(0.148786\pi\)
0.288723 + 0.957413i \(0.406769\pi\)
\(68\) 0 0
\(69\) 11.1817 + 2.64011i 1.34612 + 0.317831i
\(70\) 0 0
\(71\) 3.92323 + 6.79524i 0.465602 + 0.806446i 0.999228 0.0392740i \(-0.0125045\pi\)
−0.533627 + 0.845720i \(0.679171\pi\)
\(72\) 0 0
\(73\) 0.641809 1.11165i 0.0751180 0.130108i −0.826020 0.563641i \(-0.809400\pi\)
0.901138 + 0.433533i \(0.142733\pi\)
\(74\) 0 0
\(75\) 9.88600 4.97543i 1.14154 0.574513i
\(76\) 0 0
\(77\) −1.93861 + 0.341829i −0.220925 + 0.0389551i
\(78\) 0 0
\(79\) −3.84081 3.22282i −0.432125 0.362596i 0.400628 0.916241i \(-0.368792\pi\)
−0.832753 + 0.553645i \(0.813236\pi\)
\(80\) 0 0
\(81\) −0.492839 + 8.98650i −0.0547599 + 0.998500i
\(82\) 0 0
\(83\) −6.67152 + 7.95081i −0.732295 + 0.872715i −0.995763 0.0919529i \(-0.970689\pi\)
0.263468 + 0.964668i \(0.415134\pi\)
\(84\) 0 0
\(85\) −7.70366 + 1.35836i −0.835580 + 0.147335i
\(86\) 0 0
\(87\) −2.72128 5.40708i −0.291752 0.579700i
\(88\) 0 0
\(89\) −2.86501 + 4.96234i −0.303690 + 0.526007i −0.976969 0.213382i \(-0.931552\pi\)
0.673278 + 0.739389i \(0.264886\pi\)
\(90\) 0 0
\(91\) −19.8040 + 11.4338i −2.07602 + 1.19859i
\(92\) 0 0
\(93\) −3.71746 0.877728i −0.385483 0.0910161i
\(94\) 0 0
\(95\) −1.05466 + 0.884962i −0.108205 + 0.0907952i
\(96\) 0 0
\(97\) 10.5548 3.84165i 1.07168 0.390061i 0.254877 0.966974i \(-0.417965\pi\)
0.816806 + 0.576913i \(0.195743\pi\)
\(98\) 0 0
\(99\) 0.773079 1.54586i 0.0776974 0.155364i
\(100\) 0 0
\(101\) −12.2411 2.15844i −1.21804 0.214773i −0.472557 0.881300i \(-0.656669\pi\)
−0.745481 + 0.666527i \(0.767780\pi\)
\(102\) 0 0
\(103\) 14.8537 + 5.40632i 1.46358 + 0.532701i 0.946350 0.323144i \(-0.104740\pi\)
0.517233 + 0.855844i \(0.326962\pi\)
\(104\) 0 0
\(105\) 16.0105 11.9405i 1.56246 1.16527i
\(106\) 0 0
\(107\) 2.44491i 0.236359i 0.992992 + 0.118179i \(0.0377058\pi\)
−0.992992 + 0.118179i \(0.962294\pi\)
\(108\) 0 0
\(109\) 16.2522i 1.55668i 0.627843 + 0.778340i \(0.283938\pi\)
−0.627843 + 0.778340i \(0.716062\pi\)
\(110\) 0 0
\(111\) −0.246146 2.09054i −0.0233631 0.198425i
\(112\) 0 0
\(113\) −11.4376 4.16294i −1.07596 0.391617i −0.257556 0.966263i \(-0.582917\pi\)
−0.818402 + 0.574646i \(0.805140\pi\)
\(114\) 0 0
\(115\) 22.0464 + 3.88737i 2.05583 + 0.362499i
\(116\) 0 0
\(117\) 2.29712 19.9463i 0.212369 1.84403i
\(118\) 0 0
\(119\) −7.44207 + 2.70869i −0.682213 + 0.248305i
\(120\) 0 0
\(121\) 8.17222 6.85731i 0.742929 0.623392i
\(122\) 0 0
\(123\) 3.31044 + 11.0236i 0.298492 + 0.993965i
\(124\) 0 0
\(125\) 4.06195 2.34517i 0.363312 0.209758i
\(126\) 0 0
\(127\) 4.79341 8.30243i 0.425346 0.736722i −0.571106 0.820876i \(-0.693486\pi\)
0.996453 + 0.0841546i \(0.0268189\pi\)
\(128\) 0 0
\(129\) 2.23542 + 0.128297i 0.196818 + 0.0112960i
\(130\) 0 0
\(131\) −0.406480 + 0.0716734i −0.0355143 + 0.00626213i −0.191377 0.981517i \(-0.561295\pi\)
0.155863 + 0.987779i \(0.450184\pi\)
\(132\) 0 0
\(133\) −0.895956 + 1.06776i −0.0776892 + 0.0925864i
\(134\) 0 0
\(135\) 0.0445910 + 17.5363i 0.00383778 + 1.50928i
\(136\) 0 0
\(137\) 12.0727 + 10.1302i 1.03144 + 0.865480i 0.991021 0.133703i \(-0.0426867\pi\)
0.0404177 + 0.999183i \(0.487131\pi\)
\(138\) 0 0
\(139\) −2.17442 + 0.383409i −0.184432 + 0.0325204i −0.265101 0.964221i \(-0.585405\pi\)
0.0806691 + 0.996741i \(0.474294\pi\)
\(140\) 0 0
\(141\) 4.56118 + 2.99440i 0.384121 + 0.252174i
\(142\) 0 0
\(143\) −1.92793 + 3.33928i −0.161222 + 0.279244i
\(144\) 0 0
\(145\) −5.89733 10.2145i −0.489747 0.848267i
\(146\) 0 0
\(147\) 5.55117 5.89389i 0.457853 0.486120i
\(148\) 0 0
\(149\) −4.40044 5.24424i −0.360498 0.429625i 0.555060 0.831810i \(-0.312695\pi\)
−0.915558 + 0.402186i \(0.868251\pi\)
\(150\) 0 0
\(151\) −11.0866 + 4.03519i −0.902213 + 0.328379i −0.751139 0.660144i \(-0.770495\pi\)
−0.151074 + 0.988522i \(0.548273\pi\)
\(152\) 0 0
\(153\) 1.98302 6.66484i 0.160318 0.538821i
\(154\) 0 0
\(155\) −7.32952 1.29239i −0.588721 0.103807i
\(156\) 0 0
\(157\) 4.12184 11.3247i 0.328959 0.903808i −0.659417 0.751778i \(-0.729197\pi\)
0.988376 0.152030i \(-0.0485810\pi\)
\(158\) 0 0
\(159\) 14.8830 + 6.40493i 1.18030 + 0.507944i
\(160\) 0 0
\(161\) 22.6646 1.78622
\(162\) 0 0
\(163\) 13.3972i 1.04935i −0.851303 0.524675i \(-0.824187\pi\)
0.851303 0.524675i \(-0.175813\pi\)
\(164\) 0 0
\(165\) 1.33127 3.09344i 0.103639 0.240824i
\(166\) 0 0
\(167\) 6.36473 + 2.31657i 0.492517 + 0.179262i 0.576325 0.817220i \(-0.304486\pi\)
−0.0838081 + 0.996482i \(0.526708\pi\)
\(168\) 0 0
\(169\) −5.52068 + 31.3093i −0.424668 + 2.40841i
\(170\) 0 0
\(171\) −0.284253 1.19036i −0.0217373 0.0910291i
\(172\) 0 0
\(173\) 0.576454 + 1.58380i 0.0438270 + 0.120414i 0.959675 0.281111i \(-0.0907028\pi\)
−0.915848 + 0.401524i \(0.868481\pi\)
\(174\) 0 0
\(175\) 16.7247 14.0337i 1.26427 1.06085i
\(176\) 0 0
\(177\) 11.0706 + 10.4269i 0.832117 + 0.783730i
\(178\) 0 0
\(179\) −10.3190 + 5.95768i −0.771279 + 0.445298i −0.833331 0.552775i \(-0.813569\pi\)
0.0620517 + 0.998073i \(0.480236\pi\)
\(180\) 0 0
\(181\) 14.3027 + 8.25769i 1.06311 + 0.613789i 0.926292 0.376806i \(-0.122978\pi\)
0.136822 + 0.990596i \(0.456311\pi\)
\(182\) 0 0
\(183\) 4.51198 6.87282i 0.333536 0.508054i
\(184\) 0 0
\(185\) −0.712223 4.03922i −0.0523636 0.296969i
\(186\) 0 0
\(187\) −0.858372 + 1.02297i −0.0627703 + 0.0748068i
\(188\) 0 0
\(189\) 3.12744 + 17.4766i 0.227487 + 1.27123i
\(190\) 0 0
\(191\) 10.1267 + 8.49734i 0.732745 + 0.614846i 0.930878 0.365329i \(-0.119044\pi\)
−0.198134 + 0.980175i \(0.563488\pi\)
\(192\) 0 0
\(193\) −0.0307325 0.174293i −0.00221218 0.0125459i 0.983682 0.179918i \(-0.0575831\pi\)
−0.985894 + 0.167372i \(0.946472\pi\)
\(194\) 0 0
\(195\) 2.24163 39.0576i 0.160527 2.79698i
\(196\) 0 0
\(197\) −0.841221 0.485679i −0.0599345 0.0346032i 0.469733 0.882808i \(-0.344350\pi\)
−0.529668 + 0.848205i \(0.677683\pi\)
\(198\) 0 0
\(199\) −2.04926 3.54942i −0.145268 0.251612i 0.784205 0.620502i \(-0.213071\pi\)
−0.929473 + 0.368890i \(0.879738\pi\)
\(200\) 0 0
\(201\) −24.9573 + 7.49478i −1.76035 + 0.528641i
\(202\) 0 0
\(203\) −7.67565 9.14748i −0.538725 0.642027i
\(204\) 0 0
\(205\) 7.67047 + 21.0745i 0.535729 + 1.47190i
\(206\) 0 0
\(207\) −11.8563 + 15.9822i −0.824068 + 1.11084i
\(208\) 0 0
\(209\) −0.0408121 + 0.231457i −0.00282303 + 0.0160102i
\(210\) 0 0
\(211\) −1.28341 + 3.52613i −0.0883534 + 0.242749i −0.975998 0.217781i \(-0.930118\pi\)
0.887644 + 0.460530i \(0.152340\pi\)
\(212\) 0 0
\(213\) −13.4972 + 1.58920i −0.924815 + 0.108890i
\(214\) 0 0
\(215\) 4.36285 0.297544
\(216\) 0 0
\(217\) −7.53504 −0.511512
\(218\) 0 0
\(219\) 1.32917 + 1.78223i 0.0898169 + 0.120432i
\(220\) 0 0
\(221\) −5.30569 + 14.5773i −0.356899 + 0.980572i
\(222\) 0 0
\(223\) −0.680991 + 3.86209i −0.0456025 + 0.258625i −0.999082 0.0428323i \(-0.986362\pi\)
0.953480 + 0.301457i \(0.0974730\pi\)
\(224\) 0 0
\(225\) 1.14704 + 19.1350i 0.0764691 + 1.27567i
\(226\) 0 0
\(227\) 4.04735 + 11.1200i 0.268632 + 0.738061i 0.998514 + 0.0544879i \(0.0173526\pi\)
−0.729882 + 0.683573i \(0.760425\pi\)
\(228\) 0 0
\(229\) −6.81207 8.11831i −0.450154 0.536473i 0.492470 0.870330i \(-0.336094\pi\)
−0.942624 + 0.333857i \(0.891650\pi\)
\(230\) 0 0
\(231\) 0.783489 3.31833i 0.0515498 0.218330i
\(232\) 0 0
\(233\) −0.565006 0.978619i −0.0370148 0.0641115i 0.846925 0.531713i \(-0.178452\pi\)
−0.883939 + 0.467602i \(0.845118\pi\)
\(234\) 0 0
\(235\) 9.20711 + 5.31572i 0.600605 + 0.346760i
\(236\) 0 0
\(237\) 7.75717 3.90404i 0.503883 0.253594i
\(238\) 0 0
\(239\) −1.00787 5.71591i −0.0651936 0.369731i −0.999898 0.0143045i \(-0.995447\pi\)
0.934704 0.355427i \(-0.115665\pi\)
\(240\) 0 0
\(241\) 22.5974 + 18.9615i 1.45563 + 1.22142i 0.928342 + 0.371728i \(0.121235\pi\)
0.527286 + 0.849688i \(0.323210\pi\)
\(242\) 0 0
\(243\) −13.9599 6.93699i −0.895527 0.445008i
\(244\) 0 0
\(245\) 10.1406 12.0851i 0.647857 0.772086i
\(246\) 0 0
\(247\) 0.474102 + 2.68876i 0.0301664 + 0.171082i
\(248\) 0 0
\(249\) −8.08169 16.0580i −0.512157 1.01764i
\(250\) 0 0
\(251\) 5.20730 + 3.00644i 0.328682 + 0.189765i 0.655256 0.755407i \(-0.272561\pi\)
−0.326574 + 0.945172i \(0.605894\pi\)
\(252\) 0 0
\(253\) 3.30962 1.91081i 0.208074 0.120132i
\(254\) 0 0
\(255\) 3.11343 13.1864i 0.194971 0.825765i
\(256\) 0 0
\(257\) 19.8936 16.6927i 1.24093 1.04126i 0.243480 0.969906i \(-0.421711\pi\)
0.997451 0.0713589i \(-0.0227336\pi\)
\(258\) 0 0
\(259\) −1.42023 3.90205i −0.0882489 0.242462i
\(260\) 0 0
\(261\) 10.4658 0.627364i 0.647814 0.0388329i
\(262\) 0 0
\(263\) 2.41565 13.6998i 0.148956 0.844769i −0.815150 0.579250i \(-0.803346\pi\)
0.964106 0.265519i \(-0.0855433\pi\)
\(264\) 0 0
\(265\) 29.6667 + 10.7978i 1.82241 + 0.663303i
\(266\) 0 0
\(267\) −5.93336 7.95579i −0.363115 0.486887i
\(268\) 0 0
\(269\) 3.89404i 0.237424i −0.992929 0.118712i \(-0.962123\pi\)
0.992929 0.118712i \(-0.0378765\pi\)
\(270\) 0 0
\(271\) −27.1005 −1.64624 −0.823119 0.567869i \(-0.807768\pi\)
−0.823119 + 0.567869i \(0.807768\pi\)
\(272\) 0 0
\(273\) −4.63154 39.3362i −0.280314 2.38073i
\(274\) 0 0
\(275\) 1.25909 3.45933i 0.0759261 0.208605i
\(276\) 0 0
\(277\) −7.05421 1.24385i −0.423847 0.0747356i −0.0423435 0.999103i \(-0.513482\pi\)
−0.381503 + 0.924368i \(0.624593\pi\)
\(278\) 0 0
\(279\) 3.94173 5.31344i 0.235985 0.318107i
\(280\) 0 0
\(281\) −0.728892 + 0.265295i −0.0434820 + 0.0158262i −0.363670 0.931528i \(-0.618476\pi\)
0.320188 + 0.947354i \(0.396254\pi\)
\(282\) 0 0
\(283\) −0.982704 1.17114i −0.0584157 0.0696171i 0.736045 0.676932i \(-0.236691\pi\)
−0.794461 + 0.607315i \(0.792247\pi\)
\(284\) 0 0
\(285\) −0.685850 2.28385i −0.0406263 0.135284i
\(286\) 0 0
\(287\) 11.3528 + 19.6636i 0.670134 + 1.16071i
\(288\) 0 0
\(289\) 5.81375 10.0697i 0.341985 0.592336i
\(290\) 0 0
\(291\) −1.11473 + 19.4228i −0.0653469 + 1.13859i
\(292\) 0 0
\(293\) −15.6621 + 2.76164i −0.914987 + 0.161337i −0.611267 0.791424i \(-0.709340\pi\)
−0.303720 + 0.952761i \(0.598229\pi\)
\(294\) 0 0
\(295\) 22.6996 + 19.0472i 1.32162 + 1.10897i
\(296\) 0 0
\(297\) 1.93011 + 2.28837i 0.111996 + 0.132785i
\(298\) 0 0
\(299\) 28.5363 34.0082i 1.65029 1.96674i
\(300\) 0 0
\(301\) 4.34995 0.767013i 0.250727 0.0442099i
\(302\) 0 0
\(303\) 11.8153 17.9975i 0.678772 1.03393i
\(304\) 0 0
\(305\) 8.00977 13.8733i 0.458638 0.794385i
\(306\) 0 0
\(307\) −0.370582 + 0.213955i −0.0211502 + 0.0122111i −0.510538 0.859855i \(-0.670554\pi\)
0.489388 + 0.872066i \(0.337220\pi\)
\(308\) 0 0
\(309\) −18.7714 + 19.9304i −1.06787 + 1.13380i
\(310\) 0 0
\(311\) −8.46179 + 7.10028i −0.479824 + 0.402620i −0.850363 0.526197i \(-0.823617\pi\)
0.370539 + 0.928817i \(0.379173\pi\)
\(312\) 0 0
\(313\) −26.1193 + 9.50664i −1.47635 + 0.537347i −0.949817 0.312807i \(-0.898731\pi\)
−0.526533 + 0.850155i \(0.676508\pi\)
\(314\) 0 0
\(315\) 8.03493 + 33.6478i 0.452717 + 1.89584i
\(316\) 0 0
\(317\) −3.46040 0.610163i −0.194356 0.0342701i 0.0756229 0.997136i \(-0.475905\pi\)
−0.269979 + 0.962866i \(0.587017\pi\)
\(318\) 0 0
\(319\) −1.89205 0.688651i −0.105935 0.0385571i
\(320\) 0 0
\(321\) −3.88980 1.67399i −0.217108 0.0934329i
\(322\) 0 0
\(323\) 0.945557i 0.0526122i
\(324\) 0 0
\(325\) 42.7649i 2.37217i
\(326\) 0 0
\(327\) −25.8569 11.1276i −1.42989 0.615358i
\(328\) 0 0
\(329\) 10.1144 + 3.68134i 0.557625 + 0.202959i
\(330\) 0 0
\(331\) −17.1533 3.02459i −0.942832 0.166247i −0.318956 0.947770i \(-0.603332\pi\)
−0.623876 + 0.781523i \(0.714443\pi\)
\(332\) 0 0
\(333\) 3.49454 + 1.03974i 0.191499 + 0.0569776i
\(334\) 0 0
\(335\) −47.7123 + 17.3659i −2.60680 + 0.948798i
\(336\) 0 0
\(337\) −2.18023 + 1.82943i −0.118765 + 0.0996554i −0.700236 0.713912i \(-0.746922\pi\)
0.581471 + 0.813567i \(0.302477\pi\)
\(338\) 0 0
\(339\) 14.4543 15.3467i 0.785048 0.833516i
\(340\) 0 0
\(341\) −1.10031 + 0.635266i −0.0595853 + 0.0344016i
\(342\) 0 0
\(343\) −3.97285 + 6.88117i −0.214514 + 0.371548i
\(344\) 0 0
\(345\) −21.2795 + 32.4137i −1.14565 + 1.74509i
\(346\) 0 0
\(347\) −25.7859 + 4.54675i −1.38426 + 0.244082i −0.815659 0.578533i \(-0.803626\pi\)
−0.568599 + 0.822615i \(0.692514\pi\)
\(348\) 0 0
\(349\) −3.27963 + 3.90851i −0.175555 + 0.209218i −0.846646 0.532157i \(-0.821382\pi\)
0.671091 + 0.741375i \(0.265826\pi\)
\(350\) 0 0
\(351\) 30.1613 + 17.3115i 1.60989 + 0.924021i
\(352\) 0 0
\(353\) −11.4022 9.56754i −0.606875 0.509229i 0.286772 0.957999i \(-0.407418\pi\)
−0.893647 + 0.448770i \(0.851862\pi\)
\(354\) 0 0
\(355\) −26.0785 + 4.59835i −1.38410 + 0.244055i
\(356\) 0 0
\(357\) 0.785982 13.6948i 0.0415986 0.724803i
\(358\) 0 0
\(359\) 7.74329 13.4118i 0.408675 0.707846i −0.586066 0.810263i \(-0.699324\pi\)
0.994742 + 0.102417i \(0.0326575\pi\)
\(360\) 0 0
\(361\) −9.41679 16.3104i −0.495621 0.858440i
\(362\) 0 0
\(363\) 5.31445 + 17.6969i 0.278936 + 0.928846i
\(364\) 0 0
\(365\) 2.78459 + 3.31854i 0.145752 + 0.173700i
\(366\) 0 0
\(367\) −24.0744 + 8.76237i −1.25667 + 0.457392i −0.882652 0.470027i \(-0.844244\pi\)
−0.374023 + 0.927419i \(0.622022\pi\)
\(368\) 0 0
\(369\) −19.8049 2.28084i −1.03100 0.118736i
\(370\) 0 0
\(371\) 31.4772 + 5.55028i 1.63422 + 0.288156i
\(372\) 0 0
\(373\) 4.86012 13.3531i 0.251648 0.691396i −0.747970 0.663733i \(-0.768971\pi\)
0.999617 0.0276634i \(-0.00880666\pi\)
\(374\) 0 0
\(375\) 0.949965 + 8.06816i 0.0490560 + 0.416638i
\(376\) 0 0
\(377\) −23.3900 −1.20465
\(378\) 0 0
\(379\) 1.93137i 0.0992080i −0.998769 0.0496040i \(-0.984204\pi\)
0.998769 0.0496040i \(-0.0157959\pi\)
\(380\) 0 0
\(381\) 9.92702 + 13.3107i 0.508577 + 0.681930i
\(382\) 0 0
\(383\) −12.4377 4.52695i −0.635537 0.231317i 0.00410258 0.999992i \(-0.498694\pi\)
−0.639639 + 0.768675i \(0.720916\pi\)
\(384\) 0 0
\(385\) 1.15363 6.54257i 0.0587945 0.333440i
\(386\) 0 0
\(387\) −1.73467 + 3.46866i −0.0881783 + 0.176322i
\(388\) 0 0
\(389\) −8.22522 22.5986i −0.417035 1.14579i −0.953374 0.301792i \(-0.902415\pi\)
0.536339 0.844003i \(-0.319807\pi\)
\(390\) 0 0
\(391\) 11.7780 9.88288i 0.595637 0.499799i
\(392\) 0 0
\(393\) 0.164279 0.695774i 0.00828677 0.0350972i
\(394\) 0 0
\(395\) 14.6540 8.46051i 0.737325 0.425695i
\(396\) 0 0
\(397\) 28.6833 + 16.5603i 1.43957 + 0.831137i 0.997820 0.0659997i \(-0.0210236\pi\)
0.441752 + 0.897137i \(0.354357\pi\)
\(398\) 0 0
\(399\) −1.08534 2.15652i −0.0543347 0.107961i
\(400\) 0 0
\(401\) 1.94567 + 11.0344i 0.0971620 + 0.551033i 0.994063 + 0.108802i \(0.0347016\pi\)
−0.896901 + 0.442231i \(0.854187\pi\)
\(402\) 0 0
\(403\) −9.48715 + 11.3063i −0.472588 + 0.563209i
\(404\) 0 0
\(405\) −27.9304 11.9359i −1.38787 0.593097i
\(406\) 0 0
\(407\) −0.536366 0.450065i −0.0265867 0.0223089i
\(408\) 0 0
\(409\) 1.95004 + 11.0592i 0.0964233 + 0.546844i 0.994302 + 0.106601i \(0.0339966\pi\)
−0.897879 + 0.440243i \(0.854892\pi\)
\(410\) 0 0
\(411\) −24.3829 + 12.2714i −1.20272 + 0.605305i
\(412\) 0 0
\(413\) 25.9810 + 15.0001i 1.27844 + 0.738109i
\(414\) 0 0
\(415\) −17.5140 30.3351i −0.859728 1.48909i
\(416\) 0 0
\(417\) 0.878792 3.72197i 0.0430347 0.182266i
\(418\) 0 0
\(419\) 8.95678 + 10.6743i 0.437567 + 0.521472i 0.939090 0.343672i \(-0.111671\pi\)
−0.501522 + 0.865145i \(0.667226\pi\)
\(420\) 0 0
\(421\) 4.06687 + 11.1736i 0.198207 + 0.544570i 0.998483 0.0550623i \(-0.0175358\pi\)
−0.800276 + 0.599632i \(0.795314\pi\)
\(422\) 0 0
\(423\) −7.88699 + 5.20653i −0.383478 + 0.253150i
\(424\) 0 0
\(425\) 2.57184 14.5856i 0.124753 0.707507i
\(426\) 0 0
\(427\) 5.54707 15.2404i 0.268442 0.737537i
\(428\) 0 0
\(429\) −3.99269 5.35364i −0.192769 0.258476i
\(430\) 0 0
\(431\) 28.2506 1.36079 0.680393 0.732848i \(-0.261809\pi\)
0.680393 + 0.732848i \(0.261809\pi\)
\(432\) 0 0
\(433\) −27.8524 −1.33850 −0.669251 0.743036i \(-0.733385\pi\)
−0.669251 + 0.743036i \(0.733385\pi\)
\(434\) 0 0
\(435\) 20.2888 2.38886i 0.972774 0.114537i
\(436\) 0 0
\(437\) 0.925505 2.54280i 0.0442729 0.121639i
\(438\) 0 0
\(439\) 2.13242 12.0935i 0.101775 0.577193i −0.890685 0.454621i \(-0.849775\pi\)
0.992460 0.122572i \(-0.0391142\pi\)
\(440\) 0 0
\(441\) 5.57627 + 12.8672i 0.265537 + 0.612725i
\(442\) 0 0
\(443\) 7.22670 + 19.8552i 0.343351 + 0.943348i 0.984415 + 0.175861i \(0.0562710\pi\)
−0.641064 + 0.767487i \(0.721507\pi\)
\(444\) 0 0
\(445\) −12.4303 14.8138i −0.589252 0.702243i
\(446\) 0 0
\(447\) 11.3564 3.41036i 0.537137 0.161305i
\(448\) 0 0
\(449\) 13.8708 + 24.0249i 0.654604 + 1.13381i 0.981993 + 0.188917i \(0.0604978\pi\)
−0.327389 + 0.944890i \(0.606169\pi\)
\(450\) 0 0
\(451\) 3.31561 + 1.91427i 0.156126 + 0.0901393i
\(452\) 0 0
\(453\) 1.17089 20.4013i 0.0550133 0.958538i
\(454\) 0 0
\(455\) −13.4014 76.0030i −0.628266 3.56307i
\(456\) 0 0
\(457\) −26.0906 21.8926i −1.22047 1.02409i −0.998800 0.0489720i \(-0.984405\pi\)
−0.221668 0.975122i \(-0.571150\pi\)
\(458\) 0 0
\(459\) 9.24588 + 7.71824i 0.431561 + 0.360256i
\(460\) 0 0
\(461\) −8.93591 + 10.6494i −0.416187 + 0.495992i −0.932884 0.360176i \(-0.882717\pi\)
0.516698 + 0.856168i \(0.327161\pi\)
\(462\) 0 0
\(463\) −3.22751 18.3041i −0.149995 0.850665i −0.963220 0.268715i \(-0.913401\pi\)
0.813224 0.581950i \(-0.197710\pi\)
\(464\) 0 0
\(465\) 7.07455 10.7762i 0.328075 0.499735i
\(466\) 0 0
\(467\) 8.34116 + 4.81577i 0.385983 + 0.222847i 0.680418 0.732824i \(-0.261798\pi\)
−0.294435 + 0.955671i \(0.595132\pi\)
\(468\) 0 0
\(469\) −44.5181 + 25.7026i −2.05566 + 1.18683i
\(470\) 0 0
\(471\) 15.1952 + 14.3116i 0.700156 + 0.659442i
\(472\) 0 0
\(473\) 0.570541 0.478741i 0.0262335 0.0220125i
\(474\) 0 0
\(475\) −0.891532 2.44946i −0.0409063 0.112389i
\(476\) 0 0
\(477\) −20.3802 + 19.2931i −0.933145 + 0.883372i
\(478\) 0 0
\(479\) −5.05443 + 28.6651i −0.230943 + 1.30974i 0.620049 + 0.784563i \(0.287113\pi\)
−0.850992 + 0.525179i \(0.823998\pi\)
\(480\) 0 0
\(481\) −7.64321 2.78190i −0.348500 0.126844i
\(482\) 0 0
\(483\) −15.5180 + 36.0588i −0.706094 + 1.64073i
\(484\) 0 0
\(485\) 37.9074i 1.72129i
\(486\) 0 0
\(487\) 13.1429 0.595563 0.297782 0.954634i \(-0.403753\pi\)
0.297782 + 0.954634i \(0.403753\pi\)
\(488\) 0 0
\(489\) 21.3147 + 9.17282i 0.963882 + 0.414809i
\(490\) 0 0
\(491\) −4.01945 + 11.0433i −0.181395 + 0.498379i −0.996748 0.0805856i \(-0.974321\pi\)
0.815352 + 0.578965i \(0.196543\pi\)
\(492\) 0 0
\(493\) −7.97752 1.40665i −0.359289 0.0633524i
\(494\) 0 0
\(495\) 4.01010 + 4.23604i 0.180240 + 0.190396i
\(496\) 0 0
\(497\) −25.1930 + 9.16949i −1.13006 + 0.411308i
\(498\) 0 0
\(499\) −23.2598 27.7199i −1.04125 1.24091i −0.969911 0.243461i \(-0.921717\pi\)
−0.0713387 0.997452i \(-0.522727\pi\)
\(500\) 0 0
\(501\) −8.04343 + 8.54003i −0.359354 + 0.381540i
\(502\) 0 0
\(503\) −1.18773 2.05720i −0.0529581 0.0917261i 0.838331 0.545161i \(-0.183532\pi\)
−0.891289 + 0.453435i \(0.850198\pi\)
\(504\) 0 0
\(505\) 20.9748 36.3294i 0.933366 1.61664i
\(506\) 0 0
\(507\) −46.0326 30.2202i −2.04438 1.34213i
\(508\) 0 0
\(509\) 40.5051 7.14215i 1.79536 0.316570i 0.826269 0.563276i \(-0.190459\pi\)
0.969090 + 0.246706i \(0.0793482\pi\)
\(510\) 0 0
\(511\) 3.35977 + 2.81918i 0.148627 + 0.124713i
\(512\) 0 0
\(513\) 2.08846 + 0.362779i 0.0922077 + 0.0160171i
\(514\) 0 0
\(515\) −34.2906 + 40.8660i −1.51103 + 1.80077i
\(516\) 0 0
\(517\) 1.78734 0.315155i 0.0786069 0.0138605i
\(518\) 0 0
\(519\) −2.91447 0.167270i −0.127931 0.00734234i
\(520\) 0 0
\(521\) −5.21530 + 9.03316i −0.228486 + 0.395750i −0.957360 0.288899i \(-0.906711\pi\)
0.728873 + 0.684649i \(0.240044\pi\)
\(522\) 0 0
\(523\) 14.6626 8.46543i 0.641149 0.370167i −0.143908 0.989591i \(-0.545967\pi\)
0.785057 + 0.619424i \(0.212634\pi\)
\(524\) 0 0
\(525\) 10.8762 + 36.2173i 0.474677 + 1.58065i
\(526\) 0 0
\(527\) −3.91569 + 3.28565i −0.170570 + 0.143125i
\(528\) 0 0
\(529\) −19.7338 + 7.18252i −0.857992 + 0.312283i
\(530\) 0 0
\(531\) −24.1687 + 10.4740i −1.04883 + 0.454533i
\(532\) 0 0
\(533\) 43.7992 + 7.72298i 1.89715 + 0.334519i
\(534\) 0 0
\(535\) −7.75366 2.82210i −0.335220 0.122010i
\(536\) 0 0
\(537\) −2.41330 20.4964i −0.104142 0.884486i
\(538\) 0 0
\(539\) 2.69313i 0.116001i
\(540\) 0 0
\(541\) 29.4745i 1.26721i −0.773658 0.633603i \(-0.781575\pi\)
0.773658 0.633603i \(-0.218425\pi\)
\(542\) 0 0
\(543\) −22.9306 + 17.1015i −0.984048 + 0.733894i
\(544\) 0 0
\(545\) −51.5414 18.7595i −2.20779 0.803570i
\(546\) 0 0
\(547\) 31.4846 + 5.55158i 1.34618 + 0.237369i 0.799850 0.600199i \(-0.204912\pi\)
0.546333 + 0.837568i \(0.316023\pi\)
\(548\) 0 0
\(549\) 7.84523 + 11.8842i 0.334826 + 0.507204i
\(550\) 0 0
\(551\) −1.33972 + 0.487617i −0.0570739 + 0.0207732i
\(552\) 0 0
\(553\) 13.1233 11.0117i 0.558059 0.468267i
\(554\) 0 0
\(555\) 6.91395 + 1.63245i 0.293481 + 0.0692935i
\(556\) 0 0
\(557\) 7.19468 4.15385i 0.304849 0.176004i −0.339770 0.940508i \(-0.610349\pi\)
0.644619 + 0.764504i \(0.277016\pi\)
\(558\) 0 0
\(559\) 4.32598 7.49282i 0.182970 0.316913i
\(560\) 0 0
\(561\) −1.03981 2.06606i −0.0439007 0.0872290i
\(562\) 0 0
\(563\) 6.57453 1.15927i 0.277083 0.0488573i −0.0333796 0.999443i \(-0.510627\pi\)
0.310463 + 0.950585i \(0.399516\pi\)
\(564\) 0 0
\(565\) 26.4043 31.4674i 1.11084 1.32384i
\(566\) 0 0
\(567\) −29.9462 6.99023i −1.25762 0.293562i
\(568\) 0 0
\(569\) −24.2709 20.3657i −1.01749 0.853775i −0.0281798 0.999603i \(-0.508971\pi\)
−0.989310 + 0.145827i \(0.953416\pi\)
\(570\) 0 0
\(571\) 32.6020 5.74861i 1.36435 0.240572i 0.556936 0.830555i \(-0.311977\pi\)
0.807416 + 0.589983i \(0.200866\pi\)
\(572\) 0 0
\(573\) −20.4527 + 10.2934i −0.854423 + 0.430014i
\(574\) 0 0
\(575\) −21.1926 + 36.7066i −0.883791 + 1.53077i
\(576\) 0 0
\(577\) 15.0611 + 26.0866i 0.627001 + 1.08600i 0.988150 + 0.153490i \(0.0490512\pi\)
−0.361149 + 0.932508i \(0.617615\pi\)
\(578\) 0 0
\(579\) 0.298338 + 0.0704404i 0.0123985 + 0.00292740i
\(580\) 0 0
\(581\) −22.7953 27.1663i −0.945707 1.12705i
\(582\) 0 0
\(583\) 5.06443 1.84330i 0.209747 0.0763418i
\(584\) 0 0
\(585\) 60.6050 + 30.3085i 2.50571 + 1.25310i
\(586\) 0 0
\(587\) −15.0318 2.65051i −0.620427 0.109398i −0.145406 0.989372i \(-0.546449\pi\)
−0.475022 + 0.879974i \(0.657560\pi\)
\(588\) 0 0
\(589\) −0.307693 + 0.845379i −0.0126783 + 0.0348332i
\(590\) 0 0
\(591\) 1.34867 1.00583i 0.0554770 0.0413743i
\(592\) 0 0
\(593\) 27.1813 1.11620 0.558101 0.829773i \(-0.311530\pi\)
0.558101 + 0.829773i \(0.311530\pi\)
\(594\) 0 0
\(595\) 26.7279i 1.09574i
\(596\) 0 0
\(597\) 7.05014 0.830102i 0.288543 0.0339738i
\(598\) 0 0
\(599\) 39.7660 + 14.4737i 1.62480 + 0.591378i 0.984288 0.176573i \(-0.0565012\pi\)
0.640509 + 0.767951i \(0.278723\pi\)
\(600\) 0 0
\(601\) −0.648834 + 3.67972i −0.0264665 + 0.150099i −0.995177 0.0980937i \(-0.968726\pi\)
0.968711 + 0.248193i \(0.0798366\pi\)
\(602\) 0 0
\(603\) 5.16379 44.8381i 0.210286 1.82595i
\(604\) 0 0
\(605\) 12.3139 + 33.8321i 0.500631 + 1.37547i
\(606\) 0 0
\(607\) −35.5497 + 29.8298i −1.44292 + 1.21075i −0.505370 + 0.862903i \(0.668644\pi\)
−0.937550 + 0.347850i \(0.886912\pi\)
\(608\) 0 0
\(609\) 19.8088 5.94867i 0.802694 0.241052i
\(610\) 0 0
\(611\) 18.2586 10.5416i 0.738664 0.426468i
\(612\) 0 0
\(613\) −21.9670 12.6827i −0.887239 0.512248i −0.0142005 0.999899i \(-0.504520\pi\)
−0.873038 + 0.487652i \(0.837854\pi\)
\(614\) 0 0
\(615\) −38.7808 2.22575i −1.56379 0.0897507i
\(616\) 0 0
\(617\) 1.23909 + 7.02722i 0.0498838 + 0.282905i 0.999538 0.0303950i \(-0.00967653\pi\)
−0.949654 + 0.313300i \(0.898565\pi\)
\(618\) 0 0
\(619\) 17.2889 20.6041i 0.694900 0.828149i −0.297039 0.954865i \(-0.595999\pi\)
0.991939 + 0.126716i \(0.0404437\pi\)
\(620\) 0 0
\(621\) −17.3096 29.8058i −0.694610 1.19607i
\(622\) 0 0
\(623\) −14.9979 12.5847i −0.600877 0.504196i
\(624\) 0 0
\(625\) −2.79914 15.8747i −0.111966 0.634989i
\(626\) 0 0
\(627\) −0.340300 0.223406i −0.0135903 0.00892197i
\(628\) 0 0
\(629\) −2.43953 1.40846i −0.0972705 0.0561592i
\(630\) 0 0
\(631\) 11.7466 + 20.3457i 0.467624 + 0.809949i 0.999316 0.0369893i \(-0.0117767\pi\)
−0.531691 + 0.846938i \(0.678443\pi\)
\(632\) 0 0
\(633\) −4.73127 4.45615i −0.188051 0.177116i
\(634\) 0 0
\(635\) 20.7970 + 24.7848i 0.825302 + 0.983557i
\(636\) 0 0
\(637\) −10.7002 29.3985i −0.423956 1.16481i
\(638\) 0 0
\(639\) 6.71294 22.5619i 0.265560 0.892535i
\(640\) 0 0
\(641\) −7.57282 + 42.9476i −0.299108 + 1.69633i 0.350911 + 0.936409i \(0.385872\pi\)
−0.650019 + 0.759918i \(0.725239\pi\)
\(642\) 0 0
\(643\) 0.120739 0.331727i 0.00476148 0.0130820i −0.937289 0.348553i \(-0.886673\pi\)
0.942051 + 0.335471i \(0.108895\pi\)
\(644\) 0 0
\(645\) −2.98717 + 6.94120i −0.117620 + 0.273310i
\(646\) 0 0
\(647\) 26.0967 1.02597 0.512984 0.858398i \(-0.328540\pi\)
0.512984 + 0.858398i \(0.328540\pi\)
\(648\) 0 0
\(649\) 5.05855 0.198565
\(650\) 0 0
\(651\) 5.15911 11.9881i 0.202201 0.469850i
\(652\) 0 0
\(653\) 0.281991 0.774764i 0.0110352 0.0303189i −0.934053 0.357135i \(-0.883754\pi\)
0.945088 + 0.326816i \(0.105976\pi\)
\(654\) 0 0
\(655\) 0.241889 1.37182i 0.00945137 0.0536014i
\(656\) 0 0
\(657\) −3.74554 + 0.894418i −0.146127 + 0.0348946i
\(658\) 0 0
\(659\) −14.2971 39.2809i −0.556935 1.53017i −0.824058 0.566505i \(-0.808295\pi\)
0.267123 0.963662i \(-0.413927\pi\)
\(660\) 0 0
\(661\) 1.06741 + 1.27208i 0.0415173 + 0.0494784i 0.786404 0.617713i \(-0.211941\pi\)
−0.744886 + 0.667192i \(0.767496\pi\)
\(662\) 0 0
\(663\) −19.5594 18.4220i −0.759624 0.715452i
\(664\) 0 0
\(665\) −2.35205 4.07387i −0.0912086 0.157978i
\(666\) 0 0
\(667\) 20.0764 + 11.5911i 0.777362 + 0.448810i
\(668\) 0 0
\(669\) −5.67824 3.72775i −0.219533 0.144123i
\(670\) 0 0
\(671\) −0.474878 2.69317i −0.0183325 0.103969i
\(672\) 0 0
\(673\) −4.23311 3.55200i −0.163175 0.136920i 0.557544 0.830147i \(-0.311744\pi\)
−0.720719 + 0.693227i \(0.756188\pi\)
\(674\) 0 0
\(675\) −31.2287 11.2765i −1.20199 0.434032i
\(676\) 0 0
\(677\) −2.08429 + 2.48396i −0.0801056 + 0.0954662i −0.804609 0.593805i \(-0.797625\pi\)
0.724503 + 0.689272i \(0.242069\pi\)
\(678\) 0 0
\(679\) 6.66432 + 37.7952i 0.255753 + 1.45045i
\(680\) 0 0
\(681\) −20.4628 1.17442i −0.784137 0.0450040i
\(682\) 0 0
\(683\) 22.4547 + 12.9642i 0.859206 + 0.496063i 0.863746 0.503927i \(-0.168112\pi\)
−0.00454025 + 0.999990i \(0.501445\pi\)
\(684\) 0 0
\(685\) −46.0615 + 26.5936i −1.75992 + 1.01609i
\(686\) 0 0
\(687\) 17.5801 5.27939i 0.670724 0.201421i
\(688\) 0 0
\(689\) 47.9602 40.2434i 1.82714 1.53315i
\(690\) 0 0
\(691\) −10.2247 28.0920i −0.388964 1.06867i −0.967469 0.252991i \(-0.918586\pi\)
0.578504 0.815679i \(-0.303637\pi\)
\(692\) 0 0
\(693\) 4.74295 + 3.51852i 0.180170 + 0.133657i
\(694\) 0 0
\(695\) 1.29396 7.33841i 0.0490827 0.278362i
\(696\) 0 0
\(697\) 14.4739 + 5.26808i 0.548240 + 0.199543i
\(698\) 0 0
\(699\) 1.94381 0.228869i 0.0735217 0.00865663i
\(700\) 0 0
\(701\) 24.6223i 0.929973i −0.885318 0.464987i \(-0.846059\pi\)
0.885318 0.464987i \(-0.153941\pi\)
\(702\) 0 0
\(703\) −0.495778 −0.0186986
\(704\) 0 0
\(705\) −14.7611 + 11.0087i −0.555937 + 0.414612i
\(706\) 0 0
\(707\) 14.5258 39.9094i 0.546300 1.50095i
\(708\) 0 0
\(709\) 26.4148 + 4.65765i 0.992030 + 0.174922i 0.646029 0.763313i \(-0.276428\pi\)
0.346001 + 0.938234i \(0.387540\pi\)
\(710\) 0 0
\(711\) 0.900037 + 15.0145i 0.0337540 + 0.563088i
\(712\) 0 0
\(713\) 13.7461 5.00317i 0.514796 0.187370i
\(714\) 0 0
\(715\) −8.36463 9.96858i −0.312819 0.372804i
\(716\) 0 0
\(717\) 9.78395 + 2.31008i 0.365388 + 0.0862716i
\(718\) 0 0
\(719\) −9.26666 16.0503i −0.345588 0.598576i 0.639872 0.768481i \(-0.278987\pi\)
−0.985460 + 0.169905i \(0.945654\pi\)
\(720\) 0 0
\(721\) −27.0047 + 46.7736i −1.00571 + 1.74194i
\(722\) 0 0
\(723\) −45.6393 + 22.9694i −1.69735 + 0.854241i
\(724\) 0 0
\(725\) 21.9920 3.87779i 0.816764 0.144017i
\(726\) 0 0
\(727\) −4.82234 4.04643i −0.178851 0.150074i 0.548967 0.835844i \(-0.315021\pi\)
−0.727818 + 0.685770i \(0.759466\pi\)
\(728\) 0 0
\(729\) 20.5947 17.4602i 0.762766 0.646675i
\(730\) 0 0
\(731\) 1.92605 2.29538i 0.0712377 0.0848978i
\(732\) 0 0
\(733\) 22.4113 3.95172i 0.827781 0.145960i 0.256323 0.966591i \(-0.417489\pi\)
0.571458 + 0.820631i \(0.306378\pi\)
\(734\) 0 0
\(735\) 12.2840 + 24.4078i 0.453102 + 0.900297i
\(736\) 0 0
\(737\) −4.33388 + 7.50649i −0.159640 + 0.276505i
\(738\) 0 0
\(739\) −37.2940 + 21.5317i −1.37188 + 0.792056i −0.991165 0.132636i \(-0.957656\pi\)
−0.380717 + 0.924692i \(0.624323\pi\)
\(740\) 0 0
\(741\) −4.60237 1.08666i −0.169072 0.0399196i
\(742\) 0 0
\(743\) 27.0616 22.7074i 0.992794 0.833053i 0.00682406 0.999977i \(-0.497828\pi\)
0.985970 + 0.166924i \(0.0533834\pi\)
\(744\) 0 0
\(745\) 21.7106 7.90201i 0.795415 0.289507i
\(746\) 0 0
\(747\) 31.0814 1.86316i 1.13721 0.0681693i
\(748\) 0 0
\(749\) −8.22687 1.45062i −0.300603 0.0530045i
\(750\) 0 0
\(751\) 23.5008 + 8.55359i 0.857557 + 0.312125i 0.733117 0.680102i \(-0.238065\pi\)
0.124439 + 0.992227i \(0.460287\pi\)
\(752\) 0 0
\(753\) −8.34852 + 6.22625i −0.304237 + 0.226897i
\(754\) 0 0
\(755\) 39.8171i 1.44909i
\(756\) 0 0
\(757\) 31.3025i 1.13771i −0.822439 0.568853i \(-0.807387\pi\)
0.822439 0.568853i \(-0.192613\pi\)
\(758\) 0 0
\(759\) 0.774019 + 6.57383i 0.0280951 + 0.238615i
\(760\) 0 0
\(761\) −2.59308 0.943805i −0.0939992 0.0342129i 0.294592 0.955623i \(-0.404816\pi\)
−0.388592 + 0.921410i \(0.627038\pi\)
\(762\) 0 0
\(763\) −54.6869 9.64278i −1.97980 0.349092i
\(764\) 0 0
\(765\) 18.8476 + 13.9819i 0.681435 + 0.505517i
\(766\) 0 0
\(767\) 55.2197 20.0983i 1.99387 0.725708i
\(768\) 0 0
\(769\) 3.61913 3.03681i 0.130509 0.109510i −0.575197 0.818015i \(-0.695074\pi\)
0.705706 + 0.708505i \(0.250630\pi\)
\(770\) 0 0
\(771\) 12.9370 + 43.0796i 0.465914 + 1.55147i
\(772\) 0 0
\(773\) 17.3435 10.0133i 0.623803 0.360153i −0.154545 0.987986i \(-0.549391\pi\)
0.778348 + 0.627833i \(0.216058\pi\)
\(774\) 0 0
\(775\) 7.04567 12.2035i 0.253088 0.438361i
\(776\) 0 0
\(777\) 7.18049 + 0.412109i 0.257599 + 0.0147843i
\(778\) 0 0
\(779\) 2.66971 0.470742i 0.0956522 0.0168661i
\(780\) 0 0
\(781\) −2.90577 + 3.46296i −0.103977 + 0.123914i
\(782\) 0 0
\(783\) −6.16759 + 17.0803i −0.220412 + 0.610401i
\(784\) 0 0
\(785\) 31.1567 + 26.1436i 1.11203 + 0.933105i
\(786\) 0 0
\(787\) 41.5062 7.31867i 1.47954 0.260882i 0.625144 0.780510i \(-0.285040\pi\)
0.854393 + 0.519627i \(0.173929\pi\)
\(788\) 0 0
\(789\) 20.1422 + 13.2233i 0.717081 + 0.470762i
\(790\) 0 0
\(791\) 20.7940 36.0163i 0.739350 1.28059i
\(792\) 0 0
\(793\) −15.8842 27.5122i −0.564063 0.976986i
\(794\) 0 0
\(795\) −37.4913 + 39.8060i −1.32968 + 1.41177i
\(796\) 0 0
\(797\) 32.1711 + 38.3400i 1.13956 + 1.35807i 0.924369 + 0.381500i \(0.124592\pi\)
0.215189 + 0.976572i \(0.430963\pi\)
\(798\) 0 0
\(799\) 6.86134 2.49732i 0.242737 0.0883489i
\(800\) 0 0
\(801\) 16.7200 3.99265i 0.590771 0.141073i
\(802\) 0 0
\(803\) 0.728294 + 0.128418i 0.0257009 + 0.00453177i
\(804\) 0 0
\(805\) −26.1611 + 71.8771i −0.922059 + 2.53334i
\(806\) 0 0
\(807\) 6.19534 + 2.66618i 0.218086 + 0.0938541i
\(808\) 0 0
\(809\) 7.89082 0.277426 0.138713 0.990333i \(-0.455703\pi\)
0.138713 + 0.990333i \(0.455703\pi\)
\(810\) 0 0
\(811\) 16.9433i 0.594960i −0.954728 0.297480i \(-0.903854\pi\)
0.954728 0.297480i \(-0.0961461\pi\)
\(812\) 0 0
\(813\) 18.5552 43.1163i 0.650760 1.51215i
\(814\) 0 0
\(815\) 42.4871 + 15.4641i 1.48826 + 0.541682i
\(816\) 0 0
\(817\) 0.0915762 0.519355i 0.00320385 0.0181699i
\(818\) 0 0
\(819\) 65.7541 + 19.5641i 2.29764 + 0.683625i
\(820\) 0 0
\(821\) 16.2209 + 44.5665i 0.566112 + 1.55538i 0.810522 + 0.585708i \(0.199184\pi\)
−0.244410 + 0.969672i \(0.578594\pi\)
\(822\) 0 0
\(823\) 3.65996 3.07107i 0.127578 0.107051i −0.576766 0.816909i \(-0.695686\pi\)
0.704344 + 0.709858i \(0.251241\pi\)
\(824\) 0 0
\(825\) 4.64163 + 4.37172i 0.161601 + 0.152204i
\(826\) 0 0
\(827\) −25.0451 + 14.4598i −0.870903 + 0.502816i −0.867648 0.497179i \(-0.834369\pi\)
−0.00325451 + 0.999995i \(0.501036\pi\)
\(828\) 0 0
\(829\) 17.1833 + 9.92077i 0.596800 + 0.344563i 0.767782 0.640711i \(-0.221361\pi\)
−0.170982 + 0.985274i \(0.554694\pi\)
\(830\) 0 0
\(831\) 6.80883 10.3715i 0.236196 0.359782i
\(832\) 0 0
\(833\) −1.88146 10.6703i −0.0651888 0.369704i
\(834\) 0 0
\(835\) −14.6933 + 17.5108i −0.508482 + 0.605986i
\(836\) 0 0
\(837\) 5.75473 + 9.90922i 0.198913 + 0.342513i
\(838\) 0 0
\(839\) −26.2638 22.0379i −0.906725 0.760833i 0.0647677 0.997900i \(-0.479369\pi\)
−0.971493 + 0.237067i \(0.923814\pi\)
\(840\) 0 0
\(841\) 2.91487 + 16.5310i 0.100513 + 0.570036i
\(842\) 0 0
\(843\) 0.0769808 1.34129i 0.00265136 0.0461966i
\(844\) 0 0
\(845\) −92.9203 53.6476i −3.19656 1.84553i
\(846\) 0 0
\(847\) 18.2253 + 31.5672i 0.626230 + 1.08466i
\(848\) 0 0
\(849\) 2.53610 0.761601i 0.0870387 0.0261381i
\(850\) 0 0
\(851\) 5.18183 + 6.17546i 0.177631 + 0.211692i
\(852\) 0 0
\(853\) −11.5939 31.8539i −0.396967 1.09066i −0.963754 0.266793i \(-0.914036\pi\)
0.566787 0.823865i \(-0.308186\pi\)
\(854\) 0 0
\(855\) 4.10315 + 0.472540i 0.140325 + 0.0161605i
\(856\) 0 0
\(857\) 0.670084 3.80024i 0.0228896 0.129814i −0.971222 0.238177i \(-0.923450\pi\)
0.994111 + 0.108364i \(0.0345611\pi\)
\(858\) 0 0
\(859\) −7.37600 + 20.2654i −0.251666 + 0.691446i 0.747951 + 0.663754i \(0.231038\pi\)
−0.999617 + 0.0276917i \(0.991184\pi\)
\(860\) 0 0
\(861\) −39.0574 + 4.59872i −1.33107 + 0.156724i
\(862\) 0 0
\(863\) −30.2497 −1.02971 −0.514857 0.857276i \(-0.672155\pi\)
−0.514857 + 0.857276i \(0.672155\pi\)
\(864\) 0 0
\(865\) −5.68815 −0.193403
\(866\) 0 0
\(867\) 12.0401 + 16.1441i 0.408904 + 0.548282i
\(868\) 0 0
\(869\) 0.987962 2.71440i 0.0335143 0.0920799i
\(870\) 0 0
\(871\) −17.4847 + 99.1608i −0.592447 + 3.35994i
\(872\) 0 0
\(873\) −30.1381 15.0720i −1.02002 0.510109i
\(874\) 0 0
\(875\) 5.48119 + 15.0594i 0.185298 + 0.509102i
\(876\) 0 0
\(877\) 10.0265 + 11.9491i 0.338571 + 0.403493i 0.908286 0.418349i \(-0.137391\pi\)
−0.569715 + 0.821842i \(0.692947\pi\)
\(878\) 0 0
\(879\) 6.32982 26.8088i 0.213499 0.904239i
\(880\) 0 0
\(881\) 18.2832 + 31.6674i 0.615977 + 1.06690i 0.990212 + 0.139569i \(0.0445719\pi\)
−0.374235 + 0.927334i \(0.622095\pi\)
\(882\) 0 0
\(883\) 26.1355 + 15.0893i 0.879529 + 0.507796i 0.870503 0.492163i \(-0.163794\pi\)
0.00902592 + 0.999959i \(0.497127\pi\)
\(884\) 0 0
\(885\) −45.8457 + 23.0732i −1.54109 + 0.775598i
\(886\) 0 0
\(887\) 7.16882 + 40.6564i 0.240705 + 1.36511i 0.830258 + 0.557379i \(0.188193\pi\)
−0.589553 + 0.807730i \(0.700696\pi\)
\(888\) 0 0
\(889\) 25.0927 + 21.0553i 0.841584 + 0.706172i
\(890\) 0 0
\(891\) −4.96226 + 1.50395i −0.166242 + 0.0503843i
\(892\) 0 0
\(893\) 0.826041 0.984438i 0.0276424 0.0329430i
\(894\) 0 0
\(895\) −6.98289 39.6019i −0.233412 1.32375i
\(896\) 0 0
\(897\) 34.5680 + 68.6854i 1.15419 + 2.29334i
\(898\) 0 0
\(899\) −6.67459 3.85358i −0.222610 0.128524i
\(900\) 0 0
\(901\) 18.7778 10.8414i 0.625578 0.361178i
\(902\) 0 0
\(903\) −1.75803 + 7.44583i −0.0585036 + 0.247782i
\(904\) 0 0
\(905\) −42.6973 + 35.8273i −1.41931 + 1.19094i
\(906\) 0 0
\(907\) 13.9229 + 38.2529i 0.462303 + 1.27017i 0.923749 + 0.382999i \(0.125109\pi\)
−0.461446 + 0.887168i \(0.652669\pi\)
\(908\) 0 0
\(909\) 20.5439 + 31.1205i 0.681399 + 1.03220i
\(910\) 0 0
\(911\) −7.42318 + 42.0989i −0.245941 + 1.39480i 0.572357 + 0.820005i \(0.306029\pi\)
−0.818298 + 0.574795i \(0.805082\pi\)
\(912\) 0 0
\(913\) −5.61905 2.04517i −0.185963 0.0676852i
\(914\) 0 0
\(915\) 16.5880 + 22.2422i 0.548383 + 0.735304i
\(916\) 0 0
\(917\) 1.41029i 0.0465717i
\(918\) 0 0
\(919\) 4.00742 0.132193 0.0660963 0.997813i \(-0.478946\pi\)
0.0660963 + 0.997813i \(0.478946\pi\)
\(920\) 0 0
\(921\) −0.0866677 0.736078i −0.00285580 0.0242546i
\(922\) 0 0
\(923\) −17.9609 + 49.3471i −0.591189 + 1.62428i
\(924\) 0 0
\(925\) 7.64760 + 1.34848i 0.251452 + 0.0443377i
\(926\) 0 0
\(927\) −18.8563 43.5109i −0.619323 1.42909i
\(928\) 0 0
\(929\) 46.5451 16.9410i 1.52710 0.555818i 0.564188 0.825646i \(-0.309189\pi\)
0.962908 + 0.269829i \(0.0869671\pi\)
\(930\) 0 0
\(931\) −1.22576 1.46080i −0.0401725 0.0478758i
\(932\) 0 0
\(933\) −5.50276 18.3239i −0.180152 0.599899i
\(934\) 0 0
\(935\) −2.25339 3.90298i −0.0736936 0.127641i
\(936\) 0 0
\(937\) 4.84280 8.38798i 0.158207 0.274023i −0.776015 0.630715i \(-0.782762\pi\)
0.934222 + 0.356691i \(0.116095\pi\)
\(938\) 0 0
\(939\) 2.75855 48.0642i 0.0900218 1.56852i
\(940\) 0 0
\(941\) 5.10500 0.900150i 0.166418 0.0293440i −0.0898181 0.995958i \(-0.528629\pi\)
0.256236 + 0.966614i \(0.417517\pi\)
\(942\) 0 0
\(943\) −33.7672 28.3340i −1.09961 0.922682i
\(944\) 0 0
\(945\) −59.0342 10.2546i −1.92038 0.333583i
\(946\) 0 0
\(947\) 19.6357 23.4009i 0.638075 0.760428i −0.345990 0.938238i \(-0.612457\pi\)
0.984065 + 0.177811i \(0.0569014\pi\)
\(948\) 0 0
\(949\) 8.46036 1.49179i 0.274635 0.0484256i
\(950\) 0 0
\(951\) 3.34003 5.08766i 0.108308 0.164979i
\(952\) 0 0
\(953\) 8.71927 15.1022i 0.282445 0.489209i −0.689542 0.724246i \(-0.742188\pi\)
0.971986 + 0.235037i \(0.0755213\pi\)
\(954\) 0 0
\(955\) −38.6370 + 22.3071i −1.25027 + 0.721841i
\(956\) 0 0
\(957\) 2.39108 2.53871i 0.0772928 0.0820648i
\(958\) 0 0
\(959\) −41.2500 + 34.6128i −1.33203 + 1.11771i
\(960\) 0 0
\(961\) 24.5605 8.93927i 0.792273 0.288364i
\(962\) 0 0
\(963\) 5.32656 5.04244i 0.171646 0.162490i
\(964\) 0 0
\(965\) 0.588217 + 0.103718i 0.0189354 + 0.00333882i
\(966\) 0 0
\(967\) 46.2859 + 16.8467i 1.48845 + 0.541752i 0.953042 0.302839i \(-0.0979345\pi\)
0.535411 + 0.844592i \(0.320157\pi\)
\(968\) 0 0
\(969\) −1.50436 0.647406i −0.0483270 0.0207977i
\(970\) 0 0
\(971\) 13.2201i 0.424253i 0.977242 + 0.212126i \(0.0680388\pi\)
−0.977242 + 0.212126i \(0.931961\pi\)
\(972\) 0 0
\(973\) 7.54418i 0.241855i
\(974\) 0 0
\(975\) 68.0381 + 29.2804i 2.17896 + 0.937723i
\(976\) 0 0
\(977\) −22.1311 8.05506i −0.708037 0.257704i −0.0371983 0.999308i \(-0.511843\pi\)
−0.670838 + 0.741604i \(0.734066\pi\)
\(978\) 0 0
\(979\) −3.25108 0.573253i −0.103905 0.0183212i
\(980\) 0 0
\(981\) 35.4075 33.5189i 1.13048 1.07018i
\(982\) 0 0
\(983\) 44.1620 16.0737i 1.40855 0.512670i 0.477846 0.878444i \(-0.341418\pi\)
0.930704 + 0.365773i \(0.119195\pi\)
\(984\) 0 0
\(985\) 2.51126 2.10719i 0.0800153 0.0671408i
\(986\) 0 0
\(987\) −12.7821 + 13.5712i −0.406858 + 0.431977i
\(988\) 0 0
\(989\) −7.42628 + 4.28756i −0.236142 + 0.136337i
\(990\) 0 0
\(991\) 10.5119 18.2072i 0.333922 0.578370i −0.649355 0.760486i \(-0.724961\pi\)
0.983277 + 0.182115i \(0.0582943\pi\)
\(992\) 0 0
\(993\) 16.5566 25.2197i 0.525409 0.800322i
\(994\) 0 0
\(995\) 13.6219 2.40190i 0.431842 0.0761454i
\(996\) 0 0
\(997\) −1.15413 + 1.37543i −0.0365515 + 0.0435604i −0.784011 0.620748i \(-0.786829\pi\)
0.747459 + 0.664308i \(0.231274\pi\)
\(998\) 0 0
\(999\) −4.04686 + 4.84784i −0.128037 + 0.153379i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.529.13 204
4.3 odd 2 216.2.t.a.205.27 yes 204
8.3 odd 2 216.2.t.a.205.12 yes 204
8.5 even 2 inner 864.2.bf.a.529.22 204
12.11 even 2 648.2.t.a.613.8 204
24.11 even 2 648.2.t.a.613.23 204
27.22 even 9 inner 864.2.bf.a.49.22 204
108.59 even 18 648.2.t.a.37.23 204
108.103 odd 18 216.2.t.a.157.12 204
216.59 even 18 648.2.t.a.37.8 204
216.157 even 18 inner 864.2.bf.a.49.13 204
216.211 odd 18 216.2.t.a.157.27 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.12 204 108.103 odd 18
216.2.t.a.157.27 yes 204 216.211 odd 18
216.2.t.a.205.12 yes 204 8.3 odd 2
216.2.t.a.205.27 yes 204 4.3 odd 2
648.2.t.a.37.8 204 216.59 even 18
648.2.t.a.37.23 204 108.59 even 18
648.2.t.a.613.8 204 12.11 even 2
648.2.t.a.613.23 204 24.11 even 2
864.2.bf.a.49.13 204 216.157 even 18 inner
864.2.bf.a.49.22 204 27.22 even 9 inner
864.2.bf.a.529.13 204 1.1 even 1 trivial
864.2.bf.a.529.22 204 8.5 even 2 inner