Properties

Label 864.2.bf.a.529.11
Level $864$
Weight $2$
Character 864.529
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 529.11
Character \(\chi\) \(=\) 864.529
Dual form 864.2.bf.a.49.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07385 + 1.35898i) q^{3} +(-0.0465753 + 0.127965i) q^{5} +(0.252128 - 1.42989i) q^{7} +(-0.693675 - 2.91870i) q^{9} +(0.771344 + 2.11925i) q^{11} +(0.634290 + 0.755917i) q^{13} +(-0.123887 - 0.200710i) q^{15} +(-0.439205 - 0.760726i) q^{17} +(5.20298 + 3.00394i) q^{19} +(1.67245 + 1.87813i) q^{21} +(0.748645 + 4.24578i) q^{23} +(3.81602 + 3.20202i) q^{25} +(4.71137 + 2.19157i) q^{27} +(-0.146501 + 0.174594i) q^{29} +(-1.15687 - 6.56095i) q^{31} +(-3.70834 - 1.22752i) q^{33} +(0.171232 + 0.0988610i) q^{35} +(-9.25201 + 5.34165i) q^{37} +(-1.70841 + 0.0502450i) q^{39} +(-1.19321 + 1.00123i) q^{41} +(1.11062 + 3.05141i) q^{43} +(0.405799 + 0.0471736i) q^{45} +(-1.36645 + 7.74952i) q^{47} +(4.59683 + 1.67311i) q^{49} +(1.50546 + 0.220036i) q^{51} +5.08895i q^{53} -0.307115 q^{55} +(-9.66954 + 3.84497i) q^{57} +(-3.15956 + 8.68082i) q^{59} +(12.3724 + 2.18158i) q^{61} +(-4.34831 + 0.255992i) q^{63} +(-0.126273 + 0.0459596i) q^{65} +(-5.90023 - 7.03162i) q^{67} +(-6.57388 - 3.54195i) q^{69} +(5.93006 + 10.2712i) q^{71} +(4.88366 - 8.45874i) q^{73} +(-8.44934 + 1.74741i) q^{75} +(3.22477 - 0.568614i) q^{77} +(-5.49238 - 4.60866i) q^{79} +(-8.03763 + 4.04926i) q^{81} +(-0.867764 + 1.03416i) q^{83} +(0.117802 - 0.0207717i) q^{85} +(-0.0799487 - 0.386581i) q^{87} +(-3.19969 + 5.54203i) q^{89} +(1.24080 - 0.716376i) q^{91} +(10.1585 + 5.47333i) q^{93} +(-0.626728 + 0.525888i) q^{95} +(0.779817 - 0.283830i) q^{97} +(5.65040 - 3.72140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.07385 + 1.35898i −0.619990 + 0.784610i
\(4\) 0 0
\(5\) −0.0465753 + 0.127965i −0.0208291 + 0.0572275i −0.949671 0.313248i \(-0.898583\pi\)
0.928842 + 0.370475i \(0.120805\pi\)
\(6\) 0 0
\(7\) 0.252128 1.42989i 0.0952954 0.540447i −0.899361 0.437207i \(-0.855968\pi\)
0.994656 0.103240i \(-0.0329211\pi\)
\(8\) 0 0
\(9\) −0.693675 2.91870i −0.231225 0.972900i
\(10\) 0 0
\(11\) 0.771344 + 2.11925i 0.232569 + 0.638978i 0.999998 0.00215610i \(-0.000686309\pi\)
−0.767429 + 0.641134i \(0.778464\pi\)
\(12\) 0 0
\(13\) 0.634290 + 0.755917i 0.175920 + 0.209654i 0.846798 0.531914i \(-0.178527\pi\)
−0.670878 + 0.741568i \(0.734083\pi\)
\(14\) 0 0
\(15\) −0.123887 0.200710i −0.0319874 0.0518232i
\(16\) 0 0
\(17\) −0.439205 0.760726i −0.106523 0.184503i 0.807836 0.589407i \(-0.200638\pi\)
−0.914359 + 0.404904i \(0.867305\pi\)
\(18\) 0 0
\(19\) 5.20298 + 3.00394i 1.19364 + 0.689151i 0.959131 0.282962i \(-0.0913170\pi\)
0.234513 + 0.972113i \(0.424650\pi\)
\(20\) 0 0
\(21\) 1.67245 + 1.87813i 0.364958 + 0.409842i
\(22\) 0 0
\(23\) 0.748645 + 4.24578i 0.156103 + 0.885306i 0.957770 + 0.287535i \(0.0928357\pi\)
−0.801667 + 0.597771i \(0.796053\pi\)
\(24\) 0 0
\(25\) 3.81602 + 3.20202i 0.763203 + 0.640404i
\(26\) 0 0
\(27\) 4.71137 + 2.19157i 0.906704 + 0.421767i
\(28\) 0 0
\(29\) −0.146501 + 0.174594i −0.0272046 + 0.0324212i −0.779475 0.626433i \(-0.784514\pi\)
0.752271 + 0.658854i \(0.228959\pi\)
\(30\) 0 0
\(31\) −1.15687 6.56095i −0.207781 1.17838i −0.893004 0.450049i \(-0.851407\pi\)
0.685223 0.728333i \(-0.259705\pi\)
\(32\) 0 0
\(33\) −3.70834 1.22752i −0.645539 0.213684i
\(34\) 0 0
\(35\) 0.171232 + 0.0988610i 0.0289435 + 0.0167106i
\(36\) 0 0
\(37\) −9.25201 + 5.34165i −1.52102 + 0.878162i −0.521330 + 0.853355i \(0.674564\pi\)
−0.999692 + 0.0248069i \(0.992103\pi\)
\(38\) 0 0
\(39\) −1.70841 + 0.0502450i −0.273565 + 0.00804563i
\(40\) 0 0
\(41\) −1.19321 + 1.00123i −0.186349 + 0.156365i −0.731190 0.682174i \(-0.761035\pi\)
0.544841 + 0.838540i \(0.316590\pi\)
\(42\) 0 0
\(43\) 1.11062 + 3.05141i 0.169368 + 0.465335i 0.995117 0.0987027i \(-0.0314693\pi\)
−0.825749 + 0.564038i \(0.809247\pi\)
\(44\) 0 0
\(45\) 0.405799 + 0.0471736i 0.0604929 + 0.00703222i
\(46\) 0 0
\(47\) −1.36645 + 7.74952i −0.199317 + 1.13038i 0.706818 + 0.707395i \(0.250130\pi\)
−0.906135 + 0.422988i \(0.860981\pi\)
\(48\) 0 0
\(49\) 4.59683 + 1.67311i 0.656691 + 0.239016i
\(50\) 0 0
\(51\) 1.50546 + 0.220036i 0.210806 + 0.0308111i
\(52\) 0 0
\(53\) 5.08895i 0.699021i 0.936932 + 0.349510i \(0.113652\pi\)
−0.936932 + 0.349510i \(0.886348\pi\)
\(54\) 0 0
\(55\) −0.307115 −0.0414114
\(56\) 0 0
\(57\) −9.66954 + 3.84497i −1.28076 + 0.509279i
\(58\) 0 0
\(59\) −3.15956 + 8.68082i −0.411340 + 1.13015i 0.545139 + 0.838346i \(0.316477\pi\)
−0.956479 + 0.291801i \(0.905745\pi\)
\(60\) 0 0
\(61\) 12.3724 + 2.18158i 1.58412 + 0.279323i 0.895250 0.445563i \(-0.146997\pi\)
0.688869 + 0.724886i \(0.258108\pi\)
\(62\) 0 0
\(63\) −4.34831 + 0.255992i −0.547836 + 0.0322519i
\(64\) 0 0
\(65\) −0.126273 + 0.0459596i −0.0156622 + 0.00570059i
\(66\) 0 0
\(67\) −5.90023 7.03162i −0.720828 0.859049i 0.273883 0.961763i \(-0.411692\pi\)
−0.994711 + 0.102714i \(0.967247\pi\)
\(68\) 0 0
\(69\) −6.57388 3.54195i −0.791402 0.426401i
\(70\) 0 0
\(71\) 5.93006 + 10.2712i 0.703769 + 1.21896i 0.967134 + 0.254267i \(0.0818341\pi\)
−0.263366 + 0.964696i \(0.584833\pi\)
\(72\) 0 0
\(73\) 4.88366 8.45874i 0.571589 0.990021i −0.424814 0.905281i \(-0.639661\pi\)
0.996403 0.0847405i \(-0.0270061\pi\)
\(74\) 0 0
\(75\) −8.44934 + 1.74741i −0.975645 + 0.201773i
\(76\) 0 0
\(77\) 3.22477 0.568614i 0.367497 0.0647996i
\(78\) 0 0
\(79\) −5.49238 4.60866i −0.617941 0.518514i 0.279214 0.960229i \(-0.409926\pi\)
−0.897156 + 0.441714i \(0.854370\pi\)
\(80\) 0 0
\(81\) −8.03763 + 4.04926i −0.893070 + 0.449918i
\(82\) 0 0
\(83\) −0.867764 + 1.03416i −0.0952494 + 0.113514i −0.811564 0.584264i \(-0.801383\pi\)
0.716314 + 0.697778i \(0.245828\pi\)
\(84\) 0 0
\(85\) 0.117802 0.0207717i 0.0127774 0.00225301i
\(86\) 0 0
\(87\) −0.0799487 0.386581i −0.00857141 0.0414458i
\(88\) 0 0
\(89\) −3.19969 + 5.54203i −0.339167 + 0.587454i −0.984276 0.176636i \(-0.943478\pi\)
0.645110 + 0.764090i \(0.276812\pi\)
\(90\) 0 0
\(91\) 1.24080 0.716376i 0.130071 0.0750966i
\(92\) 0 0
\(93\) 10.1585 + 5.47333i 1.05339 + 0.567558i
\(94\) 0 0
\(95\) −0.626728 + 0.525888i −0.0643010 + 0.0539549i
\(96\) 0 0
\(97\) 0.779817 0.283830i 0.0791784 0.0288186i −0.302127 0.953268i \(-0.597697\pi\)
0.381306 + 0.924449i \(0.375475\pi\)
\(98\) 0 0
\(99\) 5.65040 3.72140i 0.567886 0.374014i
\(100\) 0 0
\(101\) 7.06509 + 1.24577i 0.703003 + 0.123958i 0.513712 0.857963i \(-0.328270\pi\)
0.189291 + 0.981921i \(0.439381\pi\)
\(102\) 0 0
\(103\) 7.48465 + 2.72419i 0.737484 + 0.268422i 0.683329 0.730110i \(-0.260531\pi\)
0.0541548 + 0.998533i \(0.482754\pi\)
\(104\) 0 0
\(105\) −0.318229 + 0.126540i −0.0310560 + 0.0123490i
\(106\) 0 0
\(107\) 19.5243i 1.88748i −0.330687 0.943740i \(-0.607280\pi\)
0.330687 0.943740i \(-0.392720\pi\)
\(108\) 0 0
\(109\) 5.56480i 0.533011i 0.963833 + 0.266506i \(0.0858691\pi\)
−0.963833 + 0.266506i \(0.914131\pi\)
\(110\) 0 0
\(111\) 2.67609 18.3095i 0.254003 1.73786i
\(112\) 0 0
\(113\) 11.5278 + 4.19578i 1.08445 + 0.394706i 0.821561 0.570121i \(-0.193104\pi\)
0.262885 + 0.964827i \(0.415326\pi\)
\(114\) 0 0
\(115\) −0.578178 0.101948i −0.0539154 0.00950674i
\(116\) 0 0
\(117\) 1.76631 2.37566i 0.163295 0.219630i
\(118\) 0 0
\(119\) −1.19849 + 0.436214i −0.109865 + 0.0399877i
\(120\) 0 0
\(121\) 4.53023 3.80132i 0.411840 0.345574i
\(122\) 0 0
\(123\) −0.0793116 2.69673i −0.00715129 0.243156i
\(124\) 0 0
\(125\) −1.17714 + 0.679623i −0.105287 + 0.0607873i
\(126\) 0 0
\(127\) 4.15115 7.19001i 0.368355 0.638010i −0.620953 0.783848i \(-0.713254\pi\)
0.989309 + 0.145838i \(0.0465877\pi\)
\(128\) 0 0
\(129\) −5.33946 1.76745i −0.470113 0.155615i
\(130\) 0 0
\(131\) −16.3299 + 2.87941i −1.42675 + 0.251575i −0.833090 0.553138i \(-0.813430\pi\)
−0.593664 + 0.804713i \(0.702319\pi\)
\(132\) 0 0
\(133\) 5.60712 6.68230i 0.486199 0.579429i
\(134\) 0 0
\(135\) −0.499877 + 0.500816i −0.0430225 + 0.0431034i
\(136\) 0 0
\(137\) 6.20446 + 5.20616i 0.530083 + 0.444792i 0.868130 0.496337i \(-0.165322\pi\)
−0.338047 + 0.941129i \(0.609766\pi\)
\(138\) 0 0
\(139\) −3.76315 + 0.663545i −0.319186 + 0.0562811i −0.330946 0.943650i \(-0.607368\pi\)
0.0117598 + 0.999931i \(0.496257\pi\)
\(140\) 0 0
\(141\) −9.06410 10.1788i −0.763335 0.857212i
\(142\) 0 0
\(143\) −1.11272 + 1.92729i −0.0930505 + 0.161168i
\(144\) 0 0
\(145\) −0.0155185 0.0268788i −0.00128874 0.00223216i
\(146\) 0 0
\(147\) −7.21006 + 4.45035i −0.594676 + 0.367058i
\(148\) 0 0
\(149\) −14.3501 17.1018i −1.17561 1.40104i −0.897802 0.440400i \(-0.854837\pi\)
−0.277807 0.960637i \(-0.589608\pi\)
\(150\) 0 0
\(151\) 17.9058 6.51719i 1.45716 0.530362i 0.512576 0.858642i \(-0.328691\pi\)
0.944581 + 0.328280i \(0.106469\pi\)
\(152\) 0 0
\(153\) −1.91566 + 1.80960i −0.154872 + 0.146298i
\(154\) 0 0
\(155\) 0.893452 + 0.157540i 0.0717638 + 0.0126539i
\(156\) 0 0
\(157\) 2.93811 8.07239i 0.234487 0.644247i −0.765513 0.643421i \(-0.777515\pi\)
1.00000 0.000826492i \(-0.000263081\pi\)
\(158\) 0 0
\(159\) −6.91580 5.46479i −0.548459 0.433386i
\(160\) 0 0
\(161\) 6.25975 0.493337
\(162\) 0 0
\(163\) 10.0518i 0.787315i 0.919257 + 0.393657i \(0.128790\pi\)
−0.919257 + 0.393657i \(0.871210\pi\)
\(164\) 0 0
\(165\) 0.329797 0.417364i 0.0256746 0.0324918i
\(166\) 0 0
\(167\) −14.9465 5.44008i −1.15660 0.420966i −0.308715 0.951154i \(-0.599899\pi\)
−0.847880 + 0.530188i \(0.822121\pi\)
\(168\) 0 0
\(169\) 2.08834 11.8436i 0.160641 0.911043i
\(170\) 0 0
\(171\) 5.15843 17.2697i 0.394475 1.32065i
\(172\) 0 0
\(173\) 6.92421 + 19.0241i 0.526438 + 1.44638i 0.863236 + 0.504800i \(0.168434\pi\)
−0.336798 + 0.941577i \(0.609344\pi\)
\(174\) 0 0
\(175\) 5.54065 4.64916i 0.418834 0.351444i
\(176\) 0 0
\(177\) −8.40419 13.6157i −0.631698 1.02342i
\(178\) 0 0
\(179\) 19.1336 11.0468i 1.43011 0.825676i 0.432984 0.901402i \(-0.357461\pi\)
0.997129 + 0.0757257i \(0.0241273\pi\)
\(180\) 0 0
\(181\) −15.2536 8.80669i −1.13379 0.654596i −0.188907 0.981995i \(-0.560494\pi\)
−0.944886 + 0.327399i \(0.893828\pi\)
\(182\) 0 0
\(183\) −16.2508 + 14.4711i −1.20130 + 1.06974i
\(184\) 0 0
\(185\) −0.252627 1.43272i −0.0185735 0.105336i
\(186\) 0 0
\(187\) 1.27339 1.51757i 0.0931195 0.110976i
\(188\) 0 0
\(189\) 4.32157 6.18419i 0.314348 0.449833i
\(190\) 0 0
\(191\) 7.20145 + 6.04274i 0.521079 + 0.437237i 0.865008 0.501759i \(-0.167313\pi\)
−0.343929 + 0.938996i \(0.611758\pi\)
\(192\) 0 0
\(193\) −1.28620 7.29438i −0.0925824 0.525061i −0.995461 0.0951660i \(-0.969662\pi\)
0.902879 0.429895i \(-0.141449\pi\)
\(194\) 0 0
\(195\) 0.0731404 0.220957i 0.00523769 0.0158230i
\(196\) 0 0
\(197\) −15.7746 9.10747i −1.12389 0.648881i −0.181502 0.983391i \(-0.558096\pi\)
−0.942392 + 0.334510i \(0.891429\pi\)
\(198\) 0 0
\(199\) 8.05228 + 13.9470i 0.570811 + 0.988674i 0.996483 + 0.0837964i \(0.0267045\pi\)
−0.425672 + 0.904878i \(0.639962\pi\)
\(200\) 0 0
\(201\) 15.8918 0.467384i 1.12092 0.0329667i
\(202\) 0 0
\(203\) 0.212712 + 0.253501i 0.0149295 + 0.0177923i
\(204\) 0 0
\(205\) −0.0725472 0.199322i −0.00506692 0.0139212i
\(206\) 0 0
\(207\) 11.8728 5.13026i 0.825220 0.356578i
\(208\) 0 0
\(209\) −2.35282 + 13.3435i −0.162748 + 0.922988i
\(210\) 0 0
\(211\) 6.47874 17.8002i 0.446015 1.22542i −0.489461 0.872025i \(-0.662807\pi\)
0.935476 0.353390i \(-0.114971\pi\)
\(212\) 0 0
\(213\) −20.3264 2.97088i −1.39274 0.203561i
\(214\) 0 0
\(215\) −0.442200 −0.0301578
\(216\) 0 0
\(217\) −9.67311 −0.656654
\(218\) 0 0
\(219\) 6.25096 + 15.7203i 0.422401 + 1.06228i
\(220\) 0 0
\(221\) 0.296462 0.814523i 0.0199422 0.0547908i
\(222\) 0 0
\(223\) −2.02862 + 11.5049i −0.135847 + 0.770424i 0.838420 + 0.545025i \(0.183480\pi\)
−0.974267 + 0.225399i \(0.927631\pi\)
\(224\) 0 0
\(225\) 6.69866 13.3590i 0.446577 0.890598i
\(226\) 0 0
\(227\) 0.619851 + 1.70303i 0.0411409 + 0.113034i 0.958562 0.284884i \(-0.0919551\pi\)
−0.917421 + 0.397918i \(0.869733\pi\)
\(228\) 0 0
\(229\) −7.88646 9.39872i −0.521152 0.621085i 0.439701 0.898144i \(-0.355085\pi\)
−0.960853 + 0.277060i \(0.910640\pi\)
\(230\) 0 0
\(231\) −2.69020 + 4.99302i −0.177002 + 0.328517i
\(232\) 0 0
\(233\) −0.421533 0.730116i −0.0276155 0.0478315i 0.851887 0.523725i \(-0.175458\pi\)
−0.879503 + 0.475894i \(0.842125\pi\)
\(234\) 0 0
\(235\) −0.928021 0.535793i −0.0605374 0.0349513i
\(236\) 0 0
\(237\) 12.1611 2.51504i 0.789949 0.163369i
\(238\) 0 0
\(239\) 1.87603 + 10.6395i 0.121350 + 0.688211i 0.983409 + 0.181402i \(0.0580637\pi\)
−0.862059 + 0.506808i \(0.830825\pi\)
\(240\) 0 0
\(241\) 6.85566 + 5.75258i 0.441612 + 0.370557i 0.836312 0.548253i \(-0.184707\pi\)
−0.394700 + 0.918810i \(0.629152\pi\)
\(242\) 0 0
\(243\) 3.12836 15.2713i 0.200685 0.979656i
\(244\) 0 0
\(245\) −0.428198 + 0.510307i −0.0273566 + 0.0326023i
\(246\) 0 0
\(247\) 1.02947 + 5.83839i 0.0655033 + 0.371488i
\(248\) 0 0
\(249\) −0.473556 2.28981i −0.0300104 0.145111i
\(250\) 0 0
\(251\) 6.48934 + 3.74662i 0.409603 + 0.236485i 0.690619 0.723219i \(-0.257338\pi\)
−0.281016 + 0.959703i \(0.590671\pi\)
\(252\) 0 0
\(253\) −8.42041 + 4.86153i −0.529387 + 0.305641i
\(254\) 0 0
\(255\) −0.0982739 + 0.182397i −0.00615415 + 0.0114221i
\(256\) 0 0
\(257\) −12.7573 + 10.7046i −0.795777 + 0.667736i −0.947168 0.320738i \(-0.896069\pi\)
0.151391 + 0.988474i \(0.451625\pi\)
\(258\) 0 0
\(259\) 5.30528 + 14.5761i 0.329654 + 0.905717i
\(260\) 0 0
\(261\) 0.611211 + 0.306483i 0.0378330 + 0.0189708i
\(262\) 0 0
\(263\) 3.21128 18.2121i 0.198016 1.12300i −0.710042 0.704159i \(-0.751324\pi\)
0.908058 0.418844i \(-0.137565\pi\)
\(264\) 0 0
\(265\) −0.651206 0.237019i −0.0400032 0.0145600i
\(266\) 0 0
\(267\) −4.09553 10.2997i −0.250642 0.630329i
\(268\) 0 0
\(269\) 25.3167i 1.54359i −0.635873 0.771793i \(-0.719360\pi\)
0.635873 0.771793i \(-0.280640\pi\)
\(270\) 0 0
\(271\) −16.6229 −1.00977 −0.504884 0.863187i \(-0.668465\pi\)
−0.504884 + 0.863187i \(0.668465\pi\)
\(272\) 0 0
\(273\) −0.358894 + 2.45551i −0.0217213 + 0.148614i
\(274\) 0 0
\(275\) −3.84242 + 10.5570i −0.231707 + 0.636608i
\(276\) 0 0
\(277\) 17.4590 + 3.07849i 1.04901 + 0.184969i 0.671475 0.741027i \(-0.265661\pi\)
0.377534 + 0.925996i \(0.376772\pi\)
\(278\) 0 0
\(279\) −18.3470 + 7.92773i −1.09840 + 0.474621i
\(280\) 0 0
\(281\) −15.3990 + 5.60477i −0.918626 + 0.334352i −0.757692 0.652613i \(-0.773673\pi\)
−0.160934 + 0.986965i \(0.551451\pi\)
\(282\) 0 0
\(283\) −11.8313 14.0999i −0.703295 0.838154i 0.289600 0.957148i \(-0.406478\pi\)
−0.992895 + 0.118993i \(0.962033\pi\)
\(284\) 0 0
\(285\) −0.0416579 1.41644i −0.00246760 0.0839027i
\(286\) 0 0
\(287\) 1.13080 + 1.95860i 0.0667490 + 0.115613i
\(288\) 0 0
\(289\) 8.11420 14.0542i 0.477306 0.826718i
\(290\) 0 0
\(291\) −0.451689 + 1.36455i −0.0264785 + 0.0799914i
\(292\) 0 0
\(293\) −27.7186 + 4.88753i −1.61934 + 0.285533i −0.908519 0.417843i \(-0.862786\pi\)
−0.710818 + 0.703376i \(0.751675\pi\)
\(294\) 0 0
\(295\) −0.963681 0.808624i −0.0561077 0.0470799i
\(296\) 0 0
\(297\) −1.01039 + 11.6750i −0.0586286 + 0.677454i
\(298\) 0 0
\(299\) −2.73460 + 3.25897i −0.158146 + 0.188471i
\(300\) 0 0
\(301\) 4.64319 0.818720i 0.267629 0.0471903i
\(302\) 0 0
\(303\) −9.27986 + 8.26358i −0.533114 + 0.474730i
\(304\) 0 0
\(305\) −0.855412 + 1.48162i −0.0489808 + 0.0848372i
\(306\) 0 0
\(307\) −14.1955 + 8.19580i −0.810182 + 0.467759i −0.847019 0.531562i \(-0.821605\pi\)
0.0368369 + 0.999321i \(0.488272\pi\)
\(308\) 0 0
\(309\) −11.7395 + 7.24613i −0.667839 + 0.412218i
\(310\) 0 0
\(311\) 23.5558 19.7657i 1.33573 1.12081i 0.353028 0.935613i \(-0.385152\pi\)
0.982701 0.185197i \(-0.0592924\pi\)
\(312\) 0 0
\(313\) −20.6090 + 7.50106i −1.16489 + 0.423985i −0.850842 0.525422i \(-0.823907\pi\)
−0.314048 + 0.949407i \(0.601685\pi\)
\(314\) 0 0
\(315\) 0.169766 0.568353i 0.00956524 0.0320231i
\(316\) 0 0
\(317\) 26.6872 + 4.70567i 1.49890 + 0.264297i 0.862103 0.506733i \(-0.169147\pi\)
0.636799 + 0.771030i \(0.280258\pi\)
\(318\) 0 0
\(319\) −0.483011 0.175802i −0.0270434 0.00984300i
\(320\) 0 0
\(321\) 26.5331 + 20.9662i 1.48094 + 1.17022i
\(322\) 0 0
\(323\) 5.27738i 0.293641i
\(324\) 0 0
\(325\) 4.91560i 0.272668i
\(326\) 0 0
\(327\) −7.56248 5.97579i −0.418206 0.330462i
\(328\) 0 0
\(329\) 10.7364 + 3.90774i 0.591918 + 0.215441i
\(330\) 0 0
\(331\) 14.1842 + 2.50105i 0.779633 + 0.137470i 0.549282 0.835637i \(-0.314901\pi\)
0.230351 + 0.973108i \(0.426013\pi\)
\(332\) 0 0
\(333\) 22.0086 + 23.2985i 1.20606 + 1.27675i
\(334\) 0 0
\(335\) 1.17460 0.427521i 0.0641755 0.0233580i
\(336\) 0 0
\(337\) −12.1559 + 10.2000i −0.662174 + 0.555630i −0.910737 0.412986i \(-0.864486\pi\)
0.248564 + 0.968616i \(0.420041\pi\)
\(338\) 0 0
\(339\) −18.0812 + 11.1605i −0.982036 + 0.606153i
\(340\) 0 0
\(341\) 13.0120 7.51246i 0.704637 0.406822i
\(342\) 0 0
\(343\) 8.63317 14.9531i 0.466147 0.807391i
\(344\) 0 0
\(345\) 0.759425 0.676257i 0.0408861 0.0364085i
\(346\) 0 0
\(347\) −14.4283 + 2.54411i −0.774554 + 0.136575i −0.546934 0.837175i \(-0.684205\pi\)
−0.227619 + 0.973750i \(0.573094\pi\)
\(348\) 0 0
\(349\) 5.21744 6.21790i 0.279283 0.332837i −0.608108 0.793854i \(-0.708071\pi\)
0.887391 + 0.461018i \(0.152516\pi\)
\(350\) 0 0
\(351\) 1.33173 + 4.95150i 0.0710827 + 0.264291i
\(352\) 0 0
\(353\) −9.20716 7.72572i −0.490047 0.411199i 0.363996 0.931401i \(-0.381412\pi\)
−0.854043 + 0.520202i \(0.825857\pi\)
\(354\) 0 0
\(355\) −1.59054 + 0.280455i −0.0844171 + 0.0148850i
\(356\) 0 0
\(357\) 0.694194 2.09716i 0.0367406 0.110993i
\(358\) 0 0
\(359\) 6.32415 10.9538i 0.333776 0.578117i −0.649473 0.760385i \(-0.725010\pi\)
0.983249 + 0.182268i \(0.0583438\pi\)
\(360\) 0 0
\(361\) 8.54731 + 14.8044i 0.449858 + 0.779178i
\(362\) 0 0
\(363\) 0.301120 + 10.2386i 0.0158047 + 0.537386i
\(364\) 0 0
\(365\) 0.854962 + 1.01890i 0.0447508 + 0.0533319i
\(366\) 0 0
\(367\) −15.1415 + 5.51105i −0.790380 + 0.287675i −0.705494 0.708716i \(-0.749275\pi\)
−0.0848857 + 0.996391i \(0.527053\pi\)
\(368\) 0 0
\(369\) 3.74998 + 2.78811i 0.195216 + 0.145143i
\(370\) 0 0
\(371\) 7.27663 + 1.28307i 0.377784 + 0.0666135i
\(372\) 0 0
\(373\) −5.87846 + 16.1509i −0.304375 + 0.836263i 0.689352 + 0.724427i \(0.257895\pi\)
−0.993727 + 0.111836i \(0.964327\pi\)
\(374\) 0 0
\(375\) 0.340482 2.32953i 0.0175824 0.120297i
\(376\) 0 0
\(377\) −0.224903 −0.0115831
\(378\) 0 0
\(379\) 12.8581i 0.660478i 0.943897 + 0.330239i \(0.107129\pi\)
−0.943897 + 0.330239i \(0.892871\pi\)
\(380\) 0 0
\(381\) 5.31337 + 13.3624i 0.272212 + 0.684575i
\(382\) 0 0
\(383\) −4.63308 1.68630i −0.236740 0.0861662i 0.220926 0.975291i \(-0.429092\pi\)
−0.457666 + 0.889124i \(0.651314\pi\)
\(384\) 0 0
\(385\) −0.0774323 + 0.439140i −0.00394631 + 0.0223807i
\(386\) 0 0
\(387\) 8.13574 5.35826i 0.413563 0.272376i
\(388\) 0 0
\(389\) 5.45591 + 14.9900i 0.276625 + 0.760022i 0.997739 + 0.0672055i \(0.0214083\pi\)
−0.721114 + 0.692817i \(0.756369\pi\)
\(390\) 0 0
\(391\) 2.90106 2.43428i 0.146713 0.123107i
\(392\) 0 0
\(393\) 13.6229 25.2842i 0.687185 1.27542i
\(394\) 0 0
\(395\) 0.845555 0.488181i 0.0425445 0.0245631i
\(396\) 0 0
\(397\) 18.8993 + 10.9115i 0.948529 + 0.547633i 0.892624 0.450803i \(-0.148862\pi\)
0.0559050 + 0.998436i \(0.482196\pi\)
\(398\) 0 0
\(399\) 3.05992 + 14.7958i 0.153187 + 0.740716i
\(400\) 0 0
\(401\) −6.01001 34.0844i −0.300125 1.70210i −0.645607 0.763670i \(-0.723395\pi\)
0.345481 0.938426i \(-0.387716\pi\)
\(402\) 0 0
\(403\) 4.22574 5.03605i 0.210499 0.250863i
\(404\) 0 0
\(405\) −0.143807 1.21713i −0.00714581 0.0604796i
\(406\) 0 0
\(407\) −18.4568 15.4871i −0.914869 0.767667i
\(408\) 0 0
\(409\) −0.701192 3.97666i −0.0346717 0.196633i 0.962552 0.271097i \(-0.0873865\pi\)
−0.997224 + 0.0744641i \(0.976275\pi\)
\(410\) 0 0
\(411\) −13.7378 + 2.84111i −0.677634 + 0.140141i
\(412\) 0 0
\(413\) 11.6160 + 6.70650i 0.571586 + 0.330005i
\(414\) 0 0
\(415\) −0.0919196 0.159209i −0.00451216 0.00781529i
\(416\) 0 0
\(417\) 3.13933 5.82661i 0.153733 0.285330i
\(418\) 0 0
\(419\) 7.00112 + 8.34360i 0.342027 + 0.407612i 0.909449 0.415815i \(-0.136504\pi\)
−0.567422 + 0.823427i \(0.692059\pi\)
\(420\) 0 0
\(421\) −1.92901 5.29990i −0.0940141 0.258302i 0.883768 0.467925i \(-0.154998\pi\)
−0.977782 + 0.209624i \(0.932776\pi\)
\(422\) 0 0
\(423\) 23.5664 1.38739i 1.14584 0.0674572i
\(424\) 0 0
\(425\) 0.759843 4.30928i 0.0368578 0.209031i
\(426\) 0 0
\(427\) 6.23884 17.1411i 0.301919 0.829514i
\(428\) 0 0
\(429\) −1.42426 3.58180i −0.0687638 0.172931i
\(430\) 0 0
\(431\) 12.2633 0.590701 0.295351 0.955389i \(-0.404564\pi\)
0.295351 + 0.955389i \(0.404564\pi\)
\(432\) 0 0
\(433\) −34.7890 −1.67185 −0.835927 0.548840i \(-0.815070\pi\)
−0.835927 + 0.548840i \(0.815070\pi\)
\(434\) 0 0
\(435\) 0.0531924 + 0.00777453i 0.00255038 + 0.000372760i
\(436\) 0 0
\(437\) −8.85888 + 24.3396i −0.423778 + 1.16432i
\(438\) 0 0
\(439\) −3.29026 + 18.6600i −0.157036 + 0.890594i 0.799865 + 0.600180i \(0.204904\pi\)
−0.956901 + 0.290414i \(0.906207\pi\)
\(440\) 0 0
\(441\) 1.69460 14.5774i 0.0806953 0.694161i
\(442\) 0 0
\(443\) 8.57202 + 23.5514i 0.407269 + 1.11896i 0.958620 + 0.284689i \(0.0918904\pi\)
−0.551351 + 0.834274i \(0.685887\pi\)
\(444\) 0 0
\(445\) −0.560157 0.667569i −0.0265540 0.0316458i
\(446\) 0 0
\(447\) 38.6511 1.13674i 1.82813 0.0537659i
\(448\) 0 0
\(449\) 2.07187 + 3.58859i 0.0977777 + 0.169356i 0.910765 0.412926i \(-0.135493\pi\)
−0.812987 + 0.582282i \(0.802160\pi\)
\(450\) 0 0
\(451\) −3.04223 1.75643i −0.143253 0.0827072i
\(452\) 0 0
\(453\) −10.3715 + 31.3323i −0.487296 + 1.47212i
\(454\) 0 0
\(455\) 0.0338802 + 0.192144i 0.00158833 + 0.00900785i
\(456\) 0 0
\(457\) 11.4954 + 9.64582i 0.537734 + 0.451213i 0.870762 0.491704i \(-0.163626\pi\)
−0.333028 + 0.942917i \(0.608070\pi\)
\(458\) 0 0
\(459\) −0.402079 4.54661i −0.0187674 0.212218i
\(460\) 0 0
\(461\) −2.36115 + 2.81391i −0.109970 + 0.131057i −0.818221 0.574903i \(-0.805040\pi\)
0.708252 + 0.705960i \(0.249484\pi\)
\(462\) 0 0
\(463\) 1.02545 + 5.81561i 0.0476566 + 0.270274i 0.999320 0.0368684i \(-0.0117382\pi\)
−0.951663 + 0.307143i \(0.900627\pi\)
\(464\) 0 0
\(465\) −1.17353 + 1.04501i −0.0544212 + 0.0484613i
\(466\) 0 0
\(467\) −4.79342 2.76748i −0.221813 0.128064i 0.384976 0.922926i \(-0.374210\pi\)
−0.606789 + 0.794863i \(0.707543\pi\)
\(468\) 0 0
\(469\) −11.5421 + 6.66381i −0.532962 + 0.307706i
\(470\) 0 0
\(471\) 7.81515 + 12.6614i 0.360103 + 0.583407i
\(472\) 0 0
\(473\) −5.61003 + 4.70737i −0.257949 + 0.216445i
\(474\) 0 0
\(475\) 10.2360 + 28.1231i 0.469659 + 1.29038i
\(476\) 0 0
\(477\) 14.8531 3.53008i 0.680078 0.161631i
\(478\) 0 0
\(479\) −1.43530 + 8.13997i −0.0655804 + 0.371925i 0.934300 + 0.356487i \(0.116025\pi\)
−0.999881 + 0.0154382i \(0.995086\pi\)
\(480\) 0 0
\(481\) −9.90631 3.60560i −0.451689 0.164401i
\(482\) 0 0
\(483\) −6.72205 + 8.50690i −0.305864 + 0.387077i
\(484\) 0 0
\(485\) 0.113009i 0.00513145i
\(486\) 0 0
\(487\) −16.8387 −0.763033 −0.381517 0.924362i \(-0.624598\pi\)
−0.381517 + 0.924362i \(0.624598\pi\)
\(488\) 0 0
\(489\) −13.6602 10.7941i −0.617735 0.488127i
\(490\) 0 0
\(491\) 11.2492 30.9069i 0.507669 1.39481i −0.375967 0.926633i \(-0.622689\pi\)
0.883636 0.468175i \(-0.155088\pi\)
\(492\) 0 0
\(493\) 0.197162 + 0.0347650i 0.00887973 + 0.00156574i
\(494\) 0 0
\(495\) 0.213038 + 0.896377i 0.00957534 + 0.0402891i
\(496\) 0 0
\(497\) 16.1818 5.88968i 0.725851 0.264188i
\(498\) 0 0
\(499\) −5.09730 6.07473i −0.228187 0.271942i 0.639787 0.768552i \(-0.279022\pi\)
−0.867974 + 0.496610i \(0.834578\pi\)
\(500\) 0 0
\(501\) 23.4434 14.4702i 1.04737 0.646481i
\(502\) 0 0
\(503\) −20.9414 36.2716i −0.933731 1.61727i −0.776881 0.629647i \(-0.783200\pi\)
−0.156850 0.987622i \(-0.550134\pi\)
\(504\) 0 0
\(505\) −0.488473 + 0.846060i −0.0217368 + 0.0376492i
\(506\) 0 0
\(507\) 13.8526 + 15.5563i 0.615217 + 0.690878i
\(508\) 0 0
\(509\) −1.32565 + 0.233747i −0.0587583 + 0.0103607i −0.202950 0.979189i \(-0.565053\pi\)
0.144192 + 0.989550i \(0.453942\pi\)
\(510\) 0 0
\(511\) −10.8638 9.11578i −0.480584 0.403258i
\(512\) 0 0
\(513\) 17.9298 + 25.5553i 0.791621 + 1.12830i
\(514\) 0 0
\(515\) −0.697200 + 0.830890i −0.0307223 + 0.0366134i
\(516\) 0 0
\(517\) −17.4772 + 3.08170i −0.768645 + 0.135533i
\(518\) 0 0
\(519\) −33.2891 11.0192i −1.46123 0.483691i
\(520\) 0 0
\(521\) 13.6363 23.6187i 0.597416 1.03475i −0.395785 0.918343i \(-0.629527\pi\)
0.993201 0.116412i \(-0.0371392\pi\)
\(522\) 0 0
\(523\) −26.9016 + 15.5317i −1.17633 + 0.679152i −0.955162 0.296085i \(-0.904319\pi\)
−0.221164 + 0.975237i \(0.570986\pi\)
\(524\) 0 0
\(525\) 0.368281 + 12.5222i 0.0160731 + 0.546513i
\(526\) 0 0
\(527\) −4.48298 + 3.76167i −0.195282 + 0.163861i
\(528\) 0 0
\(529\) 4.14676 1.50930i 0.180294 0.0656217i
\(530\) 0 0
\(531\) 27.5284 + 3.20015i 1.19463 + 0.138875i
\(532\) 0 0
\(533\) −1.51369 0.266904i −0.0655651 0.0115609i
\(534\) 0 0
\(535\) 2.49841 + 0.909349i 0.108016 + 0.0393146i
\(536\) 0 0
\(537\) −5.53429 + 37.8649i −0.238822 + 1.63399i
\(538\) 0 0
\(539\) 11.0324i 0.475199i
\(540\) 0 0
\(541\) 20.2507i 0.870645i 0.900274 + 0.435323i \(0.143366\pi\)
−0.900274 + 0.435323i \(0.856634\pi\)
\(542\) 0 0
\(543\) 28.3483 11.2723i 1.21654 0.483742i
\(544\) 0 0
\(545\) −0.712098 0.259182i −0.0305029 0.0111022i
\(546\) 0 0
\(547\) 13.5248 + 2.38478i 0.578278 + 0.101966i 0.455134 0.890423i \(-0.349591\pi\)
0.123144 + 0.992389i \(0.460702\pi\)
\(548\) 0 0
\(549\) −2.21501 37.6245i −0.0945345 1.60578i
\(550\) 0 0
\(551\) −1.28671 + 0.468325i −0.0548158 + 0.0199513i
\(552\) 0 0
\(553\) −7.97465 + 6.69153i −0.339117 + 0.284553i
\(554\) 0 0
\(555\) 2.21833 + 1.19522i 0.0941628 + 0.0507341i
\(556\) 0 0
\(557\) 8.93296 5.15745i 0.378502 0.218528i −0.298665 0.954358i \(-0.596541\pi\)
0.677166 + 0.735830i \(0.263208\pi\)
\(558\) 0 0
\(559\) −1.60216 + 2.77502i −0.0677640 + 0.117371i
\(560\) 0 0
\(561\) 0.694914 + 3.36016i 0.0293393 + 0.141866i
\(562\) 0 0
\(563\) −3.14086 + 0.553818i −0.132371 + 0.0233406i −0.239441 0.970911i \(-0.576964\pi\)
0.107070 + 0.994251i \(0.465853\pi\)
\(564\) 0 0
\(565\) −1.07382 + 1.27973i −0.0451761 + 0.0538388i
\(566\) 0 0
\(567\) 3.76348 + 12.5139i 0.158051 + 0.525532i
\(568\) 0 0
\(569\) −7.37287 6.18657i −0.309087 0.259355i 0.475028 0.879971i \(-0.342438\pi\)
−0.784114 + 0.620616i \(0.786882\pi\)
\(570\) 0 0
\(571\) −6.25643 + 1.10318i −0.261823 + 0.0461665i −0.303019 0.952985i \(-0.597995\pi\)
0.0411954 + 0.999151i \(0.486883\pi\)
\(572\) 0 0
\(573\) −15.9453 + 3.29764i −0.666124 + 0.137761i
\(574\) 0 0
\(575\) −10.7382 + 18.5991i −0.447815 + 0.775638i
\(576\) 0 0
\(577\) 16.7124 + 28.9468i 0.695748 + 1.20507i 0.969928 + 0.243393i \(0.0782604\pi\)
−0.274179 + 0.961679i \(0.588406\pi\)
\(578\) 0 0
\(579\) 11.2941 + 6.08518i 0.469368 + 0.252891i
\(580\) 0 0
\(581\) 1.25995 + 1.50155i 0.0522714 + 0.0622947i
\(582\) 0 0
\(583\) −10.7848 + 3.92533i −0.446659 + 0.162571i
\(584\) 0 0
\(585\) 0.221735 + 0.336672i 0.00916760 + 0.0139197i
\(586\) 0 0
\(587\) 11.4100 + 2.01190i 0.470943 + 0.0830399i 0.404083 0.914722i \(-0.367591\pi\)
0.0668600 + 0.997762i \(0.478702\pi\)
\(588\) 0 0
\(589\) 13.6895 37.6117i 0.564067 1.54976i
\(590\) 0 0
\(591\) 29.3165 11.6573i 1.20592 0.479519i
\(592\) 0 0
\(593\) −11.5506 −0.474326 −0.237163 0.971470i \(-0.576218\pi\)
−0.237163 + 0.971470i \(0.576218\pi\)
\(594\) 0 0
\(595\) 0.173681i 0.00712023i
\(596\) 0 0
\(597\) −27.6007 4.03408i −1.12962 0.165104i
\(598\) 0 0
\(599\) −27.1047 9.86532i −1.10747 0.403086i −0.277405 0.960753i \(-0.589474\pi\)
−0.830065 + 0.557667i \(0.811697\pi\)
\(600\) 0 0
\(601\) −1.58173 + 8.97043i −0.0645201 + 0.365911i 0.935404 + 0.353581i \(0.115036\pi\)
−0.999924 + 0.0123304i \(0.996075\pi\)
\(602\) 0 0
\(603\) −16.4304 + 22.0987i −0.669096 + 0.899927i
\(604\) 0 0
\(605\) 0.275437 + 0.756758i 0.0111981 + 0.0307666i
\(606\) 0 0
\(607\) −22.8418 + 19.1665i −0.927119 + 0.777945i −0.975298 0.220894i \(-0.929103\pi\)
0.0481792 + 0.998839i \(0.484658\pi\)
\(608\) 0 0
\(609\) −0.572925 + 0.0168499i −0.0232161 + 0.000682792i
\(610\) 0 0
\(611\) −6.72472 + 3.88252i −0.272053 + 0.157070i
\(612\) 0 0
\(613\) 2.09252 + 1.20812i 0.0845161 + 0.0487954i 0.541662 0.840596i \(-0.317795\pi\)
−0.457146 + 0.889391i \(0.651128\pi\)
\(614\) 0 0
\(615\) 0.348780 + 0.115452i 0.0140642 + 0.00465548i
\(616\) 0 0
\(617\) −6.36070 36.0733i −0.256072 1.45226i −0.793305 0.608824i \(-0.791641\pi\)
0.537233 0.843434i \(-0.319470\pi\)
\(618\) 0 0
\(619\) 19.5701 23.3228i 0.786590 0.937421i −0.212621 0.977135i \(-0.568200\pi\)
0.999211 + 0.0397133i \(0.0126445\pi\)
\(620\) 0 0
\(621\) −5.77776 + 21.6442i −0.231853 + 0.868550i
\(622\) 0 0
\(623\) 7.11775 + 5.97250i 0.285167 + 0.239283i
\(624\) 0 0
\(625\) 4.29296 + 24.3466i 0.171718 + 0.973864i
\(626\) 0 0
\(627\) −15.6070 17.5264i −0.623284 0.699937i
\(628\) 0 0
\(629\) 8.12706 + 4.69216i 0.324047 + 0.187089i
\(630\) 0 0
\(631\) 19.0463 + 32.9892i 0.758221 + 1.31328i 0.943757 + 0.330640i \(0.107265\pi\)
−0.185536 + 0.982637i \(0.559402\pi\)
\(632\) 0 0
\(633\) 17.2329 + 27.9193i 0.684948 + 1.10969i
\(634\) 0 0
\(635\) 0.726725 + 0.866078i 0.0288392 + 0.0343692i
\(636\) 0 0
\(637\) 1.65099 + 4.53606i 0.0654147 + 0.179725i
\(638\) 0 0
\(639\) 25.8649 24.4329i 1.02320 0.966551i
\(640\) 0 0
\(641\) 3.09962 17.5788i 0.122427 0.694321i −0.860375 0.509661i \(-0.829771\pi\)
0.982803 0.184659i \(-0.0591182\pi\)
\(642\) 0 0
\(643\) −3.02218 + 8.30337i −0.119183 + 0.327453i −0.984911 0.173062i \(-0.944634\pi\)
0.865728 + 0.500515i \(0.166856\pi\)
\(644\) 0 0
\(645\) 0.474858 0.600943i 0.0186975 0.0236621i
\(646\) 0 0
\(647\) −20.3838 −0.801371 −0.400686 0.916216i \(-0.631228\pi\)
−0.400686 + 0.916216i \(0.631228\pi\)
\(648\) 0 0
\(649\) −20.8340 −0.817804
\(650\) 0 0
\(651\) 10.3875 13.1456i 0.407119 0.515217i
\(652\) 0 0
\(653\) −6.26659 + 17.2173i −0.245230 + 0.673765i 0.754615 + 0.656168i \(0.227824\pi\)
−0.999845 + 0.0175970i \(0.994398\pi\)
\(654\) 0 0
\(655\) 0.392110 2.22376i 0.0153210 0.0868897i
\(656\) 0 0
\(657\) −28.0762 8.38632i −1.09536 0.327182i
\(658\) 0 0
\(659\) −1.95819 5.38009i −0.0762803 0.209579i 0.895691 0.444676i \(-0.146681\pi\)
−0.971972 + 0.235098i \(0.924459\pi\)
\(660\) 0 0
\(661\) −15.7491 18.7691i −0.612569 0.730032i 0.367204 0.930140i \(-0.380315\pi\)
−0.979774 + 0.200109i \(0.935871\pi\)
\(662\) 0 0
\(663\) 0.788567 + 1.27757i 0.0306254 + 0.0496166i
\(664\) 0 0
\(665\) 0.593945 + 1.02874i 0.0230322 + 0.0398929i
\(666\) 0 0
\(667\) −0.850963 0.491304i −0.0329494 0.0190234i
\(668\) 0 0
\(669\) −13.4565 15.1114i −0.520259 0.584242i
\(670\) 0 0
\(671\) 4.92003 + 27.9029i 0.189936 + 1.07718i
\(672\) 0 0
\(673\) −19.5576 16.4108i −0.753889 0.632588i 0.182639 0.983180i \(-0.441536\pi\)
−0.936528 + 0.350592i \(0.885980\pi\)
\(674\) 0 0
\(675\) 10.9612 + 23.4490i 0.421898 + 0.902551i
\(676\) 0 0
\(677\) 14.0009 16.6857i 0.538100 0.641283i −0.426660 0.904412i \(-0.640310\pi\)
0.964761 + 0.263129i \(0.0847545\pi\)
\(678\) 0 0
\(679\) −0.209232 1.18661i −0.00802959 0.0455380i
\(680\) 0 0
\(681\) −2.98001 0.986434i −0.114194 0.0378002i
\(682\) 0 0
\(683\) −24.8360 14.3391i −0.950322 0.548669i −0.0571411 0.998366i \(-0.518198\pi\)
−0.893181 + 0.449697i \(0.851532\pi\)
\(684\) 0 0
\(685\) −0.955179 + 0.551473i −0.0364955 + 0.0210707i
\(686\) 0 0
\(687\) 21.2416 0.624722i 0.810418 0.0238346i
\(688\) 0 0
\(689\) −3.84682 + 3.22787i −0.146552 + 0.122972i
\(690\) 0 0
\(691\) −10.5292 28.9287i −0.400549 1.10050i −0.962014 0.273000i \(-0.911984\pi\)
0.561465 0.827501i \(-0.310238\pi\)
\(692\) 0 0
\(693\) −3.89656 9.01771i −0.148018 0.342555i
\(694\) 0 0
\(695\) 0.0903596 0.512455i 0.00342754 0.0194385i
\(696\) 0 0
\(697\) 1.28572 + 0.467965i 0.0487003 + 0.0177255i
\(698\) 0 0
\(699\) 1.44488 + 0.211182i 0.0546504 + 0.00798763i
\(700\) 0 0
\(701\) 41.7650i 1.57744i −0.614751 0.788722i \(-0.710743\pi\)
0.614751 0.788722i \(-0.289257\pi\)
\(702\) 0 0
\(703\) −64.1840 −2.42075
\(704\) 0 0
\(705\) 1.72469 0.685802i 0.0649557 0.0258288i
\(706\) 0 0
\(707\) 3.56262 9.78821i 0.133986 0.368123i
\(708\) 0 0
\(709\) 11.9516 + 2.10739i 0.448852 + 0.0791446i 0.393505 0.919323i \(-0.371262\pi\)
0.0553467 + 0.998467i \(0.482374\pi\)
\(710\) 0 0
\(711\) −9.64136 + 19.2275i −0.361579 + 0.721089i
\(712\) 0 0
\(713\) 26.9903 9.82365i 1.01079 0.367899i
\(714\) 0 0
\(715\) −0.194800 0.232153i −0.00728510 0.00868205i
\(716\) 0 0
\(717\) −16.4735 8.87576i −0.615213 0.331471i
\(718\) 0 0
\(719\) 9.22099 + 15.9712i 0.343885 + 0.595626i 0.985151 0.171693i \(-0.0549236\pi\)
−0.641266 + 0.767319i \(0.721590\pi\)
\(720\) 0 0
\(721\) 5.78238 10.0154i 0.215347 0.372992i
\(722\) 0 0
\(723\) −15.1797 + 3.13930i −0.564537 + 0.116752i
\(724\) 0 0
\(725\) −1.11810 + 0.197152i −0.0415253 + 0.00732204i
\(726\) 0 0
\(727\) 13.7551 + 11.5419i 0.510147 + 0.428065i 0.861181 0.508298i \(-0.169725\pi\)
−0.351034 + 0.936363i \(0.614170\pi\)
\(728\) 0 0
\(729\) 17.3941 + 20.6506i 0.644225 + 0.764836i
\(730\) 0 0
\(731\) 1.83349 2.18507i 0.0678142 0.0808178i
\(732\) 0 0
\(733\) −7.91675 + 1.39594i −0.292412 + 0.0515601i −0.317930 0.948114i \(-0.602988\pi\)
0.0255180 + 0.999674i \(0.491877\pi\)
\(734\) 0 0
\(735\) −0.233676 1.12991i −0.00861928 0.0416773i
\(736\) 0 0
\(737\) 10.3507 17.9279i 0.381272 0.660382i
\(738\) 0 0
\(739\) −6.23912 + 3.60216i −0.229510 + 0.132508i −0.610346 0.792135i \(-0.708970\pi\)
0.380836 + 0.924643i \(0.375636\pi\)
\(740\) 0 0
\(741\) −9.03977 4.87055i −0.332084 0.178924i
\(742\) 0 0
\(743\) 28.1102 23.5873i 1.03126 0.865334i 0.0402635 0.999189i \(-0.487180\pi\)
0.991001 + 0.133856i \(0.0427358\pi\)
\(744\) 0 0
\(745\) 2.85679 1.03979i 0.104665 0.0380949i
\(746\) 0 0
\(747\) 3.62035 + 1.81537i 0.132462 + 0.0664210i
\(748\) 0 0
\(749\) −27.9175 4.92261i −1.02008 0.179868i
\(750\) 0 0
\(751\) −34.3650 12.5079i −1.25400 0.456418i −0.372247 0.928134i \(-0.621413\pi\)
−0.881751 + 0.471716i \(0.843635\pi\)
\(752\) 0 0
\(753\) −12.0602 + 4.79558i −0.439498 + 0.174761i
\(754\) 0 0
\(755\) 2.59486i 0.0944365i
\(756\) 0 0
\(757\) 36.5128i 1.32708i −0.748140 0.663541i \(-0.769053\pi\)
0.748140 0.663541i \(-0.230947\pi\)
\(758\) 0 0
\(759\) 2.43556 16.6638i 0.0884051 0.604857i
\(760\) 0 0
\(761\) −4.63196 1.68589i −0.167908 0.0611136i 0.256698 0.966492i \(-0.417365\pi\)
−0.424607 + 0.905378i \(0.639588\pi\)
\(762\) 0 0
\(763\) 7.95705 + 1.40304i 0.288065 + 0.0507935i
\(764\) 0 0
\(765\) −0.142343 0.329420i −0.00514641 0.0119102i
\(766\) 0 0
\(767\) −8.56606 + 3.11779i −0.309303 + 0.112577i
\(768\) 0 0
\(769\) 37.4770 31.4469i 1.35145 1.13400i 0.372932 0.927858i \(-0.378352\pi\)
0.978521 0.206146i \(-0.0660921\pi\)
\(770\) 0 0
\(771\) −0.847962 28.8321i −0.0305386 1.03836i
\(772\) 0 0
\(773\) 8.17747 4.72126i 0.294123 0.169812i −0.345677 0.938354i \(-0.612351\pi\)
0.639800 + 0.768542i \(0.279017\pi\)
\(774\) 0 0
\(775\) 16.5936 28.7410i 0.596061 1.03241i
\(776\) 0 0
\(777\) −25.5058 8.44285i −0.915016 0.302886i
\(778\) 0 0
\(779\) −9.21589 + 1.62501i −0.330194 + 0.0582220i
\(780\) 0 0
\(781\) −17.1931 + 20.4899i −0.615216 + 0.733186i
\(782\) 0 0
\(783\) −1.07286 + 0.501508i −0.0383408 + 0.0179224i
\(784\) 0 0
\(785\) 0.896137 + 0.751949i 0.0319845 + 0.0268382i
\(786\) 0 0
\(787\) 15.6553 2.76045i 0.558050 0.0983993i 0.112493 0.993653i \(-0.464117\pi\)
0.445558 + 0.895253i \(0.353005\pi\)
\(788\) 0 0
\(789\) 21.3014 + 23.9212i 0.758352 + 0.851616i
\(790\) 0 0
\(791\) 8.90599 15.4256i 0.316661 0.548472i
\(792\) 0 0
\(793\) 6.19857 + 10.7362i 0.220118 + 0.381255i
\(794\) 0 0
\(795\) 1.02141 0.630454i 0.0362255 0.0223599i
\(796\) 0 0
\(797\) 9.18613 + 10.9476i 0.325389 + 0.387784i 0.903795 0.427965i \(-0.140769\pi\)
−0.578406 + 0.815749i \(0.696325\pi\)
\(798\) 0 0
\(799\) 6.49541 2.36413i 0.229791 0.0836371i
\(800\) 0 0
\(801\) 18.3951 + 5.49458i 0.649958 + 0.194141i
\(802\) 0 0
\(803\) 21.6932 + 3.82509i 0.765536 + 0.134985i
\(804\) 0 0
\(805\) −0.291550 + 0.801026i −0.0102758 + 0.0282325i
\(806\) 0 0
\(807\) 34.4050 + 27.1865i 1.21111 + 0.957008i
\(808\) 0 0
\(809\) 2.71159 0.0953343 0.0476672 0.998863i \(-0.484821\pi\)
0.0476672 + 0.998863i \(0.484821\pi\)
\(810\) 0 0
\(811\) 38.7762i 1.36162i −0.732462 0.680808i \(-0.761629\pi\)
0.732462 0.680808i \(-0.238371\pi\)
\(812\) 0 0
\(813\) 17.8505 22.5902i 0.626046 0.792274i
\(814\) 0 0
\(815\) −1.28627 0.468164i −0.0450561 0.0163991i
\(816\) 0 0
\(817\) −3.38771 + 19.2126i −0.118521 + 0.672165i
\(818\) 0 0
\(819\) −2.95160 3.12459i −0.103137 0.109182i
\(820\) 0 0
\(821\) −12.6956 34.8810i −0.443081 1.21736i −0.937455 0.348106i \(-0.886825\pi\)
0.494374 0.869249i \(-0.335397\pi\)
\(822\) 0 0
\(823\) 16.3072 13.6834i 0.568433 0.476972i −0.312692 0.949854i \(-0.601231\pi\)
0.881126 + 0.472882i \(0.156786\pi\)
\(824\) 0 0
\(825\) −10.2205 16.5584i −0.355833 0.576490i
\(826\) 0 0
\(827\) 7.73838 4.46776i 0.269090 0.155359i −0.359384 0.933190i \(-0.617013\pi\)
0.628474 + 0.777831i \(0.283680\pi\)
\(828\) 0 0
\(829\) 19.4960 + 11.2560i 0.677124 + 0.390938i 0.798771 0.601636i \(-0.205484\pi\)
−0.121647 + 0.992573i \(0.538817\pi\)
\(830\) 0 0
\(831\) −22.9320 + 20.4207i −0.795504 + 0.708385i
\(832\) 0 0
\(833\) −0.746175 4.23177i −0.0258534 0.146622i
\(834\) 0 0
\(835\) 1.39228 1.65925i 0.0481817 0.0574207i
\(836\) 0 0
\(837\) 8.92830 33.4465i 0.308607 1.15608i
\(838\) 0 0
\(839\) 0.793395 + 0.665737i 0.0273910 + 0.0229838i 0.656380 0.754430i \(-0.272087\pi\)
−0.628989 + 0.777414i \(0.716531\pi\)
\(840\) 0 0
\(841\) 5.02678 + 28.5083i 0.173337 + 0.983044i
\(842\) 0 0
\(843\) 8.91946 26.9457i 0.307203 0.928058i
\(844\) 0 0
\(845\) 1.41829 + 0.818851i 0.0487907 + 0.0281693i
\(846\) 0 0
\(847\) −4.29326 7.43615i −0.147518 0.255509i
\(848\) 0 0
\(849\) 31.8666 0.937207i 1.09366 0.0321649i
\(850\) 0 0
\(851\) −29.6060 35.2830i −1.01488 1.20949i
\(852\) 0 0
\(853\) 8.12987 + 22.3366i 0.278361 + 0.764792i 0.997549 + 0.0699754i \(0.0222921\pi\)
−0.719187 + 0.694816i \(0.755486\pi\)
\(854\) 0 0
\(855\) 1.96965 + 1.46444i 0.0673608 + 0.0500827i
\(856\) 0 0
\(857\) 4.07463 23.1084i 0.139187 0.789367i −0.832666 0.553776i \(-0.813186\pi\)
0.971852 0.235591i \(-0.0757026\pi\)
\(858\) 0 0
\(859\) −11.7827 + 32.3728i −0.402022 + 1.10455i 0.559264 + 0.828990i \(0.311084\pi\)
−0.961285 + 0.275555i \(0.911138\pi\)
\(860\) 0 0
\(861\) −3.87602 0.566515i −0.132094 0.0193068i
\(862\) 0 0
\(863\) 26.5038 0.902199 0.451100 0.892474i \(-0.351032\pi\)
0.451100 + 0.892474i \(0.351032\pi\)
\(864\) 0 0
\(865\) −2.75691 −0.0937378
\(866\) 0 0
\(867\) 10.3860 + 26.1192i 0.352726 + 0.887055i
\(868\) 0 0
\(869\) 5.53038 15.1946i 0.187605 0.515442i
\(870\) 0 0
\(871\) 1.57287 8.92017i 0.0532946 0.302248i
\(872\) 0 0
\(873\) −1.36936 2.07917i −0.0463456 0.0703691i
\(874\) 0 0
\(875\) 0.674995 + 1.85453i 0.0228190 + 0.0626947i
\(876\) 0 0
\(877\) −12.6506 15.0765i −0.427182 0.509096i 0.508925 0.860811i \(-0.330043\pi\)
−0.936107 + 0.351715i \(0.885599\pi\)
\(878\) 0 0
\(879\) 23.1236 42.9176i 0.779941 1.44757i
\(880\) 0 0
\(881\) −0.970676 1.68126i −0.0327029 0.0566431i 0.849211 0.528054i \(-0.177078\pi\)
−0.881914 + 0.471411i \(0.843745\pi\)
\(882\) 0 0
\(883\) −3.58570 2.07021i −0.120669 0.0696680i 0.438451 0.898755i \(-0.355527\pi\)
−0.559119 + 0.829087i \(0.688861\pi\)
\(884\) 0 0
\(885\) 2.13376 0.441282i 0.0717256 0.0148335i
\(886\) 0 0
\(887\) −4.24470 24.0729i −0.142523 0.808289i −0.969323 0.245792i \(-0.920952\pi\)
0.826799 0.562497i \(-0.190159\pi\)
\(888\) 0 0
\(889\) −9.23429 7.74849i −0.309708 0.259876i
\(890\) 0 0
\(891\) −14.7812 13.9104i −0.495188 0.466015i
\(892\) 0 0
\(893\) −30.3887 + 36.2158i −1.01692 + 1.21192i
\(894\) 0 0
\(895\) 0.522445 + 2.96293i 0.0174634 + 0.0990399i
\(896\) 0 0
\(897\) −1.49233 7.21593i −0.0498273 0.240933i
\(898\) 0 0
\(899\) 1.31498 + 0.759206i 0.0438572 + 0.0253209i
\(900\) 0 0
\(901\) 3.87129 2.23509i 0.128971 0.0744617i
\(902\) 0 0
\(903\) −3.87349 + 7.18921i −0.128902 + 0.239242i
\(904\) 0 0
\(905\) 1.83739 1.54175i 0.0610768 0.0512495i
\(906\) 0 0
\(907\) −19.8264 54.4726i −0.658325 1.80873i −0.584393 0.811471i \(-0.698667\pi\)
−0.0739328 0.997263i \(-0.523555\pi\)
\(908\) 0 0
\(909\) −1.26486 21.4851i −0.0419527 0.712614i
\(910\) 0 0
\(911\) −1.13796 + 6.45371i −0.0377024 + 0.213821i −0.997839 0.0657114i \(-0.979068\pi\)
0.960136 + 0.279532i \(0.0901794\pi\)
\(912\) 0 0
\(913\) −2.86099 1.04132i −0.0946850 0.0344625i
\(914\) 0 0
\(915\) −1.09491 2.75353i −0.0361965 0.0910290i
\(916\) 0 0
\(917\) 24.0760i 0.795059i
\(918\) 0 0
\(919\) 17.7731 0.586281 0.293140 0.956069i \(-0.405300\pi\)
0.293140 + 0.956069i \(0.405300\pi\)
\(920\) 0 0
\(921\) 4.10598 28.0926i 0.135297 0.925683i
\(922\) 0 0
\(923\) −4.00277 + 10.9975i −0.131753 + 0.361988i
\(924\) 0 0
\(925\) −52.4099 9.24128i −1.72323 0.303851i
\(926\) 0 0
\(927\) 2.75918 23.7351i 0.0906234 0.779564i
\(928\) 0 0
\(929\) −53.7456 + 19.5618i −1.76333 + 0.641801i −0.999991 0.00419109i \(-0.998666\pi\)
−0.763344 + 0.645993i \(0.776444\pi\)
\(930\) 0 0
\(931\) 18.8913 + 22.5138i 0.619137 + 0.737859i
\(932\) 0 0
\(933\) 1.56573 + 53.2375i 0.0512597 + 1.74292i
\(934\) 0 0
\(935\) 0.134886 + 0.233630i 0.00441126 + 0.00764052i
\(936\) 0 0
\(937\) 13.7103 23.7470i 0.447897 0.775780i −0.550352 0.834933i \(-0.685507\pi\)
0.998249 + 0.0591527i \(0.0188399\pi\)
\(938\) 0 0
\(939\) 11.9372 36.0623i 0.389557 1.17685i
\(940\) 0 0
\(941\) 47.0141 8.28985i 1.53261 0.270241i 0.657238 0.753683i \(-0.271725\pi\)
0.875376 + 0.483442i \(0.160614\pi\)
\(942\) 0 0
\(943\) −5.14428 4.31656i −0.167521 0.140567i
\(944\) 0 0
\(945\) 0.590079 + 0.841038i 0.0191953 + 0.0273590i
\(946\) 0 0
\(947\) 9.31764 11.1043i 0.302783 0.360842i −0.593103 0.805126i \(-0.702097\pi\)
0.895886 + 0.444284i \(0.146542\pi\)
\(948\) 0 0
\(949\) 9.49177 1.67365i 0.308116 0.0543291i
\(950\) 0 0
\(951\) −35.0531 + 31.2143i −1.13667 + 1.01219i
\(952\) 0 0
\(953\) −17.4033 + 30.1434i −0.563749 + 0.976442i 0.433416 + 0.901194i \(0.357308\pi\)
−0.997165 + 0.0752476i \(0.976025\pi\)
\(954\) 0 0
\(955\) −1.10867 + 0.640089i −0.0358756 + 0.0207128i
\(956\) 0 0
\(957\) 0.757595 0.467619i 0.0244896 0.0151160i
\(958\) 0 0
\(959\) 9.00855 7.55907i 0.290901 0.244095i
\(960\) 0 0
\(961\) −12.5773 + 4.57775i −0.405718 + 0.147669i
\(962\) 0 0
\(963\) −56.9855 + 13.5435i −1.83633 + 0.436433i
\(964\) 0 0
\(965\) 0.993327 + 0.175150i 0.0319763 + 0.00563829i
\(966\) 0 0
\(967\) 7.31794 + 2.66351i 0.235329 + 0.0856527i 0.456993 0.889470i \(-0.348927\pi\)
−0.221664 + 0.975123i \(0.571149\pi\)
\(968\) 0 0
\(969\) 7.17188 + 5.66714i 0.230394 + 0.182055i
\(970\) 0 0
\(971\) 2.23282i 0.0716547i 0.999358 + 0.0358273i \(0.0114066\pi\)
−0.999358 + 0.0358273i \(0.988593\pi\)
\(972\) 0 0
\(973\) 5.54818i 0.177867i
\(974\) 0 0
\(975\) −6.68022 5.27864i −0.213938 0.169052i
\(976\) 0 0
\(977\) 42.2729 + 15.3861i 1.35243 + 0.492244i 0.913706 0.406377i \(-0.133208\pi\)
0.438725 + 0.898621i \(0.355430\pi\)
\(978\) 0 0
\(979\) −14.2130 2.50614i −0.454250 0.0800965i
\(980\) 0 0
\(981\) 16.2420 3.86016i 0.518567 0.123246i
\(982\) 0 0
\(983\) 11.4136 4.15422i 0.364038 0.132499i −0.153523 0.988145i \(-0.549062\pi\)
0.517562 + 0.855646i \(0.326840\pi\)
\(984\) 0 0
\(985\) 1.90014 1.59441i 0.0605436 0.0508021i
\(986\) 0 0
\(987\) −16.8399 + 10.3943i −0.536020 + 0.330854i
\(988\) 0 0
\(989\) −12.1241 + 6.99988i −0.385525 + 0.222583i
\(990\) 0 0
\(991\) 24.4431 42.3367i 0.776462 1.34487i −0.157508 0.987518i \(-0.550346\pi\)
0.933969 0.357353i \(-0.116321\pi\)
\(992\) 0 0
\(993\) −18.6306 + 16.5903i −0.591225 + 0.526477i
\(994\) 0 0
\(995\) −2.15976 + 0.380823i −0.0684689 + 0.0120729i
\(996\) 0 0
\(997\) 3.84922 4.58733i 0.121906 0.145282i −0.701639 0.712532i \(-0.747548\pi\)
0.823546 + 0.567250i \(0.191993\pi\)
\(998\) 0 0
\(999\) −55.2963 + 4.89012i −1.74950 + 0.154717i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.529.11 204
4.3 odd 2 216.2.t.a.205.29 yes 204
8.3 odd 2 216.2.t.a.205.26 yes 204
8.5 even 2 inner 864.2.bf.a.529.24 204
12.11 even 2 648.2.t.a.613.6 204
24.11 even 2 648.2.t.a.613.9 204
27.22 even 9 inner 864.2.bf.a.49.24 204
108.59 even 18 648.2.t.a.37.9 204
108.103 odd 18 216.2.t.a.157.26 204
216.59 even 18 648.2.t.a.37.6 204
216.157 even 18 inner 864.2.bf.a.49.11 204
216.211 odd 18 216.2.t.a.157.29 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.26 204 108.103 odd 18
216.2.t.a.157.29 yes 204 216.211 odd 18
216.2.t.a.205.26 yes 204 8.3 odd 2
216.2.t.a.205.29 yes 204 4.3 odd 2
648.2.t.a.37.6 204 216.59 even 18
648.2.t.a.37.9 204 108.59 even 18
648.2.t.a.613.6 204 12.11 even 2
648.2.t.a.613.9 204 24.11 even 2
864.2.bf.a.49.11 204 216.157 even 18 inner
864.2.bf.a.49.24 204 27.22 even 9 inner
864.2.bf.a.529.11 204 1.1 even 1 trivial
864.2.bf.a.529.24 204 8.5 even 2 inner