Properties

Label 864.2.bf.a.49.16
Level $864$
Weight $2$
Character 864.49
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.16
Character \(\chi\) \(=\) 864.49
Dual form 864.2.bf.a.529.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.195652 - 1.72096i) q^{3} +(1.34802 + 3.70366i) q^{5} +(-0.00177522 - 0.0100678i) q^{7} +(-2.92344 + 0.673422i) q^{9} +(-0.343808 + 0.944604i) q^{11} +(2.57400 - 3.06757i) q^{13} +(6.11013 - 3.04453i) q^{15} +(-0.948987 + 1.64369i) q^{17} +(3.76245 - 2.17225i) q^{19} +(-0.0169790 + 0.00502488i) q^{21} +(-1.19728 + 6.79010i) q^{23} +(-8.06972 + 6.77130i) q^{25} +(1.73091 + 4.89938i) q^{27} +(3.82827 + 4.56236i) q^{29} +(-1.38501 + 7.85480i) q^{31} +(1.69290 + 0.406867i) q^{33} +(0.0348946 - 0.0201464i) q^{35} +(6.65823 + 3.84413i) q^{37} +(-5.78279 - 3.82958i) q^{39} +(4.44753 + 3.73192i) q^{41} +(1.42511 - 3.91546i) q^{43} +(-6.43499 - 9.91964i) q^{45} +(-1.37530 - 7.79973i) q^{47} +(6.57775 - 2.39411i) q^{49} +(3.01441 + 1.31158i) q^{51} +2.25567i q^{53} -3.96195 q^{55} +(-4.47450 - 6.05004i) q^{57} +(-2.24610 - 6.17111i) q^{59} +(-0.106836 + 0.0188381i) q^{61} +(0.0119696 + 0.0282371i) q^{63} +(14.8311 + 5.39806i) q^{65} +(-2.47342 + 2.94771i) q^{67} +(11.9198 + 0.731973i) q^{69} +(-0.442665 + 0.766718i) q^{71} +(-7.26116 - 12.5767i) q^{73} +(13.2320 + 12.5629i) q^{75} +(0.0101204 + 0.00178450i) q^{77} +(-2.46319 + 2.06686i) q^{79} +(8.09301 - 3.93742i) q^{81} +(9.76904 + 11.6423i) q^{83} +(-7.36694 - 1.29899i) q^{85} +(7.10265 - 7.48096i) q^{87} +(-1.45362 - 2.51775i) q^{89} +(-0.0354530 - 0.0204688i) q^{91} +(13.7888 + 0.846748i) q^{93} +(13.1172 + 11.0066i) q^{95} +(-12.0217 - 4.37554i) q^{97} +(0.368984 - 2.99302i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.195652 1.72096i −0.112960 0.993600i
\(4\) 0 0
\(5\) 1.34802 + 3.70366i 0.602854 + 1.65633i 0.745462 + 0.666548i \(0.232229\pi\)
−0.142608 + 0.989779i \(0.545549\pi\)
\(6\) 0 0
\(7\) −0.00177522 0.0100678i −0.000670970 0.00380526i 0.984470 0.175550i \(-0.0561705\pi\)
−0.985141 + 0.171745i \(0.945059\pi\)
\(8\) 0 0
\(9\) −2.92344 + 0.673422i −0.974480 + 0.224474i
\(10\) 0 0
\(11\) −0.343808 + 0.944604i −0.103662 + 0.284809i −0.980671 0.195666i \(-0.937313\pi\)
0.877009 + 0.480474i \(0.159535\pi\)
\(12\) 0 0
\(13\) 2.57400 3.06757i 0.713899 0.850792i −0.280124 0.959964i \(-0.590376\pi\)
0.994023 + 0.109172i \(0.0348200\pi\)
\(14\) 0 0
\(15\) 6.11013 3.04453i 1.57763 0.786094i
\(16\) 0 0
\(17\) −0.948987 + 1.64369i −0.230163 + 0.398654i −0.957856 0.287249i \(-0.907259\pi\)
0.727693 + 0.685903i \(0.240593\pi\)
\(18\) 0 0
\(19\) 3.76245 2.17225i 0.863166 0.498349i −0.00190536 0.999998i \(-0.500606\pi\)
0.865071 + 0.501649i \(0.167273\pi\)
\(20\) 0 0
\(21\) −0.0169790 + 0.00502488i −0.00370511 + 0.00109652i
\(22\) 0 0
\(23\) −1.19728 + 6.79010i −0.249650 + 1.41583i 0.559792 + 0.828633i \(0.310881\pi\)
−0.809442 + 0.587200i \(0.800230\pi\)
\(24\) 0 0
\(25\) −8.06972 + 6.77130i −1.61394 + 1.35426i
\(26\) 0 0
\(27\) 1.73091 + 4.89938i 0.333115 + 0.942886i
\(28\) 0 0
\(29\) 3.82827 + 4.56236i 0.710892 + 0.847208i 0.993712 0.111965i \(-0.0357143\pi\)
−0.282820 + 0.959173i \(0.591270\pi\)
\(30\) 0 0
\(31\) −1.38501 + 7.85480i −0.248756 + 1.41076i 0.562850 + 0.826559i \(0.309705\pi\)
−0.811606 + 0.584205i \(0.801406\pi\)
\(32\) 0 0
\(33\) 1.69290 + 0.406867i 0.294696 + 0.0708264i
\(34\) 0 0
\(35\) 0.0348946 0.0201464i 0.00589826 0.00340536i
\(36\) 0 0
\(37\) 6.65823 + 3.84413i 1.09461 + 0.631971i 0.934799 0.355177i \(-0.115579\pi\)
0.159807 + 0.987148i \(0.448913\pi\)
\(38\) 0 0
\(39\) −5.78279 3.82958i −0.925988 0.613224i
\(40\) 0 0
\(41\) 4.44753 + 3.73192i 0.694588 + 0.582828i 0.920228 0.391382i \(-0.128003\pi\)
−0.225641 + 0.974211i \(0.572447\pi\)
\(42\) 0 0
\(43\) 1.42511 3.91546i 0.217327 0.597102i −0.782341 0.622850i \(-0.785975\pi\)
0.999668 + 0.0257481i \(0.00819679\pi\)
\(44\) 0 0
\(45\) −6.43499 9.91964i −0.959272 1.47873i
\(46\) 0 0
\(47\) −1.37530 7.79973i −0.200608 1.13771i −0.904202 0.427105i \(-0.859534\pi\)
0.703594 0.710602i \(-0.251578\pi\)
\(48\) 0 0
\(49\) 6.57775 2.39411i 0.939679 0.342015i
\(50\) 0 0
\(51\) 3.01441 + 1.31158i 0.422102 + 0.183658i
\(52\) 0 0
\(53\) 2.25567i 0.309840i 0.987927 + 0.154920i \(0.0495120\pi\)
−0.987927 + 0.154920i \(0.950488\pi\)
\(54\) 0 0
\(55\) −3.96195 −0.534230
\(56\) 0 0
\(57\) −4.47450 6.05004i −0.592663 0.801348i
\(58\) 0 0
\(59\) −2.24610 6.17111i −0.292417 0.803410i −0.995712 0.0925111i \(-0.970511\pi\)
0.703294 0.710899i \(-0.251712\pi\)
\(60\) 0 0
\(61\) −0.106836 + 0.0188381i −0.0136789 + 0.00241197i −0.180483 0.983578i \(-0.557766\pi\)
0.166805 + 0.985990i \(0.446655\pi\)
\(62\) 0 0
\(63\) 0.0119696 + 0.0282371i 0.00150803 + 0.00355754i
\(64\) 0 0
\(65\) 14.8311 + 5.39806i 1.83957 + 0.669547i
\(66\) 0 0
\(67\) −2.47342 + 2.94771i −0.302177 + 0.360120i −0.895670 0.444718i \(-0.853304\pi\)
0.593494 + 0.804839i \(0.297748\pi\)
\(68\) 0 0
\(69\) 11.9198 + 0.731973i 1.43497 + 0.0881192i
\(70\) 0 0
\(71\) −0.442665 + 0.766718i −0.0525346 + 0.0909926i −0.891097 0.453813i \(-0.850063\pi\)
0.838562 + 0.544806i \(0.183397\pi\)
\(72\) 0 0
\(73\) −7.26116 12.5767i −0.849854 1.47199i −0.881338 0.472486i \(-0.843357\pi\)
0.0314838 0.999504i \(-0.489977\pi\)
\(74\) 0 0
\(75\) 13.2320 + 12.5629i 1.52790 + 1.45064i
\(76\) 0 0
\(77\) 0.0101204 + 0.00178450i 0.00115333 + 0.000203362i
\(78\) 0 0
\(79\) −2.46319 + 2.06686i −0.277131 + 0.232540i −0.770750 0.637138i \(-0.780118\pi\)
0.493619 + 0.869678i \(0.335674\pi\)
\(80\) 0 0
\(81\) 8.09301 3.93742i 0.899223 0.437491i
\(82\) 0 0
\(83\) 9.76904 + 11.6423i 1.07229 + 1.27791i 0.958712 + 0.284378i \(0.0917872\pi\)
0.113579 + 0.993529i \(0.463768\pi\)
\(84\) 0 0
\(85\) −7.36694 1.29899i −0.799057 0.140895i
\(86\) 0 0
\(87\) 7.10265 7.48096i 0.761483 0.802043i
\(88\) 0 0
\(89\) −1.45362 2.51775i −0.154084 0.266881i 0.778641 0.627469i \(-0.215909\pi\)
−0.932725 + 0.360588i \(0.882576\pi\)
\(90\) 0 0
\(91\) −0.0354530 0.0204688i −0.00371649 0.00214572i
\(92\) 0 0
\(93\) 13.7888 + 0.846748i 1.42983 + 0.0878037i
\(94\) 0 0
\(95\) 13.1172 + 11.0066i 1.34579 + 1.12925i
\(96\) 0 0
\(97\) −12.0217 4.37554i −1.22062 0.444269i −0.350244 0.936658i \(-0.613901\pi\)
−0.870375 + 0.492389i \(0.836124\pi\)
\(98\) 0 0
\(99\) 0.368984 2.99302i 0.0370843 0.300810i
\(100\) 0 0
\(101\) −8.25225 + 1.45509i −0.821129 + 0.144787i −0.568403 0.822751i \(-0.692438\pi\)
−0.252727 + 0.967538i \(0.581327\pi\)
\(102\) 0 0
\(103\) −6.53199 + 2.37745i −0.643617 + 0.234257i −0.643147 0.765743i \(-0.722372\pi\)
−0.000469418 1.00000i \(0.500149\pi\)
\(104\) 0 0
\(105\) −0.0414985 0.0561107i −0.00404984 0.00547584i
\(106\) 0 0
\(107\) 14.2756i 1.38007i −0.723776 0.690035i \(-0.757595\pi\)
0.723776 0.690035i \(-0.242405\pi\)
\(108\) 0 0
\(109\) 4.88426i 0.467827i −0.972257 0.233914i \(-0.924847\pi\)
0.972257 0.233914i \(-0.0751533\pi\)
\(110\) 0 0
\(111\) 5.31292 12.2107i 0.504280 1.15899i
\(112\) 0 0
\(113\) 4.20463 1.53036i 0.395538 0.143964i −0.136591 0.990628i \(-0.543614\pi\)
0.532129 + 0.846663i \(0.321392\pi\)
\(114\) 0 0
\(115\) −26.7622 + 4.71889i −2.49559 + 0.440039i
\(116\) 0 0
\(117\) −5.45916 + 10.7013i −0.504700 + 0.989331i
\(118\) 0 0
\(119\) 0.0182330 + 0.00663627i 0.00167142 + 0.000608346i
\(120\) 0 0
\(121\) 7.65242 + 6.42114i 0.695674 + 0.583740i
\(122\) 0 0
\(123\) 5.55233 8.38420i 0.500637 0.755978i
\(124\) 0 0
\(125\) −18.8902 10.9063i −1.68959 0.975485i
\(126\) 0 0
\(127\) 0.733337 + 1.27018i 0.0650731 + 0.112710i 0.896726 0.442585i \(-0.145939\pi\)
−0.831653 + 0.555295i \(0.812605\pi\)
\(128\) 0 0
\(129\) −7.01720 1.68650i −0.617830 0.148488i
\(130\) 0 0
\(131\) 11.2373 + 1.98143i 0.981805 + 0.173119i 0.641439 0.767174i \(-0.278338\pi\)
0.340366 + 0.940293i \(0.389449\pi\)
\(132\) 0 0
\(133\) −0.0285489 0.0340233i −0.00247551 0.00295019i
\(134\) 0 0
\(135\) −15.8123 + 13.0152i −1.36091 + 1.12017i
\(136\) 0 0
\(137\) 3.27137 2.74501i 0.279492 0.234522i −0.492255 0.870451i \(-0.663827\pi\)
0.771748 + 0.635929i \(0.219383\pi\)
\(138\) 0 0
\(139\) −1.04893 0.184955i −0.0889693 0.0156877i 0.128986 0.991646i \(-0.458828\pi\)
−0.217956 + 0.975959i \(0.569939\pi\)
\(140\) 0 0
\(141\) −13.1540 + 3.89288i −1.10776 + 0.327840i
\(142\) 0 0
\(143\) 2.01268 + 3.48606i 0.168309 + 0.291519i
\(144\) 0 0
\(145\) −11.7368 + 20.3288i −0.974690 + 1.68821i
\(146\) 0 0
\(147\) −5.40712 10.8517i −0.445972 0.895030i
\(148\) 0 0
\(149\) 1.34236 1.59976i 0.109970 0.131058i −0.708251 0.705960i \(-0.750516\pi\)
0.818222 + 0.574903i \(0.194960\pi\)
\(150\) 0 0
\(151\) −9.89970 3.60320i −0.805626 0.293224i −0.0938105 0.995590i \(-0.529905\pi\)
−0.711816 + 0.702366i \(0.752127\pi\)
\(152\) 0 0
\(153\) 1.66741 5.44431i 0.134802 0.440146i
\(154\) 0 0
\(155\) −30.9586 + 5.45883i −2.48665 + 0.438464i
\(156\) 0 0
\(157\) −7.61747 20.9288i −0.607940 1.67030i −0.734720 0.678371i \(-0.762686\pi\)
0.126779 0.991931i \(-0.459536\pi\)
\(158\) 0 0
\(159\) 3.88193 0.441328i 0.307857 0.0349996i
\(160\) 0 0
\(161\) 0.0704866 0.00555512
\(162\) 0 0
\(163\) 8.64571i 0.677184i 0.940933 + 0.338592i \(0.109951\pi\)
−0.940933 + 0.338592i \(0.890049\pi\)
\(164\) 0 0
\(165\) 0.775166 + 6.81838i 0.0603466 + 0.530810i
\(166\) 0 0
\(167\) 7.93163 2.88688i 0.613768 0.223393i −0.0163833 0.999866i \(-0.505215\pi\)
0.630151 + 0.776473i \(0.282993\pi\)
\(168\) 0 0
\(169\) −0.527105 2.98936i −0.0405465 0.229951i
\(170\) 0 0
\(171\) −9.53646 + 8.88417i −0.729271 + 0.679389i
\(172\) 0 0
\(173\) 4.65008 12.7760i 0.353539 0.971340i −0.627685 0.778467i \(-0.715997\pi\)
0.981224 0.192872i \(-0.0617803\pi\)
\(174\) 0 0
\(175\) 0.0824974 + 0.0692236i 0.00623622 + 0.00523281i
\(176\) 0 0
\(177\) −10.1808 + 5.07285i −0.765236 + 0.381299i
\(178\) 0 0
\(179\) 0.257187 + 0.148487i 0.0192231 + 0.0110985i 0.509581 0.860423i \(-0.329801\pi\)
−0.490358 + 0.871521i \(0.663134\pi\)
\(180\) 0 0
\(181\) −1.63626 + 0.944694i −0.121622 + 0.0702186i −0.559577 0.828778i \(-0.689036\pi\)
0.437955 + 0.898997i \(0.355703\pi\)
\(182\) 0 0
\(183\) 0.0533224 + 0.180175i 0.00394170 + 0.0133189i
\(184\) 0 0
\(185\) −5.26192 + 29.8418i −0.386864 + 2.19401i
\(186\) 0 0
\(187\) −1.22637 1.46153i −0.0896811 0.106878i
\(188\) 0 0
\(189\) 0.0462531 0.0261239i 0.00336442 0.00190024i
\(190\) 0 0
\(191\) −10.6897 + 8.96976i −0.773483 + 0.649029i −0.941598 0.336738i \(-0.890676\pi\)
0.168116 + 0.985767i \(0.446232\pi\)
\(192\) 0 0
\(193\) 1.65530 9.38768i 0.119151 0.675740i −0.865460 0.500979i \(-0.832974\pi\)
0.984611 0.174761i \(-0.0559153\pi\)
\(194\) 0 0
\(195\) 6.38814 26.5799i 0.457465 1.90342i
\(196\) 0 0
\(197\) −7.61046 + 4.39390i −0.542223 + 0.313052i −0.745979 0.665969i \(-0.768018\pi\)
0.203757 + 0.979022i \(0.434685\pi\)
\(198\) 0 0
\(199\) −4.70991 + 8.15780i −0.333876 + 0.578291i −0.983268 0.182163i \(-0.941690\pi\)
0.649392 + 0.760454i \(0.275023\pi\)
\(200\) 0 0
\(201\) 5.55684 + 3.67995i 0.391949 + 0.259563i
\(202\) 0 0
\(203\) 0.0391368 0.0466414i 0.00274686 0.00327358i
\(204\) 0 0
\(205\) −7.82640 + 21.5029i −0.546619 + 1.50182i
\(206\) 0 0
\(207\) −1.07243 20.6567i −0.0745393 1.43574i
\(208\) 0 0
\(209\) 0.758358 + 4.30086i 0.0524567 + 0.297497i
\(210\) 0 0
\(211\) −4.12560 11.3350i −0.284018 0.780333i −0.996873 0.0790214i \(-0.974820\pi\)
0.712855 0.701311i \(-0.247402\pi\)
\(212\) 0 0
\(213\) 1.40610 + 0.611800i 0.0963445 + 0.0419198i
\(214\) 0 0
\(215\) 16.4226 1.12001
\(216\) 0 0
\(217\) 0.0815391 0.00553524
\(218\) 0 0
\(219\) −20.2234 + 14.9569i −1.36657 + 1.01069i
\(220\) 0 0
\(221\) 2.59946 + 7.14195i 0.174858 + 0.480420i
\(222\) 0 0
\(223\) −0.616341 3.49544i −0.0412732 0.234072i 0.957192 0.289454i \(-0.0934736\pi\)
−0.998465 + 0.0553815i \(0.982362\pi\)
\(224\) 0 0
\(225\) 19.0314 25.2298i 1.26876 1.68199i
\(226\) 0 0
\(227\) −3.72066 + 10.2224i −0.246949 + 0.678486i 0.752846 + 0.658197i \(0.228681\pi\)
−0.999794 + 0.0202886i \(0.993542\pi\)
\(228\) 0 0
\(229\) 5.05083 6.01935i 0.333769 0.397770i −0.572892 0.819631i \(-0.694179\pi\)
0.906661 + 0.421861i \(0.138623\pi\)
\(230\) 0 0
\(231\) 0.00109098 0.0177660i 7.17811e−5 0.00116892i
\(232\) 0 0
\(233\) 12.0985 20.9553i 0.792602 1.37283i −0.131749 0.991283i \(-0.542059\pi\)
0.924351 0.381544i \(-0.124608\pi\)
\(234\) 0 0
\(235\) 27.0336 15.6079i 1.76348 1.01814i
\(236\) 0 0
\(237\) 4.03893 + 3.83468i 0.262357 + 0.249089i
\(238\) 0 0
\(239\) 5.23764 29.7041i 0.338795 1.92140i −0.0471684 0.998887i \(-0.515020\pi\)
0.385963 0.922514i \(-0.373869\pi\)
\(240\) 0 0
\(241\) −1.91756 + 1.60903i −0.123521 + 0.103647i −0.702456 0.711727i \(-0.747913\pi\)
0.578935 + 0.815374i \(0.303469\pi\)
\(242\) 0 0
\(243\) −8.35958 13.1574i −0.536267 0.844048i
\(244\) 0 0
\(245\) 17.7339 + 21.1344i 1.13298 + 1.35023i
\(246\) 0 0
\(247\) 3.02101 17.1330i 0.192222 1.09015i
\(248\) 0 0
\(249\) 18.1246 19.0900i 1.14860 1.20978i
\(250\) 0 0
\(251\) −14.5027 + 8.37314i −0.915402 + 0.528508i −0.882165 0.470940i \(-0.843915\pi\)
−0.0332368 + 0.999448i \(0.510582\pi\)
\(252\) 0 0
\(253\) −6.00232 3.46544i −0.377363 0.217870i
\(254\) 0 0
\(255\) −0.794157 + 12.9324i −0.0497320 + 0.809858i
\(256\) 0 0
\(257\) −20.4870 17.1907i −1.27795 1.07232i −0.993524 0.113626i \(-0.963753\pi\)
−0.284423 0.958699i \(-0.591802\pi\)
\(258\) 0 0
\(259\) 0.0268820 0.0738578i 0.00167037 0.00458930i
\(260\) 0 0
\(261\) −14.2641 10.7597i −0.882927 0.666011i
\(262\) 0 0
\(263\) 0.762315 + 4.32330i 0.0470064 + 0.266586i 0.999249 0.0387571i \(-0.0123398\pi\)
−0.952242 + 0.305343i \(0.901229\pi\)
\(264\) 0 0
\(265\) −8.35424 + 3.04070i −0.513197 + 0.186788i
\(266\) 0 0
\(267\) −4.04855 + 2.99424i −0.247767 + 0.183244i
\(268\) 0 0
\(269\) 0.741050i 0.0451826i −0.999745 0.0225913i \(-0.992808\pi\)
0.999745 0.0225913i \(-0.00719165\pi\)
\(270\) 0 0
\(271\) 14.1450 0.859245 0.429622 0.903009i \(-0.358647\pi\)
0.429622 + 0.903009i \(0.358647\pi\)
\(272\) 0 0
\(273\) −0.0282897 + 0.0650182i −0.00171217 + 0.00393508i
\(274\) 0 0
\(275\) −3.62176 9.95071i −0.218400 0.600050i
\(276\) 0 0
\(277\) 8.42697 1.48590i 0.506327 0.0892792i 0.0853514 0.996351i \(-0.472799\pi\)
0.420976 + 0.907072i \(0.361688\pi\)
\(278\) 0 0
\(279\) −1.24059 23.8958i −0.0742724 1.43060i
\(280\) 0 0
\(281\) −17.6483 6.42344i −1.05281 0.383191i −0.243086 0.970005i \(-0.578160\pi\)
−0.809722 + 0.586814i \(0.800382\pi\)
\(282\) 0 0
\(283\) 16.5234 19.6918i 0.982214 1.17056i −0.00313343 0.999995i \(-0.500997\pi\)
0.985347 0.170562i \(-0.0545582\pi\)
\(284\) 0 0
\(285\) 16.3756 24.7276i 0.970005 1.46474i
\(286\) 0 0
\(287\) 0.0296768 0.0514017i 0.00175177 0.00303415i
\(288\) 0 0
\(289\) 6.69885 + 11.6027i 0.394050 + 0.682514i
\(290\) 0 0
\(291\) −5.17808 + 21.5450i −0.303544 + 1.26299i
\(292\) 0 0
\(293\) 14.3663 + 2.53317i 0.839288 + 0.147989i 0.576738 0.816929i \(-0.304325\pi\)
0.262550 + 0.964918i \(0.415436\pi\)
\(294\) 0 0
\(295\) 19.8279 16.6376i 1.15442 0.968678i
\(296\) 0 0
\(297\) −5.22308 0.0494167i −0.303074 0.00286745i
\(298\) 0 0
\(299\) 17.7473 + 21.1504i 1.02635 + 1.22316i
\(300\) 0 0
\(301\) −0.0419499 0.00739689i −0.00241795 0.000426350i
\(302\) 0 0
\(303\) 4.11874 + 13.9171i 0.236615 + 0.799518i
\(304\) 0 0
\(305\) −0.213787 0.370290i −0.0122414 0.0212028i
\(306\) 0 0
\(307\) 8.07578 + 4.66255i 0.460909 + 0.266106i 0.712426 0.701747i \(-0.247596\pi\)
−0.251517 + 0.967853i \(0.580930\pi\)
\(308\) 0 0
\(309\) 5.36951 + 10.7762i 0.305461 + 0.613035i
\(310\) 0 0
\(311\) 6.15253 + 5.16259i 0.348878 + 0.292743i 0.800339 0.599547i \(-0.204653\pi\)
−0.451461 + 0.892291i \(0.649097\pi\)
\(312\) 0 0
\(313\) 31.0694 + 11.3083i 1.75615 + 0.639185i 0.999886 0.0150840i \(-0.00480156\pi\)
0.756261 + 0.654269i \(0.227024\pi\)
\(314\) 0 0
\(315\) −0.0884452 + 0.0823956i −0.00498332 + 0.00464247i
\(316\) 0 0
\(317\) −25.6721 + 4.52669i −1.44189 + 0.254244i −0.839240 0.543762i \(-0.817000\pi\)
−0.602650 + 0.798006i \(0.705888\pi\)
\(318\) 0 0
\(319\) −5.62581 + 2.04763i −0.314985 + 0.114645i
\(320\) 0 0
\(321\) −24.5677 + 2.79305i −1.37124 + 0.155893i
\(322\) 0 0
\(323\) 8.24576i 0.458806i
\(324\) 0 0
\(325\) 42.1838i 2.33993i
\(326\) 0 0
\(327\) −8.40564 + 0.955617i −0.464833 + 0.0528457i
\(328\) 0 0
\(329\) −0.0760844 + 0.0276925i −0.00419467 + 0.00152674i
\(330\) 0 0
\(331\) 2.73256 0.481823i 0.150195 0.0264834i −0.0980451 0.995182i \(-0.531259\pi\)
0.248240 + 0.968699i \(0.420148\pi\)
\(332\) 0 0
\(333\) −22.0537 6.75429i −1.20853 0.370133i
\(334\) 0 0
\(335\) −14.2516 5.18714i −0.778645 0.283404i
\(336\) 0 0
\(337\) −10.0326 8.41837i −0.546512 0.458578i 0.327246 0.944939i \(-0.393879\pi\)
−0.873758 + 0.486361i \(0.838324\pi\)
\(338\) 0 0
\(339\) −3.45634 6.93660i −0.187723 0.376744i
\(340\) 0 0
\(341\) −6.94350 4.00883i −0.376012 0.217090i
\(342\) 0 0
\(343\) −0.0715611 0.123947i −0.00386393 0.00669253i
\(344\) 0 0
\(345\) 13.3571 + 45.1335i 0.719124 + 2.42991i
\(346\) 0 0
\(347\) 14.2864 + 2.51907i 0.766932 + 0.135231i 0.543409 0.839468i \(-0.317133\pi\)
0.223523 + 0.974699i \(0.428244\pi\)
\(348\) 0 0
\(349\) −15.0245 17.9055i −0.804242 0.958459i 0.195510 0.980702i \(-0.437364\pi\)
−0.999753 + 0.0222430i \(0.992919\pi\)
\(350\) 0 0
\(351\) 19.4846 + 7.30130i 1.04001 + 0.389714i
\(352\) 0 0
\(353\) −26.1780 + 21.9660i −1.39332 + 1.16913i −0.429340 + 0.903143i \(0.641254\pi\)
−0.963976 + 0.265988i \(0.914302\pi\)
\(354\) 0 0
\(355\) −3.43638 0.605927i −0.182384 0.0321593i
\(356\) 0 0
\(357\) 0.00785346 0.0326768i 0.000415649 0.00172944i
\(358\) 0 0
\(359\) 13.5391 + 23.4504i 0.714565 + 1.23766i 0.963127 + 0.269047i \(0.0867088\pi\)
−0.248562 + 0.968616i \(0.579958\pi\)
\(360\) 0 0
\(361\) −0.0626343 + 0.108486i −0.00329654 + 0.00570978i
\(362\) 0 0
\(363\) 9.55334 14.4259i 0.501420 0.757161i
\(364\) 0 0
\(365\) 36.7916 43.8465i 1.92576 2.29503i
\(366\) 0 0
\(367\) −4.30354 1.56636i −0.224643 0.0817633i 0.227247 0.973837i \(-0.427028\pi\)
−0.451890 + 0.892074i \(0.649250\pi\)
\(368\) 0 0
\(369\) −15.5152 7.91498i −0.807691 0.412038i
\(370\) 0 0
\(371\) 0.0227096 0.00400432i 0.00117902 0.000207894i
\(372\) 0 0
\(373\) −5.86591 16.1165i −0.303725 0.834479i −0.993845 0.110783i \(-0.964664\pi\)
0.690119 0.723696i \(-0.257558\pi\)
\(374\) 0 0
\(375\) −15.0734 + 34.6432i −0.778385 + 1.78897i
\(376\) 0 0
\(377\) 23.8493 1.22830
\(378\) 0 0
\(379\) 0.380673i 0.0195538i 0.999952 + 0.00977692i \(0.00311214\pi\)
−0.999952 + 0.00977692i \(0.996888\pi\)
\(380\) 0 0
\(381\) 2.04245 1.51056i 0.104638 0.0773884i
\(382\) 0 0
\(383\) −34.6697 + 12.6187i −1.77154 + 0.644788i −0.771578 + 0.636135i \(0.780532\pi\)
−0.999963 + 0.00865253i \(0.997246\pi\)
\(384\) 0 0
\(385\) 0.00703334 + 0.0398880i 0.000358452 + 0.00203288i
\(386\) 0 0
\(387\) −1.52947 + 12.4063i −0.0777473 + 0.630649i
\(388\) 0 0
\(389\) −2.44660 + 6.72197i −0.124047 + 0.340817i −0.986136 0.165941i \(-0.946934\pi\)
0.862088 + 0.506758i \(0.169156\pi\)
\(390\) 0 0
\(391\) −10.0246 8.41167i −0.506968 0.425397i
\(392\) 0 0
\(393\) 1.21138 19.7266i 0.0611060 0.995077i
\(394\) 0 0
\(395\) −10.9754 6.33665i −0.552233 0.318832i
\(396\) 0 0
\(397\) 22.6986 13.1051i 1.13921 0.657724i 0.192976 0.981203i \(-0.438186\pi\)
0.946235 + 0.323479i \(0.104853\pi\)
\(398\) 0 0
\(399\) −0.0529672 + 0.0557885i −0.00265168 + 0.00279292i
\(400\) 0 0
\(401\) 3.00071 17.0179i 0.149848 0.849832i −0.813497 0.581569i \(-0.802439\pi\)
0.963346 0.268263i \(-0.0864497\pi\)
\(402\) 0 0
\(403\) 20.5302 + 24.4669i 1.02268 + 1.21878i
\(404\) 0 0
\(405\) 25.4924 + 24.6660i 1.26673 + 1.22566i
\(406\) 0 0
\(407\) −5.92033 + 4.96775i −0.293460 + 0.246242i
\(408\) 0 0
\(409\) −4.27076 + 24.2207i −0.211176 + 1.19764i 0.676245 + 0.736677i \(0.263606\pi\)
−0.887421 + 0.460960i \(0.847505\pi\)
\(410\) 0 0
\(411\) −5.36412 5.09285i −0.264592 0.251212i
\(412\) 0 0
\(413\) −0.0581420 + 0.0335683i −0.00286098 + 0.00165179i
\(414\) 0 0
\(415\) −29.9502 + 51.8753i −1.47020 + 2.54646i
\(416\) 0 0
\(417\) −0.113075 + 1.84136i −0.00553731 + 0.0901720i
\(418\) 0 0
\(419\) 8.86909 10.5698i 0.433283 0.516367i −0.504583 0.863363i \(-0.668354\pi\)
0.937867 + 0.346996i \(0.112798\pi\)
\(420\) 0 0
\(421\) −12.5029 + 34.3515i −0.609355 + 1.67419i 0.122281 + 0.992496i \(0.460979\pi\)
−0.731637 + 0.681695i \(0.761243\pi\)
\(422\) 0 0
\(423\) 9.27312 + 21.8759i 0.450875 + 1.06364i
\(424\) 0 0
\(425\) −3.47188 19.6900i −0.168411 0.955106i
\(426\) 0 0
\(427\) 0.000379315 0.00104216i 1.83563e−5 5.04336e-5i
\(428\) 0 0
\(429\) 5.60561 4.14581i 0.270641 0.200162i
\(430\) 0 0
\(431\) −7.44743 −0.358730 −0.179365 0.983783i \(-0.557404\pi\)
−0.179365 + 0.983783i \(0.557404\pi\)
\(432\) 0 0
\(433\) 20.9407 1.00634 0.503172 0.864186i \(-0.332166\pi\)
0.503172 + 0.864186i \(0.332166\pi\)
\(434\) 0 0
\(435\) 37.2815 + 16.2213i 1.78751 + 0.777751i
\(436\) 0 0
\(437\) 10.2451 + 28.1482i 0.490090 + 1.34651i
\(438\) 0 0
\(439\) −4.88555 27.7073i −0.233174 1.32240i −0.846424 0.532509i \(-0.821249\pi\)
0.613250 0.789889i \(-0.289862\pi\)
\(440\) 0 0
\(441\) −17.6174 + 11.4286i −0.838925 + 0.544220i
\(442\) 0 0
\(443\) 5.98423 16.4415i 0.284319 0.781161i −0.712515 0.701657i \(-0.752444\pi\)
0.996835 0.0795043i \(-0.0253338\pi\)
\(444\) 0 0
\(445\) 7.36537 8.77771i 0.349152 0.416103i
\(446\) 0 0
\(447\) −3.01577 1.99716i −0.142641 0.0944624i
\(448\) 0 0
\(449\) −2.99357 + 5.18501i −0.141275 + 0.244696i −0.927977 0.372637i \(-0.878454\pi\)
0.786702 + 0.617333i \(0.211787\pi\)
\(450\) 0 0
\(451\) −5.05428 + 2.91809i −0.237997 + 0.137408i
\(452\) 0 0
\(453\) −4.26407 + 17.7420i −0.200344 + 0.833593i
\(454\) 0 0
\(455\) 0.0280181 0.158899i 0.00131351 0.00744928i
\(456\) 0 0
\(457\) 18.6279 15.6306i 0.871375 0.731170i −0.0930125 0.995665i \(-0.529650\pi\)
0.964387 + 0.264495i \(0.0852052\pi\)
\(458\) 0 0
\(459\) −9.69570 1.80436i −0.452556 0.0842201i
\(460\) 0 0
\(461\) −10.3010 12.2762i −0.479764 0.571761i 0.470819 0.882230i \(-0.343958\pi\)
−0.950584 + 0.310469i \(0.899514\pi\)
\(462\) 0 0
\(463\) −0.124840 + 0.708003i −0.00580181 + 0.0329037i −0.987571 0.157172i \(-0.949762\pi\)
0.981769 + 0.190076i \(0.0608734\pi\)
\(464\) 0 0
\(465\) 15.4516 + 52.2106i 0.716550 + 2.42121i
\(466\) 0 0
\(467\) 16.8793 9.74528i 0.781082 0.450958i −0.0557318 0.998446i \(-0.517749\pi\)
0.836814 + 0.547488i \(0.184416\pi\)
\(468\) 0 0
\(469\) 0.0340678 + 0.0196690i 0.00157310 + 0.000908231i
\(470\) 0 0
\(471\) −34.5274 + 17.2042i −1.59094 + 0.792726i
\(472\) 0 0
\(473\) 3.20859 + 2.69233i 0.147531 + 0.123794i
\(474\) 0 0
\(475\) −15.6530 + 43.0062i −0.718207 + 1.97326i
\(476\) 0 0
\(477\) −1.51902 6.59432i −0.0695511 0.301933i
\(478\) 0 0
\(479\) −1.69552 9.61575i −0.0774701 0.439355i −0.998729 0.0504046i \(-0.983949\pi\)
0.921259 0.388950i \(-0.127162\pi\)
\(480\) 0 0
\(481\) 28.9304 10.5298i 1.31911 0.480118i
\(482\) 0 0
\(483\) −0.0137909 0.121305i −0.000627507 0.00551957i
\(484\) 0 0
\(485\) 50.4227i 2.28958i
\(486\) 0 0
\(487\) 40.7197 1.84519 0.922594 0.385773i \(-0.126065\pi\)
0.922594 + 0.385773i \(0.126065\pi\)
\(488\) 0 0
\(489\) 14.8790 1.69155i 0.672850 0.0764947i
\(490\) 0 0
\(491\) −4.27622 11.7488i −0.192983 0.530217i 0.805029 0.593235i \(-0.202150\pi\)
−0.998012 + 0.0630180i \(0.979927\pi\)
\(492\) 0 0
\(493\) −11.1321 + 1.96289i −0.501365 + 0.0884041i
\(494\) 0 0
\(495\) 11.5825 2.66807i 0.520596 0.119921i
\(496\) 0 0
\(497\) 0.00850497 + 0.00309555i 0.000381500 + 0.000138855i
\(498\) 0 0
\(499\) −2.94192 + 3.50604i −0.131698 + 0.156952i −0.827863 0.560930i \(-0.810444\pi\)
0.696165 + 0.717882i \(0.254888\pi\)
\(500\) 0 0
\(501\) −6.52006 13.0852i −0.291295 0.584605i
\(502\) 0 0
\(503\) 9.68900 16.7818i 0.432011 0.748265i −0.565035 0.825067i \(-0.691137\pi\)
0.997046 + 0.0768015i \(0.0244708\pi\)
\(504\) 0 0
\(505\) −16.5134 28.6020i −0.734836 1.27277i
\(506\) 0 0
\(507\) −5.04145 + 1.49200i −0.223899 + 0.0662622i
\(508\) 0 0
\(509\) 2.30682 + 0.406755i 0.102248 + 0.0180291i 0.224538 0.974465i \(-0.427913\pi\)
−0.122290 + 0.992494i \(0.539024\pi\)
\(510\) 0 0
\(511\) −0.113729 + 0.0954301i −0.00503108 + 0.00422158i
\(512\) 0 0
\(513\) 17.1552 + 14.6737i 0.757420 + 0.647860i
\(514\) 0 0
\(515\) −17.6105 20.9874i −0.776014 0.924817i
\(516\) 0 0
\(517\) 7.84049 + 1.38249i 0.344824 + 0.0608018i
\(518\) 0 0
\(519\) −22.8968 5.50296i −1.00506 0.241553i
\(520\) 0 0
\(521\) −3.33988 5.78485i −0.146323 0.253439i 0.783543 0.621338i \(-0.213411\pi\)
−0.929866 + 0.367899i \(0.880077\pi\)
\(522\) 0 0
\(523\) 25.4719 + 14.7062i 1.11381 + 0.643057i 0.939813 0.341690i \(-0.110999\pi\)
0.173994 + 0.984747i \(0.444333\pi\)
\(524\) 0 0
\(525\) 0.102990 0.155519i 0.00449487 0.00678740i
\(526\) 0 0
\(527\) −11.5965 9.73065i −0.505153 0.423874i
\(528\) 0 0
\(529\) −23.0590 8.39280i −1.00257 0.364904i
\(530\) 0 0
\(531\) 10.7221 + 16.5283i 0.465299 + 0.717267i
\(532\) 0 0
\(533\) 22.8959 4.03716i 0.991731 0.174869i
\(534\) 0 0
\(535\) 52.8718 19.2438i 2.28585 0.831980i
\(536\) 0 0
\(537\) 0.205222 0.471662i 0.00885598 0.0203537i
\(538\) 0 0
\(539\) 7.03648i 0.303083i
\(540\) 0 0
\(541\) 1.09392i 0.0470312i 0.999723 + 0.0235156i \(0.00748594\pi\)
−0.999723 + 0.0235156i \(0.992514\pi\)
\(542\) 0 0
\(543\) 1.94592 + 2.63111i 0.0835076 + 0.112912i
\(544\) 0 0
\(545\) 18.0896 6.58409i 0.774875 0.282031i
\(546\) 0 0
\(547\) −11.4033 + 2.01070i −0.487568 + 0.0859714i −0.412028 0.911171i \(-0.635179\pi\)
−0.0755403 + 0.997143i \(0.524068\pi\)
\(548\) 0 0
\(549\) 0.299643 0.127018i 0.0127884 0.00542098i
\(550\) 0 0
\(551\) 24.3143 + 8.84968i 1.03582 + 0.377009i
\(552\) 0 0
\(553\) 0.0251814 + 0.0211297i 0.00107082 + 0.000898528i
\(554\) 0 0
\(555\) 52.3862 + 3.21695i 2.22367 + 0.136552i
\(556\) 0 0
\(557\) 11.9979 + 6.92697i 0.508366 + 0.293505i 0.732162 0.681131i \(-0.238512\pi\)
−0.223796 + 0.974636i \(0.571845\pi\)
\(558\) 0 0
\(559\) −8.34273 14.4500i −0.352860 0.611171i
\(560\) 0 0
\(561\) −2.27530 + 2.39649i −0.0960633 + 0.101180i
\(562\) 0 0
\(563\) 29.5384 + 5.20841i 1.24489 + 0.219508i 0.757012 0.653401i \(-0.226659\pi\)
0.487882 + 0.872910i \(0.337770\pi\)
\(564\) 0 0
\(565\) 11.3359 + 13.5096i 0.476903 + 0.568351i
\(566\) 0 0
\(567\) −0.0540079 0.0744888i −0.00226812 0.00312823i
\(568\) 0 0
\(569\) −13.1491 + 11.0334i −0.551241 + 0.462546i −0.875361 0.483470i \(-0.839376\pi\)
0.324120 + 0.946016i \(0.394932\pi\)
\(570\) 0 0
\(571\) −16.7116 2.94670i −0.699357 0.123316i −0.187346 0.982294i \(-0.559988\pi\)
−0.512012 + 0.858978i \(0.671100\pi\)
\(572\) 0 0
\(573\) 17.5281 + 16.6417i 0.732248 + 0.695218i
\(574\) 0 0
\(575\) −36.3161 62.9013i −1.51449 2.62317i
\(576\) 0 0
\(577\) −4.49809 + 7.79092i −0.187258 + 0.324340i −0.944335 0.328985i \(-0.893293\pi\)
0.757077 + 0.653326i \(0.226627\pi\)
\(578\) 0 0
\(579\) −16.4797 1.01199i −0.684874 0.0420570i
\(580\) 0 0
\(581\) 0.0998698 0.119020i 0.00414330 0.00493779i
\(582\) 0 0
\(583\) −2.13072 0.775517i −0.0882453 0.0321186i
\(584\) 0 0
\(585\) −46.9929 5.79335i −1.94292 0.239526i
\(586\) 0 0
\(587\) 29.2734 5.16169i 1.20824 0.213046i 0.466984 0.884266i \(-0.345340\pi\)
0.741258 + 0.671220i \(0.234229\pi\)
\(588\) 0 0
\(589\) 11.8516 + 32.5619i 0.488336 + 1.34169i
\(590\) 0 0
\(591\) 9.05075 + 12.2376i 0.372298 + 0.503390i
\(592\) 0 0
\(593\) −21.5451 −0.884750 −0.442375 0.896830i \(-0.645864\pi\)
−0.442375 + 0.896830i \(0.645864\pi\)
\(594\) 0 0
\(595\) 0.0764747i 0.00313516i
\(596\) 0 0
\(597\) 14.9608 + 6.50949i 0.612304 + 0.266416i
\(598\) 0 0
\(599\) 10.2586 3.73384i 0.419156 0.152560i −0.123827 0.992304i \(-0.539517\pi\)
0.542983 + 0.839743i \(0.317295\pi\)
\(600\) 0 0
\(601\) −2.62710 14.8990i −0.107162 0.607744i −0.990335 0.138697i \(-0.955709\pi\)
0.883173 0.469047i \(-0.155403\pi\)
\(602\) 0 0
\(603\) 5.24585 10.2831i 0.213628 0.418761i
\(604\) 0 0
\(605\) −13.4661 + 36.9978i −0.547475 + 1.50417i
\(606\) 0 0
\(607\) 18.8283 + 15.7988i 0.764216 + 0.641253i 0.939221 0.343314i \(-0.111550\pi\)
−0.175005 + 0.984568i \(0.555994\pi\)
\(608\) 0 0
\(609\) −0.0879254 0.0582275i −0.00356292 0.00235950i
\(610\) 0 0
\(611\) −27.4663 15.8577i −1.11117 0.641532i
\(612\) 0 0
\(613\) 15.6018 9.00768i 0.630149 0.363817i −0.150661 0.988586i \(-0.548140\pi\)
0.780810 + 0.624769i \(0.214807\pi\)
\(614\) 0 0
\(615\) 38.5369 + 9.26187i 1.55396 + 0.373475i
\(616\) 0 0
\(617\) −4.06887 + 23.0757i −0.163807 + 0.928994i 0.786480 + 0.617616i \(0.211902\pi\)
−0.950286 + 0.311378i \(0.899210\pi\)
\(618\) 0 0
\(619\) −21.6871 25.8457i −0.871679 1.03883i −0.998897 0.0469514i \(-0.985049\pi\)
0.127219 0.991875i \(-0.459395\pi\)
\(620\) 0 0
\(621\) −35.3397 + 5.88716i −1.41813 + 0.236244i
\(622\) 0 0
\(623\) −0.0227676 + 0.0191043i −0.000912166 + 0.000765398i
\(624\) 0 0
\(625\) 5.78239 32.7936i 0.231296 1.31174i
\(626\) 0 0
\(627\) 7.25326 2.14658i 0.289667 0.0857263i
\(628\) 0 0
\(629\) −12.6372 + 7.29606i −0.503876 + 0.290913i
\(630\) 0 0
\(631\) 3.55095 6.15043i 0.141361 0.244845i −0.786648 0.617401i \(-0.788185\pi\)
0.928009 + 0.372557i \(0.121519\pi\)
\(632\) 0 0
\(633\) −18.6999 + 9.31773i −0.743256 + 0.370346i
\(634\) 0 0
\(635\) −3.71575 + 4.42826i −0.147455 + 0.175730i
\(636\) 0 0
\(637\) 9.58703 26.3402i 0.379852 1.04363i
\(638\) 0 0
\(639\) 0.777779 2.53955i 0.0307685 0.100463i
\(640\) 0 0
\(641\) −0.826096 4.68502i −0.0326288 0.185047i 0.964137 0.265404i \(-0.0855052\pi\)
−0.996766 + 0.0803565i \(0.974394\pi\)
\(642\) 0 0
\(643\) −5.88956 16.1814i −0.232262 0.638134i 0.767735 0.640768i \(-0.221384\pi\)
−0.999997 + 0.00263392i \(0.999162\pi\)
\(644\) 0 0
\(645\) −3.21313 28.2628i −0.126517 1.11284i
\(646\) 0 0
\(647\) −38.9704 −1.53208 −0.766042 0.642791i \(-0.777776\pi\)
−0.766042 + 0.642791i \(0.777776\pi\)
\(648\) 0 0
\(649\) 6.60148 0.259131
\(650\) 0 0
\(651\) −0.0159533 0.140326i −0.000625260 0.00549981i
\(652\) 0 0
\(653\) −7.50821 20.6286i −0.293819 0.807261i −0.995499 0.0947692i \(-0.969789\pi\)
0.701680 0.712492i \(-0.252434\pi\)
\(654\) 0 0
\(655\) 7.80953 + 44.2901i 0.305144 + 1.73056i
\(656\) 0 0
\(657\) 29.6970 + 31.8774i 1.15859 + 1.24366i
\(658\) 0 0
\(659\) −10.8064 + 29.6905i −0.420960 + 1.15658i 0.530199 + 0.847873i \(0.322117\pi\)
−0.951158 + 0.308703i \(0.900105\pi\)
\(660\) 0 0
\(661\) 0.564964 0.673298i 0.0219746 0.0261883i −0.754945 0.655788i \(-0.772337\pi\)
0.776920 + 0.629600i \(0.216781\pi\)
\(662\) 0 0
\(663\) 11.7825 5.87092i 0.457593 0.228008i
\(664\) 0 0
\(665\) 0.0875262 0.151600i 0.00339412 0.00587879i
\(666\) 0 0
\(667\) −35.5624 + 20.5319i −1.37698 + 0.795000i
\(668\) 0 0
\(669\) −5.89494 + 1.74459i −0.227912 + 0.0674498i
\(670\) 0 0
\(671\) 0.0189365 0.107394i 0.000731036 0.00414591i
\(672\) 0 0
\(673\) 2.60760 2.18804i 0.100516 0.0843426i −0.591145 0.806565i \(-0.701324\pi\)
0.691661 + 0.722223i \(0.256879\pi\)
\(674\) 0 0
\(675\) −47.1432 27.8161i −1.81454 1.07064i
\(676\) 0 0
\(677\) 12.0910 + 14.4095i 0.464695 + 0.553802i 0.946595 0.322424i \(-0.104498\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(678\) 0 0
\(679\) −0.0227108 + 0.128799i −0.000871561 + 0.00494287i
\(680\) 0 0
\(681\) 18.3204 + 4.40308i 0.702038 + 0.168726i
\(682\) 0 0
\(683\) 19.4488 11.2288i 0.744188 0.429657i −0.0794021 0.996843i \(-0.525301\pi\)
0.823590 + 0.567186i \(0.191968\pi\)
\(684\) 0 0
\(685\) 14.5765 + 8.41573i 0.556938 + 0.321548i
\(686\) 0 0
\(687\) −11.3473 7.51461i −0.432926 0.286700i
\(688\) 0 0
\(689\) 6.91944 + 5.80610i 0.263610 + 0.221195i
\(690\) 0 0
\(691\) 14.6665 40.2960i 0.557941 1.53293i −0.264677 0.964337i \(-0.585265\pi\)
0.822618 0.568594i \(-0.192512\pi\)
\(692\) 0 0
\(693\) −0.0307881 + 0.00159842i −0.00116954 + 6.07191e-5i
\(694\) 0 0
\(695\) −0.728974 4.13422i −0.0276515 0.156820i
\(696\) 0 0
\(697\) −10.3548 + 3.76883i −0.392215 + 0.142755i
\(698\) 0 0
\(699\) −38.4304 16.7212i −1.45357 0.632455i
\(700\) 0 0
\(701\) 30.9274i 1.16811i 0.811714 + 0.584055i \(0.198535\pi\)
−0.811714 + 0.584055i \(0.801465\pi\)
\(702\) 0 0
\(703\) 33.4017 1.25977
\(704\) 0 0
\(705\) −32.1498 43.4702i −1.21083 1.63718i
\(706\) 0 0
\(707\) 0.0292991 + 0.0804987i 0.00110191 + 0.00302746i
\(708\) 0 0
\(709\) 10.5402 1.85852i 0.395845 0.0697982i 0.0278175 0.999613i \(-0.491144\pi\)
0.368028 + 0.929815i \(0.380033\pi\)
\(710\) 0 0
\(711\) 5.80913 7.70112i 0.217859 0.288815i
\(712\) 0 0
\(713\) −51.6766 18.8088i −1.93531 0.704394i
\(714\) 0 0
\(715\) −10.1981 + 12.1536i −0.381386 + 0.454518i
\(716\) 0 0
\(717\) −52.1445 3.20211i −1.94737 0.119585i
\(718\) 0 0
\(719\) −7.98318 + 13.8273i −0.297723 + 0.515671i −0.975615 0.219491i \(-0.929560\pi\)
0.677892 + 0.735161i \(0.262894\pi\)
\(720\) 0 0
\(721\) 0.0355314 + 0.0615422i 0.00132326 + 0.00229195i
\(722\) 0 0
\(723\) 3.14426 + 2.98525i 0.116936 + 0.111023i
\(724\) 0 0
\(725\) −61.7861 10.8946i −2.29468 0.404614i
\(726\) 0 0
\(727\) −18.0652 + 15.1585i −0.670002 + 0.562198i −0.913066 0.407812i \(-0.866292\pi\)
0.243064 + 0.970010i \(0.421847\pi\)
\(728\) 0 0
\(729\) −21.0079 + 16.9608i −0.778069 + 0.628178i
\(730\) 0 0
\(731\) 5.08341 + 6.05817i 0.188017 + 0.224069i
\(732\) 0 0
\(733\) 5.12011 + 0.902813i 0.189115 + 0.0333462i 0.267404 0.963585i \(-0.413834\pi\)
−0.0782882 + 0.996931i \(0.524945\pi\)
\(734\) 0 0
\(735\) 32.9020 34.6544i 1.21361 1.27825i
\(736\) 0 0
\(737\) −1.93404 3.34985i −0.0712412 0.123393i
\(738\) 0 0
\(739\) −10.5638 6.09903i −0.388596 0.224356i 0.292955 0.956126i \(-0.405361\pi\)
−0.681552 + 0.731770i \(0.738695\pi\)
\(740\) 0 0
\(741\) −30.0763 1.84694i −1.10488 0.0678489i
\(742\) 0 0
\(743\) 11.5486 + 9.69040i 0.423676 + 0.355506i 0.829559 0.558419i \(-0.188592\pi\)
−0.405883 + 0.913925i \(0.633036\pi\)
\(744\) 0 0
\(745\) 7.73451 + 2.81513i 0.283371 + 0.103138i
\(746\) 0 0
\(747\) −36.3994 27.4568i −1.33178 1.00459i
\(748\) 0 0
\(749\) −0.143723 + 0.0253422i −0.00525153 + 0.000925986i
\(750\) 0 0
\(751\) 1.35242 0.492239i 0.0493504 0.0179621i −0.317227 0.948350i \(-0.602752\pi\)
0.366577 + 0.930388i \(0.380529\pi\)
\(752\) 0 0
\(753\) 17.2474 + 23.3204i 0.628529 + 0.849843i
\(754\) 0 0
\(755\) 41.5223i 1.51115i
\(756\) 0 0
\(757\) 15.3476i 0.557818i −0.960318 0.278909i \(-0.910027\pi\)
0.960318 0.278909i \(-0.0899727\pi\)
\(758\) 0 0
\(759\) −4.78953 + 11.0078i −0.173849 + 0.399558i
\(760\) 0 0
\(761\) −3.86991 + 1.40853i −0.140284 + 0.0510593i −0.411208 0.911541i \(-0.634893\pi\)
0.270924 + 0.962601i \(0.412671\pi\)
\(762\) 0 0
\(763\) −0.0491736 + 0.00867063i −0.00178020 + 0.000313898i
\(764\) 0 0
\(765\) 22.4116 1.16354i 0.810292 0.0420679i
\(766\) 0 0
\(767\) −24.7118 8.99435i −0.892291 0.324767i
\(768\) 0 0
\(769\) 36.4911 + 30.6197i 1.31590 + 1.10417i 0.987156 + 0.159757i \(0.0510710\pi\)
0.328748 + 0.944418i \(0.393373\pi\)
\(770\) 0 0
\(771\) −25.5762 + 38.6209i −0.921104 + 1.39090i
\(772\) 0 0
\(773\) 4.04314 + 2.33431i 0.145422 + 0.0839592i 0.570945 0.820988i \(-0.306577\pi\)
−0.425524 + 0.904947i \(0.639910\pi\)
\(774\) 0 0
\(775\) −42.0105 72.7644i −1.50906 2.61377i
\(776\) 0 0
\(777\) −0.132366 0.0318126i −0.00474861 0.00114127i
\(778\) 0 0
\(779\) 24.8403 + 4.38001i 0.889996 + 0.156930i
\(780\) 0 0
\(781\) −0.572053 0.681746i −0.0204697 0.0243948i
\(782\) 0 0
\(783\) −15.7263 + 26.6532i −0.562013 + 0.952508i
\(784\) 0 0
\(785\) 67.2447 56.4250i 2.40007 2.01390i
\(786\) 0 0
\(787\) 16.1106 + 2.84073i 0.574279 + 0.101261i 0.453243 0.891387i \(-0.350267\pi\)
0.121037 + 0.992648i \(0.461378\pi\)
\(788\) 0 0
\(789\) 7.29111 2.15778i 0.259570 0.0768191i
\(790\) 0 0
\(791\) −0.0228715 0.0396145i −0.000813215 0.00140853i
\(792\) 0 0
\(793\) −0.217209 + 0.376216i −0.00771330 + 0.0133598i
\(794\) 0 0
\(795\) 6.86746 + 13.7824i 0.243564 + 0.488813i
\(796\) 0 0
\(797\) −6.71611 + 8.00395i −0.237897 + 0.283514i −0.871762 0.489929i \(-0.837023\pi\)
0.633866 + 0.773443i \(0.281467\pi\)
\(798\) 0 0
\(799\) 14.1255 + 5.14126i 0.499725 + 0.181885i
\(800\) 0 0
\(801\) 5.94509 + 6.38159i 0.210059 + 0.225482i
\(802\) 0 0
\(803\) 14.3764 2.53495i 0.507333 0.0894566i
\(804\) 0 0
\(805\) 0.0950175 + 0.261058i 0.00334893 + 0.00920110i
\(806\) 0 0
\(807\) −1.27532 + 0.144988i −0.0448934 + 0.00510383i
\(808\) 0 0
\(809\) 5.87774 0.206650 0.103325 0.994648i \(-0.467052\pi\)
0.103325 + 0.994648i \(0.467052\pi\)
\(810\) 0 0
\(811\) 40.3341i 1.41632i 0.706052 + 0.708160i \(0.250475\pi\)
−0.706052 + 0.708160i \(0.749525\pi\)
\(812\) 0 0
\(813\) −2.76750 24.3430i −0.0970603 0.853745i
\(814\) 0 0
\(815\) −32.0208 + 11.6546i −1.12164 + 0.408243i
\(816\) 0 0
\(817\) −3.14346 17.8274i −0.109976 0.623703i
\(818\) 0 0
\(819\) 0.117429 + 0.0359645i 0.00410330 + 0.00125670i
\(820\) 0 0
\(821\) −8.31903 + 22.8563i −0.290336 + 0.797692i 0.705681 + 0.708530i \(0.250641\pi\)
−0.996017 + 0.0891622i \(0.971581\pi\)
\(822\) 0 0
\(823\) 22.0384 + 18.4924i 0.768211 + 0.644605i 0.940250 0.340485i \(-0.110591\pi\)
−0.172039 + 0.985090i \(0.555036\pi\)
\(824\) 0 0
\(825\) −16.4162 + 8.17981i −0.571539 + 0.284784i
\(826\) 0 0
\(827\) −12.6598 7.30915i −0.440225 0.254164i 0.263468 0.964668i \(-0.415134\pi\)
−0.703693 + 0.710504i \(0.748467\pi\)
\(828\) 0 0
\(829\) 38.2098 22.0604i 1.32708 0.766191i 0.342234 0.939615i \(-0.388816\pi\)
0.984847 + 0.173424i \(0.0554830\pi\)
\(830\) 0 0
\(831\) −4.20594 14.2118i −0.145903 0.493002i
\(832\) 0 0
\(833\) −2.30702 + 13.0838i −0.0799336 + 0.453326i
\(834\) 0 0
\(835\) 21.3840 + 25.4845i 0.740025 + 0.881927i
\(836\) 0 0
\(837\) −40.8810 + 6.81028i −1.41305 + 0.235398i
\(838\) 0 0
\(839\) 28.2388 23.6951i 0.974911 0.818047i −0.00840301 0.999965i \(-0.502675\pi\)
0.983314 + 0.181917i \(0.0582303\pi\)
\(840\) 0 0
\(841\) −1.12364 + 6.37246i −0.0387461 + 0.219740i
\(842\) 0 0
\(843\) −7.60159 + 31.6288i −0.261813 + 1.08935i
\(844\) 0 0
\(845\) 10.3610 5.98194i 0.356430 0.205785i
\(846\) 0 0
\(847\) 0.0510619 0.0884417i 0.00175451 0.00303889i
\(848\) 0 0
\(849\) −37.1218 24.5834i −1.27402 0.843701i
\(850\) 0 0
\(851\) −34.0738 + 40.6075i −1.16803 + 1.39201i
\(852\) 0 0
\(853\) 12.7574 35.0506i 0.436804 1.20011i −0.504756 0.863262i \(-0.668417\pi\)
0.941560 0.336846i \(-0.109360\pi\)
\(854\) 0 0
\(855\) −45.7593 23.3438i −1.56494 0.798340i
\(856\) 0 0
\(857\) −2.38265 13.5127i −0.0813899 0.461585i −0.998077 0.0619803i \(-0.980258\pi\)
0.916687 0.399605i \(-0.130853\pi\)
\(858\) 0 0
\(859\) −10.4655 28.7538i −0.357079 0.981067i −0.980038 0.198812i \(-0.936292\pi\)
0.622958 0.782255i \(-0.285931\pi\)
\(860\) 0 0
\(861\) −0.0942669 0.0410158i −0.00321261 0.00139782i
\(862\) 0 0
\(863\) 7.80840 0.265801 0.132900 0.991129i \(-0.457571\pi\)
0.132900 + 0.991129i \(0.457571\pi\)
\(864\) 0 0
\(865\) 53.5863 1.82199
\(866\) 0 0
\(867\) 18.6573 13.7986i 0.633634 0.468625i
\(868\) 0 0
\(869\) −1.10550 3.03735i −0.0375016 0.103035i
\(870\) 0 0
\(871\) 2.67573 + 15.1748i 0.0906636 + 0.514179i
\(872\) 0 0
\(873\) 38.0913 + 4.69596i 1.28920 + 0.158934i
\(874\) 0 0
\(875\) −0.0762675 + 0.209543i −0.00257831 + 0.00708385i
\(876\) 0 0
\(877\) −22.5373 + 26.8589i −0.761029 + 0.906959i −0.997913 0.0645787i \(-0.979430\pi\)
0.236883 + 0.971538i \(0.423874\pi\)
\(878\) 0 0
\(879\) 1.54869 25.2195i 0.0522359 0.850633i
\(880\) 0 0
\(881\) −17.3596 + 30.0677i −0.584859 + 1.01301i 0.410034 + 0.912070i \(0.365517\pi\)
−0.994893 + 0.100936i \(0.967816\pi\)
\(882\) 0 0
\(883\) 48.4749 27.9870i 1.63131 0.941837i 0.647620 0.761963i \(-0.275764\pi\)
0.983690 0.179874i \(-0.0575690\pi\)
\(884\) 0 0
\(885\) −32.5121 30.8679i −1.09288 1.03761i
\(886\) 0 0
\(887\) −5.13500 + 29.1221i −0.172417 + 0.977823i 0.768667 + 0.639649i \(0.220920\pi\)
−0.941084 + 0.338174i \(0.890191\pi\)
\(888\) 0 0
\(889\) 0.0114860 0.00963792i 0.000385229 0.000323245i
\(890\) 0 0
\(891\) 0.936863 + 8.99840i 0.0313861 + 0.301458i
\(892\) 0 0
\(893\) −22.1175 26.3586i −0.740134 0.882057i
\(894\) 0 0
\(895\) −0.203252 + 1.15270i −0.00679396 + 0.0385305i
\(896\) 0 0
\(897\) 32.9269 34.6807i 1.09940 1.15795i
\(898\) 0 0
\(899\) −41.1386 + 23.7514i −1.37205 + 0.792154i
\(900\) 0 0
\(901\) −3.70763 2.14060i −0.123519 0.0713138i
\(902\) 0 0
\(903\) −0.00452220 + 0.0736415i −0.000150489 + 0.00245063i
\(904\) 0 0
\(905\) −5.70454 4.78668i −0.189625 0.159115i
\(906\) 0 0
\(907\) −11.8324 + 32.5093i −0.392889 + 1.07945i 0.572787 + 0.819704i \(0.305862\pi\)
−0.965676 + 0.259749i \(0.916360\pi\)
\(908\) 0 0
\(909\) 23.1451 9.81113i 0.767673 0.325414i
\(910\) 0 0
\(911\) 2.10465 + 11.9361i 0.0697303 + 0.395460i 0.999619 + 0.0276180i \(0.00879219\pi\)
−0.929888 + 0.367842i \(0.880097\pi\)
\(912\) 0 0
\(913\) −14.3560 + 5.22516i −0.475115 + 0.172928i
\(914\) 0 0
\(915\) −0.595428 + 0.440368i −0.0196843 + 0.0145581i
\(916\) 0 0
\(917\) 0.116652i 0.00385218i
\(918\) 0 0
\(919\) −11.2018 −0.369514 −0.184757 0.982784i \(-0.559150\pi\)
−0.184757 + 0.982784i \(0.559150\pi\)
\(920\) 0 0
\(921\) 6.44404 14.8104i 0.212338 0.488018i
\(922\) 0 0
\(923\) 1.21254 + 3.33144i 0.0399114 + 0.109656i
\(924\) 0 0
\(925\) −79.7598 + 14.0638i −2.62249 + 0.462415i
\(926\) 0 0
\(927\) 17.4949 11.3491i 0.574607 0.372754i
\(928\) 0 0
\(929\) 33.5582 + 12.2142i 1.10101 + 0.400734i 0.827687 0.561189i \(-0.189656\pi\)
0.273320 + 0.961923i \(0.411878\pi\)
\(930\) 0 0
\(931\) 19.5479 23.2962i 0.640656 0.763504i
\(932\) 0 0
\(933\) 7.68087 11.5984i 0.251460 0.379713i
\(934\) 0 0
\(935\) 3.75984 6.51224i 0.122960 0.212973i
\(936\) 0 0
\(937\) −13.9023 24.0795i −0.454169 0.786643i 0.544471 0.838779i \(-0.316730\pi\)
−0.998640 + 0.0521363i \(0.983397\pi\)
\(938\) 0 0
\(939\) 13.3825 55.6819i 0.436720 1.81711i
\(940\) 0 0
\(941\) 17.4040 + 3.06880i 0.567355 + 0.100040i 0.449965 0.893046i \(-0.351436\pi\)
0.117390 + 0.993086i \(0.462547\pi\)
\(942\) 0 0
\(943\) −30.6650 + 25.7310i −0.998591 + 0.837917i
\(944\) 0 0
\(945\) 0.159104 + 0.136090i 0.00517567 + 0.00442701i
\(946\) 0 0
\(947\) −31.1472 37.1197i −1.01215 1.20623i −0.978383 0.206800i \(-0.933695\pi\)
−0.0337637 0.999430i \(-0.510749\pi\)
\(948\) 0 0
\(949\) −57.2701 10.0983i −1.85907 0.327804i
\(950\) 0 0
\(951\) 12.8131 + 43.2951i 0.415493 + 1.40394i
\(952\) 0 0
\(953\) 6.84000 + 11.8472i 0.221569 + 0.383770i 0.955285 0.295688i \(-0.0955487\pi\)
−0.733715 + 0.679457i \(0.762215\pi\)
\(954\) 0 0
\(955\) −47.6310 27.4998i −1.54130 0.889871i
\(956\) 0 0
\(957\) 4.62460 + 9.28120i 0.149492 + 0.300018i
\(958\) 0 0
\(959\) −0.0334435 0.0280625i −0.00107995 0.000906184i
\(960\) 0 0
\(961\) −30.6492 11.1554i −0.988684 0.359852i
\(962\) 0 0
\(963\) 9.61347 + 41.7337i 0.309790 + 1.34485i
\(964\) 0 0
\(965\) 37.0002 6.52413i 1.19108 0.210019i
\(966\) 0 0
\(967\) −28.0120 + 10.1955i −0.900806 + 0.327867i −0.750576 0.660785i \(-0.770224\pi\)
−0.150230 + 0.988651i \(0.548001\pi\)
\(968\) 0 0
\(969\) 14.1907 1.61330i 0.455870 0.0518268i
\(970\) 0 0
\(971\) 31.5563i 1.01269i 0.862331 + 0.506345i \(0.169004\pi\)
−0.862331 + 0.506345i \(0.830996\pi\)
\(972\) 0 0
\(973\) 0.0108888i 0.000349078i
\(974\) 0 0
\(975\) 72.5968 8.25336i 2.32496 0.264319i
\(976\) 0 0
\(977\) 26.2819 9.56585i 0.840834 0.306039i 0.114536 0.993419i \(-0.463462\pi\)
0.726297 + 0.687381i \(0.241240\pi\)
\(978\) 0 0
\(979\) 2.87804 0.507477i 0.0919827 0.0162190i
\(980\) 0 0
\(981\) 3.28917 + 14.2788i 0.105015 + 0.455888i
\(982\) 0 0
\(983\) −23.5384 8.56727i −0.750758 0.273253i −0.0618331 0.998087i \(-0.519695\pi\)
−0.688925 + 0.724833i \(0.741917\pi\)
\(984\) 0 0
\(985\) −26.5326 22.2635i −0.845398 0.709373i
\(986\) 0 0
\(987\) 0.0625439 + 0.125521i 0.00199079 + 0.00399536i
\(988\) 0 0
\(989\) 24.8801 + 14.3645i 0.791141 + 0.456766i
\(990\) 0 0
\(991\) −11.3147 19.5976i −0.359422 0.622537i 0.628442 0.777856i \(-0.283693\pi\)
−0.987864 + 0.155319i \(0.950359\pi\)
\(992\) 0 0
\(993\) −1.36383 4.60836i −0.0432799 0.146242i
\(994\) 0 0
\(995\) −36.5628 6.44700i −1.15912 0.204384i
\(996\) 0 0
\(997\) −6.16806 7.35081i −0.195344 0.232802i 0.659477 0.751725i \(-0.270778\pi\)
−0.854821 + 0.518922i \(0.826333\pi\)
\(998\) 0 0
\(999\) −7.30904 + 39.2751i −0.231248 + 1.24261i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.49.16 204
4.3 odd 2 216.2.t.a.157.13 yes 204
8.3 odd 2 216.2.t.a.157.4 204
8.5 even 2 inner 864.2.bf.a.49.19 204
12.11 even 2 648.2.t.a.37.22 204
24.11 even 2 648.2.t.a.37.31 204
27.16 even 9 inner 864.2.bf.a.529.19 204
108.11 even 18 648.2.t.a.613.31 204
108.43 odd 18 216.2.t.a.205.4 yes 204
216.11 even 18 648.2.t.a.613.22 204
216.43 odd 18 216.2.t.a.205.13 yes 204
216.205 even 18 inner 864.2.bf.a.529.16 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.4 204 8.3 odd 2
216.2.t.a.157.13 yes 204 4.3 odd 2
216.2.t.a.205.4 yes 204 108.43 odd 18
216.2.t.a.205.13 yes 204 216.43 odd 18
648.2.t.a.37.22 204 12.11 even 2
648.2.t.a.37.31 204 24.11 even 2
648.2.t.a.613.22 204 216.11 even 18
648.2.t.a.613.31 204 108.11 even 18
864.2.bf.a.49.16 204 1.1 even 1 trivial
864.2.bf.a.49.19 204 8.5 even 2 inner
864.2.bf.a.529.16 204 216.205 even 18 inner
864.2.bf.a.529.19 204 27.16 even 9 inner