Properties

Label 864.2.bf.a.49.28
Level $864$
Weight $2$
Character 864.49
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.28
Character \(\chi\) \(=\) 864.49
Dual form 864.2.bf.a.529.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40645 + 1.01088i) q^{3} +(1.34230 + 3.68793i) q^{5} +(0.499959 + 2.83541i) q^{7} +(0.956226 + 2.84352i) q^{9} +(0.996019 - 2.73654i) q^{11} +(2.55767 - 3.04812i) q^{13} +(-1.84019 + 6.54382i) q^{15} +(2.48745 - 4.30839i) q^{17} +(1.78004 - 1.02771i) q^{19} +(-2.16310 + 4.49327i) q^{21} +(-0.165146 + 0.936587i) q^{23} +(-7.96887 + 6.68667i) q^{25} +(-1.52959 + 4.96592i) q^{27} +(-5.18495 - 6.17919i) q^{29} +(-0.331534 + 1.88022i) q^{31} +(4.16718 - 2.84196i) q^{33} +(-9.78570 + 5.64977i) q^{35} +(-8.31066 - 4.79816i) q^{37} +(6.67855 - 1.70152i) q^{39} +(0.581151 + 0.487644i) q^{41} +(-2.14125 + 5.88303i) q^{43} +(-9.20319 + 7.34336i) q^{45} +(-0.932102 - 5.28621i) q^{47} +(-1.21172 + 0.441031i) q^{49} +(7.85378 - 3.54503i) q^{51} -3.54207i q^{53} +11.4291 q^{55} +(3.54244 + 0.353992i) q^{57} +(-2.13303 - 5.86045i) q^{59} +(3.22446 - 0.568559i) q^{61} +(-7.58447 + 4.13293i) q^{63} +(14.6744 + 5.34105i) q^{65} +(4.40861 - 5.25398i) q^{67} +(-1.17905 + 1.15032i) q^{69} +(-3.83709 + 6.64603i) q^{71} +(3.46824 + 6.00718i) q^{73} +(-17.9673 + 1.34890i) q^{75} +(8.25717 + 1.45596i) q^{77} +(-0.205269 + 0.172241i) q^{79} +(-7.17126 + 5.43811i) q^{81} +(-7.91149 - 9.42855i) q^{83} +(19.2280 + 3.39041i) q^{85} +(-1.04596 - 13.9321i) q^{87} +(-4.11349 - 7.12477i) q^{89} +(9.92138 + 5.72811i) q^{91} +(-2.36698 + 2.30931i) q^{93} +(6.17946 + 5.18518i) q^{95} +(5.06123 + 1.84214i) q^{97} +(8.73384 + 0.215453i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.40645 + 1.01088i 0.812017 + 0.583634i
\(4\) 0 0
\(5\) 1.34230 + 3.68793i 0.600294 + 1.64929i 0.750679 + 0.660667i \(0.229726\pi\)
−0.150386 + 0.988627i \(0.548052\pi\)
\(6\) 0 0
\(7\) 0.499959 + 2.83541i 0.188967 + 1.07168i 0.920752 + 0.390148i \(0.127576\pi\)
−0.731786 + 0.681535i \(0.761313\pi\)
\(8\) 0 0
\(9\) 0.956226 + 2.84352i 0.318742 + 0.947841i
\(10\) 0 0
\(11\) 0.996019 2.73654i 0.300311 0.825098i −0.694135 0.719845i \(-0.744213\pi\)
0.994446 0.105252i \(-0.0335650\pi\)
\(12\) 0 0
\(13\) 2.55767 3.04812i 0.709371 0.845396i −0.284181 0.958771i \(-0.591722\pi\)
0.993552 + 0.113375i \(0.0361661\pi\)
\(14\) 0 0
\(15\) −1.84019 + 6.54382i −0.475136 + 1.68961i
\(16\) 0 0
\(17\) 2.48745 4.30839i 0.603296 1.04494i −0.389022 0.921228i \(-0.627187\pi\)
0.992318 0.123711i \(-0.0394795\pi\)
\(18\) 0 0
\(19\) 1.78004 1.02771i 0.408369 0.235772i −0.281720 0.959497i \(-0.590905\pi\)
0.690089 + 0.723725i \(0.257571\pi\)
\(20\) 0 0
\(21\) −2.16310 + 4.49327i −0.472027 + 0.980512i
\(22\) 0 0
\(23\) −0.165146 + 0.936587i −0.0344352 + 0.195292i −0.997173 0.0751465i \(-0.976058\pi\)
0.962737 + 0.270438i \(0.0871687\pi\)
\(24\) 0 0
\(25\) −7.96887 + 6.68667i −1.59377 + 1.33733i
\(26\) 0 0
\(27\) −1.52959 + 4.96592i −0.294369 + 0.955692i
\(28\) 0 0
\(29\) −5.18495 6.17919i −0.962821 1.14745i −0.989019 0.147789i \(-0.952784\pi\)
0.0261974 0.999657i \(-0.491660\pi\)
\(30\) 0 0
\(31\) −0.331534 + 1.88022i −0.0595453 + 0.337698i −0.999998 0.00222778i \(-0.999291\pi\)
0.940452 + 0.339926i \(0.110402\pi\)
\(32\) 0 0
\(33\) 4.16718 2.84196i 0.725413 0.494721i
\(34\) 0 0
\(35\) −9.78570 + 5.64977i −1.65408 + 0.954986i
\(36\) 0 0
\(37\) −8.31066 4.79816i −1.36626 0.788813i −0.375816 0.926694i \(-0.622637\pi\)
−0.990449 + 0.137881i \(0.955971\pi\)
\(38\) 0 0
\(39\) 6.67855 1.70152i 1.06942 0.272462i
\(40\) 0 0
\(41\) 0.581151 + 0.487644i 0.0907605 + 0.0761571i 0.687039 0.726621i \(-0.258910\pi\)
−0.596278 + 0.802778i \(0.703355\pi\)
\(42\) 0 0
\(43\) −2.14125 + 5.88303i −0.326537 + 0.897154i 0.662444 + 0.749112i \(0.269519\pi\)
−0.988981 + 0.148042i \(0.952703\pi\)
\(44\) 0 0
\(45\) −9.20319 + 7.34336i −1.37193 + 1.09468i
\(46\) 0 0
\(47\) −0.932102 5.28621i −0.135961 0.771073i −0.974186 0.225748i \(-0.927517\pi\)
0.838225 0.545325i \(-0.183594\pi\)
\(48\) 0 0
\(49\) −1.21172 + 0.441031i −0.173103 + 0.0630044i
\(50\) 0 0
\(51\) 7.85378 3.54503i 1.09975 0.496404i
\(52\) 0 0
\(53\) 3.54207i 0.486541i −0.969959 0.243270i \(-0.921780\pi\)
0.969959 0.243270i \(-0.0782202\pi\)
\(54\) 0 0
\(55\) 11.4291 1.54110
\(56\) 0 0
\(57\) 3.54244 + 0.353992i 0.469207 + 0.0468874i
\(58\) 0 0
\(59\) −2.13303 5.86045i −0.277697 0.762966i −0.997623 0.0689146i \(-0.978046\pi\)
0.719926 0.694051i \(-0.244176\pi\)
\(60\) 0 0
\(61\) 3.22446 0.568559i 0.412849 0.0727965i 0.0366341 0.999329i \(-0.488336\pi\)
0.376215 + 0.926532i \(0.377225\pi\)
\(62\) 0 0
\(63\) −7.58447 + 4.13293i −0.955554 + 0.520701i
\(64\) 0 0
\(65\) 14.6744 + 5.34105i 1.82014 + 0.662476i
\(66\) 0 0
\(67\) 4.40861 5.25398i 0.538598 0.641876i −0.426275 0.904594i \(-0.640174\pi\)
0.964873 + 0.262718i \(0.0846188\pi\)
\(68\) 0 0
\(69\) −1.17905 + 1.15032i −0.141941 + 0.138483i
\(70\) 0 0
\(71\) −3.83709 + 6.64603i −0.455378 + 0.788738i −0.998710 0.0507798i \(-0.983829\pi\)
0.543332 + 0.839518i \(0.317163\pi\)
\(72\) 0 0
\(73\) 3.46824 + 6.00718i 0.405927 + 0.703087i 0.994429 0.105409i \(-0.0336153\pi\)
−0.588502 + 0.808496i \(0.700282\pi\)
\(74\) 0 0
\(75\) −17.9673 + 1.34890i −2.07468 + 0.155757i
\(76\) 0 0
\(77\) 8.25717 + 1.45596i 0.940992 + 0.165922i
\(78\) 0 0
\(79\) −0.205269 + 0.172241i −0.0230945 + 0.0193786i −0.654262 0.756268i \(-0.727021\pi\)
0.631167 + 0.775647i \(0.282576\pi\)
\(80\) 0 0
\(81\) −7.17126 + 5.43811i −0.796807 + 0.604234i
\(82\) 0 0
\(83\) −7.91149 9.42855i −0.868399 1.03492i −0.999054 0.0434896i \(-0.986152\pi\)
0.130655 0.991428i \(-0.458292\pi\)
\(84\) 0 0
\(85\) 19.2280 + 3.39041i 2.08557 + 0.367742i
\(86\) 0 0
\(87\) −1.04596 13.9321i −0.112138 1.49368i
\(88\) 0 0
\(89\) −4.11349 7.12477i −0.436029 0.755224i 0.561350 0.827578i \(-0.310282\pi\)
−0.997379 + 0.0723541i \(0.976949\pi\)
\(90\) 0 0
\(91\) 9.92138 + 5.72811i 1.04004 + 0.600469i
\(92\) 0 0
\(93\) −2.36698 + 2.30931i −0.245444 + 0.239464i
\(94\) 0 0
\(95\) 6.17946 + 5.18518i 0.633999 + 0.531988i
\(96\) 0 0
\(97\) 5.06123 + 1.84214i 0.513891 + 0.187041i 0.585931 0.810361i \(-0.300729\pi\)
−0.0720406 + 0.997402i \(0.522951\pi\)
\(98\) 0 0
\(99\) 8.73384 + 0.215453i 0.877784 + 0.0216539i
\(100\) 0 0
\(101\) 3.98336 0.702375i 0.396360 0.0698889i 0.0280840 0.999606i \(-0.491059\pi\)
0.368276 + 0.929717i \(0.379948\pi\)
\(102\) 0 0
\(103\) −1.07241 + 0.390325i −0.105668 + 0.0384599i −0.394313 0.918976i \(-0.629017\pi\)
0.288645 + 0.957436i \(0.406795\pi\)
\(104\) 0 0
\(105\) −19.4744 1.94606i −1.90051 0.189916i
\(106\) 0 0
\(107\) 4.87553i 0.471335i −0.971834 0.235667i \(-0.924272\pi\)
0.971834 0.235667i \(-0.0757276\pi\)
\(108\) 0 0
\(109\) 2.52010i 0.241382i 0.992690 + 0.120691i \(0.0385111\pi\)
−0.992690 + 0.120691i \(0.961489\pi\)
\(110\) 0 0
\(111\) −6.83818 15.1495i −0.649051 1.43793i
\(112\) 0 0
\(113\) −6.79620 + 2.47361i −0.639332 + 0.232698i −0.641288 0.767300i \(-0.721600\pi\)
0.00195583 + 0.999998i \(0.499377\pi\)
\(114\) 0 0
\(115\) −3.67575 + 0.648133i −0.342765 + 0.0604387i
\(116\) 0 0
\(117\) 11.1131 + 4.35812i 1.02741 + 0.402908i
\(118\) 0 0
\(119\) 13.4597 + 4.89892i 1.23385 + 0.449083i
\(120\) 0 0
\(121\) 1.92989 + 1.61937i 0.175445 + 0.147216i
\(122\) 0 0
\(123\) 0.324411 + 1.27332i 0.0292511 + 0.114812i
\(124\) 0 0
\(125\) −18.3625 10.6016i −1.64239 0.948236i
\(126\) 0 0
\(127\) 2.38507 + 4.13106i 0.211641 + 0.366573i 0.952228 0.305387i \(-0.0987860\pi\)
−0.740587 + 0.671960i \(0.765453\pi\)
\(128\) 0 0
\(129\) −8.95864 + 6.10966i −0.788764 + 0.537926i
\(130\) 0 0
\(131\) −3.45051 0.608417i −0.301472 0.0531577i 0.0208660 0.999782i \(-0.493358\pi\)
−0.322338 + 0.946625i \(0.604469\pi\)
\(132\) 0 0
\(133\) 3.80391 + 4.53333i 0.329841 + 0.393089i
\(134\) 0 0
\(135\) −20.3671 + 1.02473i −1.75292 + 0.0881951i
\(136\) 0 0
\(137\) −12.6574 + 10.6208i −1.08140 + 0.907400i −0.996036 0.0889501i \(-0.971649\pi\)
−0.0853611 + 0.996350i \(0.527204\pi\)
\(138\) 0 0
\(139\) 19.5648 + 3.44981i 1.65947 + 0.292609i 0.923268 0.384157i \(-0.125508\pi\)
0.736199 + 0.676765i \(0.236619\pi\)
\(140\) 0 0
\(141\) 4.03279 8.37706i 0.339622 0.705476i
\(142\) 0 0
\(143\) −5.79380 10.0352i −0.484502 0.839182i
\(144\) 0 0
\(145\) 15.8287 27.4161i 1.31450 2.27678i
\(146\) 0 0
\(147\) −2.15006 0.604622i −0.177334 0.0498683i
\(148\) 0 0
\(149\) −7.39950 + 8.81838i −0.606190 + 0.722429i −0.978630 0.205627i \(-0.934077\pi\)
0.372440 + 0.928056i \(0.378521\pi\)
\(150\) 0 0
\(151\) 3.42462 + 1.24646i 0.278692 + 0.101436i 0.477585 0.878586i \(-0.341512\pi\)
−0.198893 + 0.980021i \(0.563735\pi\)
\(152\) 0 0
\(153\) 14.6296 + 2.95333i 1.18273 + 0.238763i
\(154\) 0 0
\(155\) −7.37916 + 1.30114i −0.592708 + 0.104510i
\(156\) 0 0
\(157\) −5.00630 13.7547i −0.399546 1.09774i −0.962506 0.271259i \(-0.912560\pi\)
0.562960 0.826484i \(-0.309662\pi\)
\(158\) 0 0
\(159\) 3.58062 4.98176i 0.283962 0.395079i
\(160\) 0 0
\(161\) −2.73817 −0.215798
\(162\) 0 0
\(163\) 5.93891i 0.465171i 0.972576 + 0.232586i \(0.0747186\pi\)
−0.972576 + 0.232586i \(0.925281\pi\)
\(164\) 0 0
\(165\) 16.0745 + 11.5535i 1.25140 + 0.899441i
\(166\) 0 0
\(167\) 18.7096 6.80974i 1.44779 0.526953i 0.505818 0.862640i \(-0.331191\pi\)
0.941974 + 0.335687i \(0.108968\pi\)
\(168\) 0 0
\(169\) −0.491897 2.78968i −0.0378382 0.214591i
\(170\) 0 0
\(171\) 4.62443 + 4.07887i 0.353639 + 0.311919i
\(172\) 0 0
\(173\) −3.76876 + 10.3546i −0.286534 + 0.787245i 0.710011 + 0.704190i \(0.248690\pi\)
−0.996545 + 0.0830547i \(0.973532\pi\)
\(174\) 0 0
\(175\) −22.9435 19.2519i −1.73437 1.45531i
\(176\) 0 0
\(177\) 2.92423 10.3987i 0.219799 0.781614i
\(178\) 0 0
\(179\) 3.66363 + 2.11520i 0.273832 + 0.158097i 0.630628 0.776085i \(-0.282797\pi\)
−0.356796 + 0.934182i \(0.616131\pi\)
\(180\) 0 0
\(181\) 16.4676 9.50759i 1.22403 0.706694i 0.258255 0.966077i \(-0.416853\pi\)
0.965775 + 0.259383i \(0.0835192\pi\)
\(182\) 0 0
\(183\) 5.10980 + 2.45990i 0.377727 + 0.181841i
\(184\) 0 0
\(185\) 6.53992 37.0897i 0.480825 2.72689i
\(186\) 0 0
\(187\) −9.31254 11.0983i −0.681000 0.811585i
\(188\) 0 0
\(189\) −14.8451 1.85424i −1.07982 0.134876i
\(190\) 0 0
\(191\) −6.22796 + 5.22588i −0.450639 + 0.378131i −0.839673 0.543092i \(-0.817253\pi\)
0.389034 + 0.921224i \(0.372809\pi\)
\(192\) 0 0
\(193\) −2.29037 + 12.9893i −0.164864 + 0.934993i 0.784340 + 0.620332i \(0.213002\pi\)
−0.949204 + 0.314661i \(0.898109\pi\)
\(194\) 0 0
\(195\) 15.2397 + 22.3461i 1.09134 + 1.60024i
\(196\) 0 0
\(197\) 5.35211 3.09004i 0.381322 0.220156i −0.297071 0.954855i \(-0.596010\pi\)
0.678393 + 0.734699i \(0.262677\pi\)
\(198\) 0 0
\(199\) −4.43708 + 7.68525i −0.314537 + 0.544793i −0.979339 0.202226i \(-0.935182\pi\)
0.664802 + 0.747019i \(0.268516\pi\)
\(200\) 0 0
\(201\) 11.5117 2.93289i 0.811971 0.206870i
\(202\) 0 0
\(203\) 14.9282 17.7908i 1.04776 1.24867i
\(204\) 0 0
\(205\) −1.01832 + 2.79781i −0.0711225 + 0.195407i
\(206\) 0 0
\(207\) −2.82113 + 0.425994i −0.196082 + 0.0296086i
\(208\) 0 0
\(209\) −1.03941 5.89477i −0.0718972 0.407750i
\(210\) 0 0
\(211\) −6.04444 16.6070i −0.416116 1.14327i −0.953884 0.300177i \(-0.902954\pi\)
0.537767 0.843093i \(-0.319268\pi\)
\(212\) 0 0
\(213\) −12.1151 + 5.46848i −0.830110 + 0.374694i
\(214\) 0 0
\(215\) −24.5704 −1.67569
\(216\) 0 0
\(217\) −5.49695 −0.373157
\(218\) 0 0
\(219\) −1.19463 + 11.9548i −0.0807258 + 0.807831i
\(220\) 0 0
\(221\) −6.77040 18.6015i −0.455426 1.25127i
\(222\) 0 0
\(223\) 4.05080 + 22.9732i 0.271262 + 1.53840i 0.750592 + 0.660767i \(0.229769\pi\)
−0.479330 + 0.877635i \(0.659120\pi\)
\(224\) 0 0
\(225\) −26.6338 16.2657i −1.77558 1.08438i
\(226\) 0 0
\(227\) −8.48739 + 23.3189i −0.563328 + 1.54773i 0.251398 + 0.967884i \(0.419110\pi\)
−0.814726 + 0.579846i \(0.803113\pi\)
\(228\) 0 0
\(229\) −3.58229 + 4.26921i −0.236724 + 0.282117i −0.871307 0.490738i \(-0.836727\pi\)
0.634583 + 0.772855i \(0.281172\pi\)
\(230\) 0 0
\(231\) 10.1415 + 10.3948i 0.667263 + 0.683927i
\(232\) 0 0
\(233\) −3.32571 + 5.76031i −0.217875 + 0.377370i −0.954158 0.299303i \(-0.903246\pi\)
0.736283 + 0.676673i \(0.236579\pi\)
\(234\) 0 0
\(235\) 18.2440 10.5332i 1.19011 0.687110i
\(236\) 0 0
\(237\) −0.462816 + 0.0347460i −0.0300631 + 0.00225699i
\(238\) 0 0
\(239\) 4.54329 25.7663i 0.293881 1.66668i −0.377836 0.925872i \(-0.623332\pi\)
0.671717 0.740808i \(-0.265557\pi\)
\(240\) 0 0
\(241\) −19.2391 + 16.1435i −1.23930 + 1.03989i −0.241718 + 0.970347i \(0.577711\pi\)
−0.997579 + 0.0695464i \(0.977845\pi\)
\(242\) 0 0
\(243\) −15.5833 + 0.399129i −0.999672 + 0.0256041i
\(244\) 0 0
\(245\) −3.25299 3.87676i −0.207826 0.247677i
\(246\) 0 0
\(247\) 1.42019 8.05431i 0.0903647 0.512484i
\(248\) 0 0
\(249\) −1.59598 21.2584i −0.101141 1.34720i
\(250\) 0 0
\(251\) 25.2441 14.5747i 1.59339 0.919945i 0.600672 0.799495i \(-0.294900\pi\)
0.992719 0.120450i \(-0.0384337\pi\)
\(252\) 0 0
\(253\) 2.39852 + 1.38479i 0.150794 + 0.0870608i
\(254\) 0 0
\(255\) 23.6159 + 24.2057i 1.47889 + 1.51582i
\(256\) 0 0
\(257\) −5.42626 4.55318i −0.338481 0.284019i 0.457664 0.889125i \(-0.348686\pi\)
−0.796145 + 0.605106i \(0.793131\pi\)
\(258\) 0 0
\(259\) 9.44975 25.9630i 0.587179 1.61326i
\(260\) 0 0
\(261\) 12.6127 20.6522i 0.780705 1.27834i
\(262\) 0 0
\(263\) −1.99223 11.2985i −0.122846 0.696695i −0.982564 0.185926i \(-0.940472\pi\)
0.859718 0.510770i \(-0.170639\pi\)
\(264\) 0 0
\(265\) 13.0629 4.75451i 0.802449 0.292067i
\(266\) 0 0
\(267\) 1.41689 14.1789i 0.0867120 0.867736i
\(268\) 0 0
\(269\) 15.1820i 0.925661i −0.886447 0.462831i \(-0.846834\pi\)
0.886447 0.462831i \(-0.153166\pi\)
\(270\) 0 0
\(271\) −13.2808 −0.806753 −0.403376 0.915034i \(-0.632163\pi\)
−0.403376 + 0.915034i \(0.632163\pi\)
\(272\) 0 0
\(273\) 8.16351 + 18.0857i 0.494078 + 1.09460i
\(274\) 0 0
\(275\) 10.3612 + 28.4672i 0.624804 + 1.71664i
\(276\) 0 0
\(277\) −2.53413 + 0.446836i −0.152261 + 0.0268478i −0.249259 0.968437i \(-0.580187\pi\)
0.0969979 + 0.995285i \(0.469076\pi\)
\(278\) 0 0
\(279\) −5.66348 + 0.855194i −0.339064 + 0.0511991i
\(280\) 0 0
\(281\) 25.4277 + 9.25491i 1.51689 + 0.552102i 0.960368 0.278734i \(-0.0899147\pi\)
0.556518 + 0.830835i \(0.312137\pi\)
\(282\) 0 0
\(283\) −17.1845 + 20.4797i −1.02151 + 1.21739i −0.0456626 + 0.998957i \(0.514540\pi\)
−0.975851 + 0.218436i \(0.929905\pi\)
\(284\) 0 0
\(285\) 3.44951 + 13.5394i 0.204331 + 0.802007i
\(286\) 0 0
\(287\) −1.09212 + 1.89160i −0.0644656 + 0.111658i
\(288\) 0 0
\(289\) −3.87484 6.71142i −0.227932 0.394789i
\(290\) 0 0
\(291\) 5.25621 + 7.70721i 0.308124 + 0.451804i
\(292\) 0 0
\(293\) 17.3330 + 3.05628i 1.01261 + 0.178550i 0.655245 0.755416i \(-0.272565\pi\)
0.357361 + 0.933966i \(0.383677\pi\)
\(294\) 0 0
\(295\) 18.7498 15.7329i 1.09166 0.916007i
\(296\) 0 0
\(297\) 12.0659 + 9.13192i 0.700137 + 0.529888i
\(298\) 0 0
\(299\) 2.43244 + 2.89887i 0.140672 + 0.167646i
\(300\) 0 0
\(301\) −17.7513 3.13004i −1.02317 0.180412i
\(302\) 0 0
\(303\) 6.31244 + 3.03886i 0.362640 + 0.174578i
\(304\) 0 0
\(305\) 6.42499 + 11.1284i 0.367894 + 0.637211i
\(306\) 0 0
\(307\) −10.1962 5.88676i −0.581926 0.335975i 0.179972 0.983672i \(-0.442399\pi\)
−0.761898 + 0.647696i \(0.775732\pi\)
\(308\) 0 0
\(309\) −1.90287 0.535107i −0.108250 0.0304412i
\(310\) 0 0
\(311\) −26.0496 21.8582i −1.47714 1.23947i −0.909175 0.416414i \(-0.863287\pi\)
−0.567965 0.823053i \(-0.692269\pi\)
\(312\) 0 0
\(313\) 6.64081 + 2.41706i 0.375361 + 0.136620i 0.522809 0.852450i \(-0.324884\pi\)
−0.147449 + 0.989070i \(0.547106\pi\)
\(314\) 0 0
\(315\) −25.4226 22.4234i −1.43240 1.26342i
\(316\) 0 0
\(317\) −5.34112 + 0.941783i −0.299987 + 0.0528958i −0.321616 0.946870i \(-0.604226\pi\)
0.0216287 + 0.999766i \(0.493115\pi\)
\(318\) 0 0
\(319\) −22.0739 + 8.03424i −1.23590 + 0.449831i
\(320\) 0 0
\(321\) 4.92859 6.85720i 0.275087 0.382732i
\(322\) 0 0
\(323\) 10.2255i 0.568961i
\(324\) 0 0
\(325\) 41.3924i 2.29604i
\(326\) 0 0
\(327\) −2.54753 + 3.54441i −0.140879 + 0.196006i
\(328\) 0 0
\(329\) 14.5225 5.28577i 0.800654 0.291414i
\(330\) 0 0
\(331\) 5.34260 0.942044i 0.293656 0.0517794i −0.0248795 0.999690i \(-0.507920\pi\)
0.318535 + 0.947911i \(0.396809\pi\)
\(332\) 0 0
\(333\) 5.69682 28.2197i 0.312184 1.54643i
\(334\) 0 0
\(335\) 25.2940 + 9.20627i 1.38196 + 0.502992i
\(336\) 0 0
\(337\) −22.3325 18.7392i −1.21653 1.02079i −0.998999 0.0447328i \(-0.985756\pi\)
−0.217528 0.976054i \(-0.569799\pi\)
\(338\) 0 0
\(339\) −12.0591 3.39114i −0.654959 0.184182i
\(340\) 0 0
\(341\) 4.81509 + 2.77999i 0.260752 + 0.150545i
\(342\) 0 0
\(343\) 8.22070 + 14.2387i 0.443876 + 0.768816i
\(344\) 0 0
\(345\) −5.82496 2.80418i −0.313605 0.150972i
\(346\) 0 0
\(347\) −17.1238 3.01939i −0.919255 0.162089i −0.306052 0.952015i \(-0.599008\pi\)
−0.613203 + 0.789925i \(0.710119\pi\)
\(348\) 0 0
\(349\) −3.38478 4.03383i −0.181183 0.215926i 0.667807 0.744335i \(-0.267233\pi\)
−0.848990 + 0.528409i \(0.822789\pi\)
\(350\) 0 0
\(351\) 11.2245 + 17.3636i 0.599121 + 0.926799i
\(352\) 0 0
\(353\) −7.22029 + 6.05854i −0.384297 + 0.322463i −0.814387 0.580323i \(-0.802926\pi\)
0.430090 + 0.902786i \(0.358482\pi\)
\(354\) 0 0
\(355\) −29.6606 5.22997i −1.57422 0.277578i
\(356\) 0 0
\(357\) 13.9782 + 20.4963i 0.739803 + 1.08478i
\(358\) 0 0
\(359\) 8.12377 + 14.0708i 0.428756 + 0.742628i 0.996763 0.0803962i \(-0.0256186\pi\)
−0.568007 + 0.823024i \(0.692285\pi\)
\(360\) 0 0
\(361\) −7.38764 + 12.7958i −0.388823 + 0.673461i
\(362\) 0 0
\(363\) 1.07731 + 4.22847i 0.0565440 + 0.221937i
\(364\) 0 0
\(365\) −17.4986 + 20.8541i −0.915921 + 1.09155i
\(366\) 0 0
\(367\) −12.0315 4.37912i −0.628042 0.228588i 0.00833711 0.999965i \(-0.497346\pi\)
−0.636379 + 0.771377i \(0.719568\pi\)
\(368\) 0 0
\(369\) −0.830915 + 2.11881i −0.0432557 + 0.110301i
\(370\) 0 0
\(371\) 10.0432 1.77089i 0.521417 0.0919400i
\(372\) 0 0
\(373\) 2.16442 + 5.94669i 0.112069 + 0.307908i 0.983030 0.183445i \(-0.0587248\pi\)
−0.870961 + 0.491353i \(0.836503\pi\)
\(374\) 0 0
\(375\) −15.1090 33.4730i −0.780227 1.72854i
\(376\) 0 0
\(377\) −32.0963 −1.65304
\(378\) 0 0
\(379\) 28.5066i 1.46428i 0.681152 + 0.732142i \(0.261479\pi\)
−0.681152 + 0.732142i \(0.738521\pi\)
\(380\) 0 0
\(381\) −0.821535 + 8.22118i −0.0420885 + 0.421184i
\(382\) 0 0
\(383\) 29.5410 10.7521i 1.50948 0.549405i 0.550983 0.834517i \(-0.314253\pi\)
0.958494 + 0.285112i \(0.0920308\pi\)
\(384\) 0 0
\(385\) 5.71409 + 32.4062i 0.291217 + 1.65157i
\(386\) 0 0
\(387\) −18.7761 0.463183i −0.954441 0.0235449i
\(388\) 0 0
\(389\) −1.34416 + 3.69306i −0.0681518 + 0.187246i −0.969093 0.246696i \(-0.920655\pi\)
0.900941 + 0.433941i \(0.142877\pi\)
\(390\) 0 0
\(391\) 3.62440 + 3.04123i 0.183294 + 0.153802i
\(392\) 0 0
\(393\) −4.23794 4.34377i −0.213776 0.219114i
\(394\) 0 0
\(395\) −0.910744 0.525818i −0.0458245 0.0264568i
\(396\) 0 0
\(397\) −17.9961 + 10.3901i −0.903200 + 0.521463i −0.878237 0.478226i \(-0.841280\pi\)
−0.0249629 + 0.999688i \(0.507947\pi\)
\(398\) 0 0
\(399\) 0.767360 + 10.2212i 0.0384161 + 0.511702i
\(400\) 0 0
\(401\) −4.02373 + 22.8197i −0.200935 + 1.13956i 0.702774 + 0.711413i \(0.251945\pi\)
−0.903709 + 0.428147i \(0.859166\pi\)
\(402\) 0 0
\(403\) 4.88319 + 5.81955i 0.243249 + 0.289893i
\(404\) 0 0
\(405\) −29.6813 19.1476i −1.47488 0.951451i
\(406\) 0 0
\(407\) −21.4079 + 17.9634i −1.06115 + 0.890412i
\(408\) 0 0
\(409\) 5.07096 28.7589i 0.250743 1.42203i −0.556025 0.831165i \(-0.687674\pi\)
0.806768 0.590868i \(-0.201215\pi\)
\(410\) 0 0
\(411\) −28.5385 + 2.14253i −1.40770 + 0.105683i
\(412\) 0 0
\(413\) 15.5503 8.97799i 0.765182 0.441778i
\(414\) 0 0
\(415\) 24.1523 41.8330i 1.18559 2.05350i
\(416\) 0 0
\(417\) 24.0297 + 24.6298i 1.17674 + 1.20612i
\(418\) 0 0
\(419\) 8.33906 9.93810i 0.407390 0.485508i −0.522869 0.852413i \(-0.675138\pi\)
0.930258 + 0.366905i \(0.119583\pi\)
\(420\) 0 0
\(421\) 1.49536 4.10848i 0.0728795 0.200235i −0.897904 0.440191i \(-0.854911\pi\)
0.970784 + 0.239956i \(0.0771330\pi\)
\(422\) 0 0
\(423\) 14.1402 7.70527i 0.687519 0.374643i
\(424\) 0 0
\(425\) 8.98665 + 50.9658i 0.435916 + 2.47220i
\(426\) 0 0
\(427\) 3.22419 + 8.85839i 0.156030 + 0.428688i
\(428\) 0 0
\(429\) 1.99567 19.9709i 0.0963517 0.964202i
\(430\) 0 0
\(431\) −1.15854 −0.0558051 −0.0279025 0.999611i \(-0.508883\pi\)
−0.0279025 + 0.999611i \(0.508883\pi\)
\(432\) 0 0
\(433\) 37.7498 1.81414 0.907069 0.420982i \(-0.138314\pi\)
0.907069 + 0.420982i \(0.138314\pi\)
\(434\) 0 0
\(435\) 49.9768 22.5585i 2.39620 1.08160i
\(436\) 0 0
\(437\) 0.668571 + 1.83688i 0.0319821 + 0.0878701i
\(438\) 0 0
\(439\) 4.69964 + 26.6530i 0.224301 + 1.27208i 0.864016 + 0.503464i \(0.167941\pi\)
−0.639715 + 0.768612i \(0.720948\pi\)
\(440\) 0 0
\(441\) −2.41276 3.02384i −0.114894 0.143992i
\(442\) 0 0
\(443\) −10.3614 + 28.4677i −0.492285 + 1.35254i 0.406299 + 0.913740i \(0.366819\pi\)
−0.898584 + 0.438802i \(0.855403\pi\)
\(444\) 0 0
\(445\) 20.7542 24.7338i 0.983841 1.17250i
\(446\) 0 0
\(447\) −19.3214 + 4.92261i −0.913871 + 0.232831i
\(448\) 0 0
\(449\) −1.70434 + 2.95201i −0.0804330 + 0.139314i −0.903436 0.428723i \(-0.858964\pi\)
0.823003 + 0.568037i \(0.192297\pi\)
\(450\) 0 0
\(451\) 1.91329 1.10464i 0.0900934 0.0520155i
\(452\) 0 0
\(453\) 3.55655 + 5.21499i 0.167101 + 0.245021i
\(454\) 0 0
\(455\) −7.80745 + 44.2782i −0.366019 + 2.07580i
\(456\) 0 0
\(457\) 7.27754 6.10658i 0.340429 0.285654i −0.456504 0.889721i \(-0.650899\pi\)
0.796933 + 0.604068i \(0.206454\pi\)
\(458\) 0 0
\(459\) 17.5904 + 18.9425i 0.821048 + 0.884162i
\(460\) 0 0
\(461\) 19.8885 + 23.7021i 0.926298 + 1.10392i 0.994341 + 0.106236i \(0.0338799\pi\)
−0.0680433 + 0.997682i \(0.521676\pi\)
\(462\) 0 0
\(463\) 4.27095 24.2217i 0.198488 1.12568i −0.708876 0.705333i \(-0.750797\pi\)
0.907364 0.420347i \(-0.138092\pi\)
\(464\) 0 0
\(465\) −11.6938 5.62947i −0.542285 0.261061i
\(466\) 0 0
\(467\) −0.849394 + 0.490398i −0.0393052 + 0.0226929i −0.519524 0.854456i \(-0.673891\pi\)
0.480219 + 0.877149i \(0.340557\pi\)
\(468\) 0 0
\(469\) 17.1013 + 9.87344i 0.789665 + 0.455913i
\(470\) 0 0
\(471\) 6.86327 24.4061i 0.316243 1.12457i
\(472\) 0 0
\(473\) 13.9664 + 11.7192i 0.642177 + 0.538851i
\(474\) 0 0
\(475\) −7.31297 + 20.0922i −0.335542 + 0.921894i
\(476\) 0 0
\(477\) 10.0720 3.38702i 0.461164 0.155081i
\(478\) 0 0
\(479\) 1.26087 + 7.15074i 0.0576105 + 0.326726i 0.999969 0.00787960i \(-0.00250818\pi\)
−0.942358 + 0.334605i \(0.891397\pi\)
\(480\) 0 0
\(481\) −35.8813 + 13.0597i −1.63605 + 0.595473i
\(482\) 0 0
\(483\) −3.85111 2.76797i −0.175232 0.125947i
\(484\) 0 0
\(485\) 21.1382i 0.959836i
\(486\) 0 0
\(487\) −0.153837 −0.00697103 −0.00348552 0.999994i \(-0.501109\pi\)
−0.00348552 + 0.999994i \(0.501109\pi\)
\(488\) 0 0
\(489\) −6.00355 + 8.35280i −0.271490 + 0.377727i
\(490\) 0 0
\(491\) 7.10851 + 19.5305i 0.320802 + 0.881398i 0.990345 + 0.138624i \(0.0442679\pi\)
−0.669543 + 0.742774i \(0.733510\pi\)
\(492\) 0 0
\(493\) −39.5197 + 6.96839i −1.77988 + 0.313840i
\(494\) 0 0
\(495\) 10.9288 + 32.4990i 0.491215 + 1.46072i
\(496\) 0 0
\(497\) −20.7626 7.55696i −0.931329 0.338976i
\(498\) 0 0
\(499\) 12.0312 14.3382i 0.538588 0.641865i −0.426282 0.904590i \(-0.640177\pi\)
0.964871 + 0.262726i \(0.0846214\pi\)
\(500\) 0 0
\(501\) 33.1980 + 9.33565i 1.48318 + 0.417086i
\(502\) 0 0
\(503\) −15.2553 + 26.4230i −0.680200 + 1.17814i 0.294719 + 0.955584i \(0.404774\pi\)
−0.974919 + 0.222558i \(0.928559\pi\)
\(504\) 0 0
\(505\) 7.93717 + 13.7476i 0.353200 + 0.611760i
\(506\) 0 0
\(507\) 2.12822 4.42081i 0.0945175 0.196335i
\(508\) 0 0
\(509\) −25.1247 4.43017i −1.11363 0.196364i −0.413590 0.910463i \(-0.635725\pi\)
−0.700044 + 0.714099i \(0.746836\pi\)
\(510\) 0 0
\(511\) −15.2988 + 12.8372i −0.676779 + 0.567885i
\(512\) 0 0
\(513\) 2.38079 + 10.4115i 0.105114 + 0.459679i
\(514\) 0 0
\(515\) −2.87899 3.43104i −0.126863 0.151190i
\(516\) 0 0
\(517\) −15.3943 2.71443i −0.677041 0.119381i
\(518\) 0 0
\(519\) −15.7679 + 10.7535i −0.692133 + 0.472025i
\(520\) 0 0
\(521\) −8.58140 14.8634i −0.375958 0.651178i 0.614512 0.788908i \(-0.289353\pi\)
−0.990470 + 0.137729i \(0.956020\pi\)
\(522\) 0 0
\(523\) −35.9656 20.7647i −1.57266 0.907978i −0.995841 0.0911099i \(-0.970959\pi\)
−0.576824 0.816869i \(-0.695708\pi\)
\(524\) 0 0
\(525\) −12.8076 50.2702i −0.558969 2.19397i
\(526\) 0 0
\(527\) 7.27607 + 6.10535i 0.316950 + 0.265953i
\(528\) 0 0
\(529\) 20.7630 + 7.55712i 0.902739 + 0.328570i
\(530\) 0 0
\(531\) 14.6247 11.6692i 0.634657 0.506402i
\(532\) 0 0
\(533\) 2.97279 0.524183i 0.128766 0.0227049i
\(534\) 0 0
\(535\) 17.9806 6.54441i 0.777370 0.282939i
\(536\) 0 0
\(537\) 3.01451 + 6.67843i 0.130086 + 0.288196i
\(538\) 0 0
\(539\) 3.75520i 0.161748i
\(540\) 0 0
\(541\) 11.2309i 0.482852i 0.970419 + 0.241426i \(0.0776152\pi\)
−0.970419 + 0.241426i \(0.922385\pi\)
\(542\) 0 0
\(543\) 32.7720 + 3.27488i 1.40638 + 0.140538i
\(544\) 0 0
\(545\) −9.29398 + 3.38273i −0.398110 + 0.144900i
\(546\) 0 0
\(547\) −19.8704 + 3.50369i −0.849599 + 0.149807i −0.581462 0.813574i \(-0.697519\pi\)
−0.268137 + 0.963381i \(0.586408\pi\)
\(548\) 0 0
\(549\) 4.70002 + 8.62515i 0.200592 + 0.368113i
\(550\) 0 0
\(551\) −15.5798 5.67059i −0.663722 0.241575i
\(552\) 0 0
\(553\) −0.590998 0.495906i −0.0251318 0.0210881i
\(554\) 0 0
\(555\) 46.6915 45.5539i 1.98194 1.93366i
\(556\) 0 0
\(557\) 26.7781 + 15.4604i 1.13463 + 0.655076i 0.945094 0.326798i \(-0.105970\pi\)
0.189532 + 0.981875i \(0.439303\pi\)
\(558\) 0 0
\(559\) 12.4556 + 21.5737i 0.526814 + 0.912469i
\(560\) 0 0
\(561\) −1.87861 25.0231i −0.0793150 1.05648i
\(562\) 0 0
\(563\) 20.3052 + 3.58035i 0.855761 + 0.150894i 0.584282 0.811551i \(-0.301376\pi\)
0.271479 + 0.962444i \(0.412487\pi\)
\(564\) 0 0
\(565\) −18.2450 21.7436i −0.767575 0.914760i
\(566\) 0 0
\(567\) −19.0046 17.6146i −0.798117 0.739744i
\(568\) 0 0
\(569\) −3.82688 + 3.21114i −0.160431 + 0.134618i −0.719469 0.694524i \(-0.755615\pi\)
0.559038 + 0.829142i \(0.311171\pi\)
\(570\) 0 0
\(571\) −7.54047 1.32959i −0.315559 0.0556415i 0.0136257 0.999907i \(-0.495663\pi\)
−0.329184 + 0.944266i \(0.606774\pi\)
\(572\) 0 0
\(573\) −14.0421 + 1.05421i −0.586617 + 0.0440404i
\(574\) 0 0
\(575\) −4.94663 8.56781i −0.206289 0.357303i
\(576\) 0 0
\(577\) 6.53703 11.3225i 0.272140 0.471361i −0.697269 0.716809i \(-0.745602\pi\)
0.969410 + 0.245449i \(0.0789352\pi\)
\(578\) 0 0
\(579\) −16.3520 + 15.9536i −0.679567 + 0.663009i
\(580\) 0 0
\(581\) 22.7783 27.1462i 0.945005 1.12621i
\(582\) 0 0
\(583\) −9.69302 3.52797i −0.401444 0.146114i
\(584\) 0 0
\(585\) −1.15535 + 46.8343i −0.0477677 + 1.93636i
\(586\) 0 0
\(587\) −20.2706 + 3.57425i −0.836657 + 0.147525i −0.575532 0.817780i \(-0.695205\pi\)
−0.261126 + 0.965305i \(0.584094\pi\)
\(588\) 0 0
\(589\) 1.34217 + 3.68759i 0.0553033 + 0.151945i
\(590\) 0 0
\(591\) 10.6512 + 1.06436i 0.438130 + 0.0437819i
\(592\) 0 0
\(593\) 35.4674 1.45647 0.728237 0.685326i \(-0.240340\pi\)
0.728237 + 0.685326i \(0.240340\pi\)
\(594\) 0 0
\(595\) 56.2142i 2.30456i
\(596\) 0 0
\(597\) −14.0095 + 6.32358i −0.573369 + 0.258807i
\(598\) 0 0
\(599\) −4.95171 + 1.80227i −0.202321 + 0.0736389i −0.441193 0.897412i \(-0.645445\pi\)
0.238872 + 0.971051i \(0.423222\pi\)
\(600\) 0 0
\(601\) −6.16086 34.9400i −0.251307 1.42523i −0.805378 0.592762i \(-0.798038\pi\)
0.554071 0.832469i \(-0.313074\pi\)
\(602\) 0 0
\(603\) 19.1555 + 7.51201i 0.780071 + 0.305913i
\(604\) 0 0
\(605\) −3.38165 + 9.29100i −0.137484 + 0.377733i
\(606\) 0 0
\(607\) 6.68660 + 5.61072i 0.271401 + 0.227732i 0.768322 0.640063i \(-0.221092\pi\)
−0.496922 + 0.867795i \(0.665536\pi\)
\(608\) 0 0
\(609\) 38.9803 9.93120i 1.57956 0.402432i
\(610\) 0 0
\(611\) −18.4970 10.6793i −0.748309 0.432036i
\(612\) 0 0
\(613\) 28.4795 16.4426i 1.15028 0.664112i 0.201321 0.979525i \(-0.435477\pi\)
0.948954 + 0.315414i \(0.102143\pi\)
\(614\) 0 0
\(615\) −4.26048 + 2.90559i −0.171799 + 0.117165i
\(616\) 0 0
\(617\) 5.77150 32.7318i 0.232352 1.31773i −0.615767 0.787928i \(-0.711154\pi\)
0.848119 0.529805i \(-0.177735\pi\)
\(618\) 0 0
\(619\) −22.6481 26.9910i −0.910305 1.08486i −0.996072 0.0885446i \(-0.971778\pi\)
0.0857667 0.996315i \(-0.472666\pi\)
\(620\) 0 0
\(621\) −4.39841 2.25269i −0.176502 0.0903974i
\(622\) 0 0
\(623\) 18.1451 15.2255i 0.726966 0.609997i
\(624\) 0 0
\(625\) 5.41806 30.7273i 0.216722 1.22909i
\(626\) 0 0
\(627\) 4.49705 9.34144i 0.179595 0.373061i
\(628\) 0 0
\(629\) −41.3448 + 23.8704i −1.64852 + 0.951775i
\(630\) 0 0
\(631\) 20.3613 35.2667i 0.810569 1.40395i −0.101898 0.994795i \(-0.532491\pi\)
0.912466 0.409152i \(-0.134175\pi\)
\(632\) 0 0
\(633\) 8.28649 29.4672i 0.329358 1.17121i
\(634\) 0 0
\(635\) −12.0336 + 14.3411i −0.477539 + 0.569109i
\(636\) 0 0
\(637\) −1.75488 + 4.82149i −0.0695308 + 0.191034i
\(638\) 0 0
\(639\) −22.5673 4.55574i −0.892747 0.180222i
\(640\) 0 0
\(641\) −8.76821 49.7270i −0.346323 1.96410i −0.246823 0.969061i \(-0.579387\pi\)
−0.0995006 0.995038i \(-0.531725\pi\)
\(642\) 0 0
\(643\) 15.1261 + 41.5587i 0.596517 + 1.63892i 0.758162 + 0.652067i \(0.226098\pi\)
−0.161645 + 0.986849i \(0.551680\pi\)
\(644\) 0 0
\(645\) −34.5572 24.8379i −1.36069 0.977990i
\(646\) 0 0
\(647\) −2.96214 −0.116454 −0.0582268 0.998303i \(-0.518545\pi\)
−0.0582268 + 0.998303i \(0.518545\pi\)
\(648\) 0 0
\(649\) −18.1619 −0.712917
\(650\) 0 0
\(651\) −7.73121 5.55678i −0.303010 0.217787i
\(652\) 0 0
\(653\) 0.829258 + 2.27837i 0.0324514 + 0.0891594i 0.954860 0.297055i \(-0.0960046\pi\)
−0.922409 + 0.386215i \(0.873782\pi\)
\(654\) 0 0
\(655\) −2.38780 13.5419i −0.0932992 0.529126i
\(656\) 0 0
\(657\) −13.7651 + 15.6063i −0.537029 + 0.608858i
\(658\) 0 0
\(659\) 14.7728 40.5879i 0.575466 1.58108i −0.220272 0.975438i \(-0.570695\pi\)
0.795738 0.605641i \(-0.207083\pi\)
\(660\) 0 0
\(661\) −11.3612 + 13.5398i −0.441901 + 0.526637i −0.940317 0.340301i \(-0.889471\pi\)
0.498415 + 0.866938i \(0.333915\pi\)
\(662\) 0 0
\(663\) 9.28173 33.0063i 0.360472 1.28186i
\(664\) 0 0
\(665\) −11.6126 + 20.1137i −0.450318 + 0.779974i
\(666\) 0 0
\(667\) 6.64362 3.83570i 0.257242 0.148519i
\(668\) 0 0
\(669\) −17.5260 + 36.4057i −0.677595 + 1.40753i
\(670\) 0 0
\(671\) 1.65574 9.39015i 0.0639190 0.362503i
\(672\) 0 0
\(673\) 1.22568 1.02847i 0.0472465 0.0396445i −0.618859 0.785502i \(-0.712405\pi\)
0.666105 + 0.745858i \(0.267960\pi\)
\(674\) 0 0
\(675\) −21.0164 49.8006i −0.808923 1.91683i
\(676\) 0 0
\(677\) −4.41092 5.25673i −0.169526 0.202033i 0.674592 0.738191i \(-0.264320\pi\)
−0.844118 + 0.536158i \(0.819875\pi\)
\(678\) 0 0
\(679\) −2.69280 + 15.2717i −0.103340 + 0.586072i
\(680\) 0 0
\(681\) −35.5098 + 24.2172i −1.36074 + 0.928005i
\(682\) 0 0
\(683\) −4.11971 + 2.37852i −0.157636 + 0.0910113i −0.576743 0.816926i \(-0.695677\pi\)
0.419107 + 0.907937i \(0.362343\pi\)
\(684\) 0 0
\(685\) −56.1590 32.4234i −2.14573 1.23884i
\(686\) 0 0
\(687\) −9.35400 + 2.38316i −0.356877 + 0.0909233i
\(688\) 0 0
\(689\) −10.7966 9.05946i −0.411320 0.345138i
\(690\) 0 0
\(691\) −4.35017 + 11.9520i −0.165488 + 0.454675i −0.994523 0.104523i \(-0.966669\pi\)
0.829034 + 0.559198i \(0.188891\pi\)
\(692\) 0 0
\(693\) 3.75566 + 24.8717i 0.142666 + 0.944798i
\(694\) 0 0
\(695\) 13.5392 + 76.7844i 0.513570 + 2.91260i
\(696\) 0 0
\(697\) 3.54655 1.29084i 0.134335 0.0488939i
\(698\) 0 0
\(699\) −10.5005 + 4.73969i −0.397164 + 0.179272i
\(700\) 0 0
\(701\) 12.2688i 0.463386i −0.972789 0.231693i \(-0.925573\pi\)
0.972789 0.231693i \(-0.0744265\pi\)
\(702\) 0 0
\(703\) −19.7244 −0.743921
\(704\) 0 0
\(705\) 36.3072 + 3.62815i 1.36741 + 0.136644i
\(706\) 0 0
\(707\) 3.98304 + 10.9433i 0.149797 + 0.411565i
\(708\) 0 0
\(709\) −25.9792 + 4.58083i −0.975668 + 0.172037i −0.638680 0.769473i \(-0.720519\pi\)
−0.336988 + 0.941509i \(0.609408\pi\)
\(710\) 0 0
\(711\) −0.686054 0.418985i −0.0257290 0.0157132i
\(712\) 0 0
\(713\) −1.70624 0.621021i −0.0638993 0.0232574i
\(714\) 0 0
\(715\) 29.2320 34.8373i 1.09321 1.30284i
\(716\) 0 0
\(717\) 32.4366 31.6463i 1.21137 1.18185i
\(718\) 0 0
\(719\) 15.9411 27.6108i 0.594502 1.02971i −0.399115 0.916901i \(-0.630683\pi\)
0.993617 0.112807i \(-0.0359841\pi\)
\(720\) 0 0
\(721\) −1.64289 2.84557i −0.0611845 0.105975i
\(722\) 0 0
\(723\) −43.3780 + 3.25661i −1.61325 + 0.121115i
\(724\) 0 0
\(725\) 82.6364 + 14.5710i 3.06904 + 0.541154i
\(726\) 0 0
\(727\) −30.8679 + 25.9013i −1.14483 + 0.960625i −0.999586 0.0287706i \(-0.990841\pi\)
−0.145243 + 0.989396i \(0.546396\pi\)
\(728\) 0 0
\(729\) −22.3207 15.1916i −0.826694 0.562652i
\(730\) 0 0
\(731\) 20.0202 + 23.8591i 0.740473 + 0.882461i
\(732\) 0 0
\(733\) −0.103428 0.0182371i −0.00382018 0.000673601i 0.171738 0.985143i \(-0.445062\pi\)
−0.175558 + 0.984469i \(0.556173\pi\)
\(734\) 0 0
\(735\) −0.656222 8.74087i −0.0242051 0.322412i
\(736\) 0 0
\(737\) −9.98667 17.2974i −0.367864 0.637158i
\(738\) 0 0
\(739\) −26.3545 15.2158i −0.969466 0.559722i −0.0703928 0.997519i \(-0.522425\pi\)
−0.899074 + 0.437798i \(0.855759\pi\)
\(740\) 0 0
\(741\) 10.1394 9.89237i 0.372481 0.363405i
\(742\) 0 0
\(743\) −12.9183 10.8397i −0.473926 0.397671i 0.374298 0.927308i \(-0.377884\pi\)
−0.848224 + 0.529637i \(0.822328\pi\)
\(744\) 0 0
\(745\) −42.4539 15.4520i −1.55539 0.566116i
\(746\) 0 0
\(747\) 19.2451 31.5123i 0.704143 1.15298i
\(748\) 0 0
\(749\) 13.8241 2.43756i 0.505122 0.0890666i
\(750\) 0 0
\(751\) −14.6848 + 5.34482i −0.535855 + 0.195035i −0.595751 0.803169i \(-0.703145\pi\)
0.0598958 + 0.998205i \(0.480923\pi\)
\(752\) 0 0
\(753\) 50.2379 + 5.02023i 1.83077 + 0.182947i
\(754\) 0 0
\(755\) 14.3029i 0.520536i
\(756\) 0 0
\(757\) 27.3201i 0.992967i −0.868046 0.496484i \(-0.834624\pi\)
0.868046 0.496484i \(-0.165376\pi\)
\(758\) 0 0
\(759\) 1.97355 + 4.37226i 0.0716353 + 0.158703i
\(760\) 0 0
\(761\) −14.1817 + 5.16172i −0.514086 + 0.187112i −0.586019 0.810297i \(-0.699306\pi\)
0.0719327 + 0.997409i \(0.477083\pi\)
\(762\) 0 0
\(763\) −7.14552 + 1.25995i −0.258685 + 0.0456132i
\(764\) 0 0
\(765\) 8.74558 + 57.9172i 0.316197 + 2.09400i
\(766\) 0 0
\(767\) −23.3189 8.48740i −0.841998 0.306462i
\(768\) 0 0
\(769\) −11.4199 9.58242i −0.411811 0.345551i 0.413226 0.910628i \(-0.364402\pi\)
−0.825038 + 0.565077i \(0.808846\pi\)
\(770\) 0 0
\(771\) −3.02906 11.8892i −0.109089 0.428178i
\(772\) 0 0
\(773\) 27.9615 + 16.1436i 1.00571 + 0.580644i 0.909931 0.414759i \(-0.136134\pi\)
0.0957742 + 0.995403i \(0.469467\pi\)
\(774\) 0 0
\(775\) −9.93049 17.2001i −0.356714 0.617846i
\(776\) 0 0
\(777\) 39.5362 26.9631i 1.41835 0.967297i
\(778\) 0 0
\(779\) 1.53563 + 0.270772i 0.0550195 + 0.00970143i
\(780\) 0 0
\(781\) 14.3653 + 17.1199i 0.514031 + 0.612598i
\(782\) 0 0
\(783\) 38.6162 16.2965i 1.38003 0.582388i
\(784\) 0 0
\(785\) 44.0064 36.9258i 1.57066 1.31794i
\(786\) 0 0
\(787\) 39.6718 + 6.99522i 1.41415 + 0.249353i 0.827944 0.560811i \(-0.189510\pi\)
0.586204 + 0.810163i \(0.300622\pi\)
\(788\) 0 0
\(789\) 8.61949 17.9047i 0.306862 0.637425i
\(790\) 0 0
\(791\) −10.4115 18.0333i −0.370191 0.641189i
\(792\) 0 0
\(793\) 6.51408 11.2827i 0.231322 0.400661i
\(794\) 0 0
\(795\) 23.1787 + 6.51809i 0.822062 + 0.231173i
\(796\) 0 0
\(797\) −2.35451 + 2.80599i −0.0834009 + 0.0993934i −0.806131 0.591737i \(-0.798442\pi\)
0.722730 + 0.691130i \(0.242887\pi\)
\(798\) 0 0
\(799\) −25.0936 9.13334i −0.887749 0.323114i
\(800\) 0 0
\(801\) 16.3260 18.5097i 0.576852 0.654008i
\(802\) 0 0
\(803\) 19.8933 3.50773i 0.702020 0.123785i
\(804\) 0 0
\(805\) −3.67544 10.0982i −0.129542 0.355915i
\(806\) 0 0
\(807\) 15.3472 21.3527i 0.540248 0.751652i
\(808\) 0 0
\(809\) −41.2691 −1.45094 −0.725472 0.688252i \(-0.758378\pi\)
−0.725472 + 0.688252i \(0.758378\pi\)
\(810\) 0 0
\(811\) 25.6578i 0.900966i −0.892785 0.450483i \(-0.851252\pi\)
0.892785 0.450483i \(-0.148748\pi\)
\(812\) 0 0
\(813\) −18.6789 13.4254i −0.655097 0.470849i
\(814\) 0 0
\(815\) −21.9023 + 7.97178i −0.767204 + 0.279239i
\(816\) 0 0
\(817\) 2.23452 + 12.6726i 0.0781761 + 0.443359i
\(818\) 0 0
\(819\) −6.80094 + 33.6891i −0.237644 + 1.17719i
\(820\) 0 0
\(821\) 8.61194 23.6611i 0.300559 0.825778i −0.693844 0.720125i \(-0.744084\pi\)
0.994403 0.105653i \(-0.0336933\pi\)
\(822\) 0 0
\(823\) −10.3916 8.71956i −0.362227 0.303945i 0.443450 0.896299i \(-0.353754\pi\)
−0.805678 + 0.592354i \(0.798199\pi\)
\(824\) 0 0
\(825\) −14.2045 + 50.5117i −0.494536 + 1.75859i
\(826\) 0 0
\(827\) 9.62668 + 5.55796i 0.334752 + 0.193269i 0.657949 0.753062i \(-0.271424\pi\)
−0.323197 + 0.946332i \(0.604758\pi\)
\(828\) 0 0
\(829\) 26.4493 15.2705i 0.918621 0.530366i 0.0354262 0.999372i \(-0.488721\pi\)
0.883195 + 0.469006i \(0.155388\pi\)
\(830\) 0 0
\(831\) −4.01584 1.93326i −0.139308 0.0670640i
\(832\) 0 0
\(833\) −1.11397 + 6.31762i −0.0385967 + 0.218893i
\(834\) 0 0
\(835\) 50.2277 + 59.8590i 1.73820 + 2.07151i
\(836\) 0 0
\(837\) −8.82993 4.52233i −0.305207 0.156315i
\(838\) 0 0
\(839\) 3.67221 3.08135i 0.126779 0.106380i −0.577194 0.816607i \(-0.695852\pi\)
0.703972 + 0.710227i \(0.251408\pi\)
\(840\) 0 0
\(841\) −6.26281 + 35.5181i −0.215959 + 1.22476i
\(842\) 0 0
\(843\) 26.4072 + 38.7210i 0.909512 + 1.33362i
\(844\) 0 0
\(845\) 9.62790 5.55867i 0.331210 0.191224i
\(846\) 0 0
\(847\) −3.62672 + 6.28165i −0.124615 + 0.215840i
\(848\) 0 0
\(849\) −44.8719 + 11.4322i −1.54000 + 0.392353i
\(850\) 0 0
\(851\) 5.86637 6.99127i 0.201097 0.239657i
\(852\) 0 0
\(853\) −7.52367 + 20.6711i −0.257605 + 0.707765i 0.741708 + 0.670723i \(0.234016\pi\)
−0.999314 + 0.0370424i \(0.988206\pi\)
\(854\) 0 0
\(855\) −8.83523 + 22.5296i −0.302159 + 0.770498i
\(856\) 0 0
\(857\) −1.54554 8.76520i −0.0527947 0.299414i 0.946965 0.321337i \(-0.104132\pi\)
−0.999760 + 0.0219232i \(0.993021\pi\)
\(858\) 0 0
\(859\) −7.12897 19.5867i −0.243237 0.668289i −0.999895 0.0144780i \(-0.995391\pi\)
0.756658 0.653811i \(-0.226831\pi\)
\(860\) 0 0
\(861\) −3.44820 + 1.55645i −0.117514 + 0.0530436i
\(862\) 0 0
\(863\) 21.4666 0.730731 0.365365 0.930864i \(-0.380944\pi\)
0.365365 + 0.930864i \(0.380944\pi\)
\(864\) 0 0
\(865\) −43.2459 −1.47040
\(866\) 0 0
\(867\) 1.33468 13.3563i 0.0453282 0.453604i
\(868\) 0 0
\(869\) 0.266892 + 0.733280i 0.00905370 + 0.0248748i
\(870\) 0 0
\(871\) −4.73896 26.8760i −0.160573 0.910657i
\(872\) 0 0
\(873\) −0.398481 + 16.1532i −0.0134866 + 0.546705i
\(874\) 0 0
\(875\) 20.8794 57.3655i 0.705851 1.93931i
\(876\) 0 0
\(877\) −0.176559 + 0.210415i −0.00596198 + 0.00710521i −0.769017 0.639228i \(-0.779254\pi\)
0.763055 + 0.646333i \(0.223698\pi\)
\(878\) 0 0
\(879\) 21.2886 + 21.8202i 0.718045 + 0.735977i
\(880\) 0 0
\(881\) −11.9250 + 20.6547i −0.401763 + 0.695873i −0.993939 0.109935i \(-0.964936\pi\)
0.592176 + 0.805809i \(0.298269\pi\)
\(882\) 0 0
\(883\) 4.93626 2.84995i 0.166118 0.0959085i −0.414636 0.909987i \(-0.636091\pi\)
0.580754 + 0.814079i \(0.302758\pi\)
\(884\) 0 0
\(885\) 42.2749 3.17379i 1.42106 0.106686i
\(886\) 0 0
\(887\) 2.98032 16.9022i 0.100069 0.567521i −0.893006 0.450044i \(-0.851408\pi\)
0.993076 0.117477i \(-0.0374806\pi\)
\(888\) 0 0
\(889\) −10.5208 + 8.82801i −0.352857 + 0.296082i
\(890\) 0 0
\(891\) 7.73888 + 25.0409i 0.259262 + 0.838902i
\(892\) 0 0
\(893\) −7.09185 8.45174i −0.237320 0.282827i
\(894\) 0 0
\(895\) −2.88302 + 16.3504i −0.0963689 + 0.546535i
\(896\) 0 0
\(897\) 0.490694 + 6.53604i 0.0163838 + 0.218232i
\(898\) 0 0
\(899\) 13.3372 7.70026i 0.444822 0.256818i
\(900\) 0 0
\(901\) −15.2606 8.81073i −0.508405 0.293528i
\(902\) 0 0
\(903\) −21.8023 22.3468i −0.725536 0.743655i
\(904\) 0 0
\(905\) 57.1678 + 47.9695i 1.90032 + 1.59456i
\(906\) 0 0
\(907\) −14.9621 + 41.1081i −0.496809 + 1.36497i 0.397533 + 0.917588i \(0.369866\pi\)
−0.894342 + 0.447383i \(0.852356\pi\)
\(908\) 0 0
\(909\) 5.80622 + 10.6552i 0.192580 + 0.353410i
\(910\) 0 0
\(911\) −0.448255 2.54218i −0.0148514 0.0842262i 0.976481 0.215602i \(-0.0691715\pi\)
−0.991333 + 0.131376i \(0.958060\pi\)
\(912\) 0 0
\(913\) −33.6816 + 12.2591i −1.11470 + 0.405717i
\(914\) 0 0
\(915\) −2.21308 + 22.1465i −0.0731622 + 0.732141i
\(916\) 0 0
\(917\) 10.0878i 0.333127i
\(918\) 0 0
\(919\) 59.9068 1.97614 0.988071 0.153998i \(-0.0492148\pi\)
0.988071 + 0.153998i \(0.0492148\pi\)
\(920\) 0 0
\(921\) −8.38961 18.5866i −0.276447 0.612449i
\(922\) 0 0
\(923\) 10.4439 + 28.6943i 0.343764 + 0.944483i
\(924\) 0 0
\(925\) 98.3103 17.3348i 3.23242 0.569963i
\(926\) 0 0
\(927\) −2.13537 2.67618i −0.0701346 0.0878974i
\(928\) 0 0
\(929\) −30.1626 10.9783i −0.989604 0.360186i −0.204037 0.978963i \(-0.565406\pi\)
−0.785567 + 0.618777i \(0.787629\pi\)
\(930\) 0 0
\(931\) −1.70366 + 2.03035i −0.0558354 + 0.0665420i
\(932\) 0 0
\(933\) −14.5415 57.0758i −0.476066 1.86858i
\(934\) 0 0
\(935\) 28.4294 49.2412i 0.929741 1.61036i
\(936\) 0 0
\(937\) 8.40875 + 14.5644i 0.274702 + 0.475797i 0.970060 0.242866i \(-0.0780875\pi\)
−0.695358 + 0.718663i \(0.744754\pi\)
\(938\) 0 0
\(939\) 6.89663 + 10.1126i 0.225063 + 0.330011i
\(940\) 0 0
\(941\) 20.4427 + 3.60459i 0.666412 + 0.117506i 0.496613 0.867972i \(-0.334577\pi\)
0.169799 + 0.985479i \(0.445688\pi\)
\(942\) 0 0
\(943\) −0.552695 + 0.463766i −0.0179982 + 0.0151023i
\(944\) 0 0
\(945\) −13.0883 57.2368i −0.425761 1.86191i
\(946\) 0 0
\(947\) −11.7887 14.0493i −0.383082 0.456540i 0.539702 0.841856i \(-0.318537\pi\)
−0.922785 + 0.385316i \(0.874092\pi\)
\(948\) 0 0
\(949\) 27.1812 + 4.79278i 0.882340 + 0.155580i
\(950\) 0 0
\(951\) −8.46407 4.07468i −0.274466 0.132130i
\(952\) 0 0
\(953\) 1.73534 + 3.00570i 0.0562133 + 0.0973643i 0.892763 0.450527i \(-0.148764\pi\)
−0.836549 + 0.547892i \(0.815431\pi\)
\(954\) 0 0
\(955\) −27.6325 15.9536i −0.894166 0.516247i
\(956\) 0 0
\(957\) −39.1676 11.0144i −1.26611 0.356044i
\(958\) 0 0
\(959\) −36.4426 30.5790i −1.17679 0.987447i
\(960\) 0 0
\(961\) 25.7051 + 9.35591i 0.829198 + 0.301803i
\(962\) 0 0
\(963\) 13.8637 4.66211i 0.446751 0.150234i
\(964\) 0 0
\(965\) −50.9782 + 8.98883i −1.64105 + 0.289361i
\(966\) 0 0
\(967\) 29.0536 10.5747i 0.934301 0.340058i 0.170388 0.985377i \(-0.445498\pi\)
0.763913 + 0.645319i \(0.223276\pi\)
\(968\) 0 0
\(969\) 10.3368 14.3817i 0.332065 0.462006i
\(970\) 0 0
\(971\) 0.278968i 0.00895249i −0.999990 0.00447625i \(-0.998575\pi\)
0.999990 0.00447625i \(-0.00142484\pi\)
\(972\) 0 0
\(973\) 57.1990i 1.83372i
\(974\) 0 0
\(975\) −41.8429 + 58.2165i −1.34005 + 1.86442i
\(976\) 0 0
\(977\) 20.1241 7.32457i 0.643827 0.234334i 0.000588326 1.00000i \(-0.499813\pi\)
0.643238 + 0.765666i \(0.277591\pi\)
\(978\) 0 0
\(979\) −23.5943 + 4.16032i −0.754078 + 0.132964i
\(980\) 0 0
\(981\) −7.16598 + 2.40979i −0.228792 + 0.0769387i
\(982\) 0 0
\(983\) 5.52983 + 2.01269i 0.176374 + 0.0641950i 0.428698 0.903448i \(-0.358973\pi\)
−0.252324 + 0.967643i \(0.581195\pi\)
\(984\) 0 0
\(985\) 18.5800 + 15.5905i 0.592008 + 0.496753i
\(986\) 0 0
\(987\) 25.7686 + 7.24641i 0.820223 + 0.230656i
\(988\) 0 0
\(989\) −5.15636 2.97702i −0.163963 0.0946639i
\(990\) 0 0
\(991\) −17.5543 30.4049i −0.557631 0.965845i −0.997694 0.0678778i \(-0.978377\pi\)
0.440063 0.897967i \(-0.354956\pi\)
\(992\) 0 0
\(993\) 8.46642 + 4.07581i 0.268674 + 0.129342i
\(994\) 0 0
\(995\) −34.2986 6.04777i −1.08734 0.191727i
\(996\) 0 0
\(997\) −16.1819 19.2848i −0.512485 0.610756i 0.446302 0.894883i \(-0.352741\pi\)
−0.958787 + 0.284127i \(0.908296\pi\)
\(998\) 0 0
\(999\) 36.5392 33.9309i 1.15605 1.07353i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.49.28 204
4.3 odd 2 216.2.t.a.157.31 yes 204
8.3 odd 2 216.2.t.a.157.17 204
8.5 even 2 inner 864.2.bf.a.49.7 204
12.11 even 2 648.2.t.a.37.4 204
24.11 even 2 648.2.t.a.37.18 204
27.16 even 9 inner 864.2.bf.a.529.7 204
108.11 even 18 648.2.t.a.613.18 204
108.43 odd 18 216.2.t.a.205.17 yes 204
216.11 even 18 648.2.t.a.613.4 204
216.43 odd 18 216.2.t.a.205.31 yes 204
216.205 even 18 inner 864.2.bf.a.529.28 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.17 204 8.3 odd 2
216.2.t.a.157.31 yes 204 4.3 odd 2
216.2.t.a.205.17 yes 204 108.43 odd 18
216.2.t.a.205.31 yes 204 216.43 odd 18
648.2.t.a.37.4 204 12.11 even 2
648.2.t.a.37.18 204 24.11 even 2
648.2.t.a.613.4 204 216.11 even 18
648.2.t.a.613.18 204 108.11 even 18
864.2.bf.a.49.7 204 8.5 even 2 inner
864.2.bf.a.49.28 204 1.1 even 1 trivial
864.2.bf.a.529.7 204 27.16 even 9 inner
864.2.bf.a.529.28 204 216.205 even 18 inner