Properties

Label 864.2.bf.a.49.11
Level $864$
Weight $2$
Character 864.49
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.11
Character \(\chi\) \(=\) 864.49
Dual form 864.2.bf.a.529.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07385 - 1.35898i) q^{3} +(-0.0465753 - 0.127965i) q^{5} +(0.252128 + 1.42989i) q^{7} +(-0.693675 + 2.91870i) q^{9} +(0.771344 - 2.11925i) q^{11} +(0.634290 - 0.755917i) q^{13} +(-0.123887 + 0.200710i) q^{15} +(-0.439205 + 0.760726i) q^{17} +(5.20298 - 3.00394i) q^{19} +(1.67245 - 1.87813i) q^{21} +(0.748645 - 4.24578i) q^{23} +(3.81602 - 3.20202i) q^{25} +(4.71137 - 2.19157i) q^{27} +(-0.146501 - 0.174594i) q^{29} +(-1.15687 + 6.56095i) q^{31} +(-3.70834 + 1.22752i) q^{33} +(0.171232 - 0.0988610i) q^{35} +(-9.25201 - 5.34165i) q^{37} +(-1.70841 - 0.0502450i) q^{39} +(-1.19321 - 1.00123i) q^{41} +(1.11062 - 3.05141i) q^{43} +(0.405799 - 0.0471736i) q^{45} +(-1.36645 - 7.74952i) q^{47} +(4.59683 - 1.67311i) q^{49} +(1.50546 - 0.220036i) q^{51} -5.08895i q^{53} -0.307115 q^{55} +(-9.66954 - 3.84497i) q^{57} +(-3.15956 - 8.68082i) q^{59} +(12.3724 - 2.18158i) q^{61} +(-4.34831 - 0.255992i) q^{63} +(-0.126273 - 0.0459596i) q^{65} +(-5.90023 + 7.03162i) q^{67} +(-6.57388 + 3.54195i) q^{69} +(5.93006 - 10.2712i) q^{71} +(4.88366 + 8.45874i) q^{73} +(-8.44934 - 1.74741i) q^{75} +(3.22477 + 0.568614i) q^{77} +(-5.49238 + 4.60866i) q^{79} +(-8.03763 - 4.04926i) q^{81} +(-0.867764 - 1.03416i) q^{83} +(0.117802 + 0.0207717i) q^{85} +(-0.0799487 + 0.386581i) q^{87} +(-3.19969 - 5.54203i) q^{89} +(1.24080 + 0.716376i) q^{91} +(10.1585 - 5.47333i) q^{93} +(-0.626728 - 0.525888i) q^{95} +(0.779817 + 0.283830i) q^{97} +(5.65040 + 3.72140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.07385 1.35898i −0.619990 0.784610i
\(4\) 0 0
\(5\) −0.0465753 0.127965i −0.0208291 0.0572275i 0.928842 0.370475i \(-0.120805\pi\)
−0.949671 + 0.313248i \(0.898583\pi\)
\(6\) 0 0
\(7\) 0.252128 + 1.42989i 0.0952954 + 0.540447i 0.994656 + 0.103240i \(0.0329211\pi\)
−0.899361 + 0.437207i \(0.855968\pi\)
\(8\) 0 0
\(9\) −0.693675 + 2.91870i −0.231225 + 0.972900i
\(10\) 0 0
\(11\) 0.771344 2.11925i 0.232569 0.638978i −0.767429 0.641134i \(-0.778464\pi\)
0.999998 + 0.00215610i \(0.000686309\pi\)
\(12\) 0 0
\(13\) 0.634290 0.755917i 0.175920 0.209654i −0.670878 0.741568i \(-0.734083\pi\)
0.846798 + 0.531914i \(0.178527\pi\)
\(14\) 0 0
\(15\) −0.123887 + 0.200710i −0.0319874 + 0.0518232i
\(16\) 0 0
\(17\) −0.439205 + 0.760726i −0.106523 + 0.184503i −0.914359 0.404904i \(-0.867305\pi\)
0.807836 + 0.589407i \(0.200638\pi\)
\(18\) 0 0
\(19\) 5.20298 3.00394i 1.19364 0.689151i 0.234513 0.972113i \(-0.424650\pi\)
0.959131 + 0.282962i \(0.0913170\pi\)
\(20\) 0 0
\(21\) 1.67245 1.87813i 0.364958 0.409842i
\(22\) 0 0
\(23\) 0.748645 4.24578i 0.156103 0.885306i −0.801667 0.597771i \(-0.796053\pi\)
0.957770 0.287535i \(-0.0928357\pi\)
\(24\) 0 0
\(25\) 3.81602 3.20202i 0.763203 0.640404i
\(26\) 0 0
\(27\) 4.71137 2.19157i 0.906704 0.421767i
\(28\) 0 0
\(29\) −0.146501 0.174594i −0.0272046 0.0324212i 0.752271 0.658854i \(-0.228959\pi\)
−0.779475 + 0.626433i \(0.784514\pi\)
\(30\) 0 0
\(31\) −1.15687 + 6.56095i −0.207781 + 1.17838i 0.685223 + 0.728333i \(0.259705\pi\)
−0.893004 + 0.450049i \(0.851407\pi\)
\(32\) 0 0
\(33\) −3.70834 + 1.22752i −0.645539 + 0.213684i
\(34\) 0 0
\(35\) 0.171232 0.0988610i 0.0289435 0.0167106i
\(36\) 0 0
\(37\) −9.25201 5.34165i −1.52102 0.878162i −0.999692 0.0248069i \(-0.992103\pi\)
−0.521330 0.853355i \(-0.674564\pi\)
\(38\) 0 0
\(39\) −1.70841 0.0502450i −0.273565 0.00804563i
\(40\) 0 0
\(41\) −1.19321 1.00123i −0.186349 0.156365i 0.544841 0.838540i \(-0.316590\pi\)
−0.731190 + 0.682174i \(0.761035\pi\)
\(42\) 0 0
\(43\) 1.11062 3.05141i 0.169368 0.465335i −0.825749 0.564038i \(-0.809247\pi\)
0.995117 + 0.0987027i \(0.0314693\pi\)
\(44\) 0 0
\(45\) 0.405799 0.0471736i 0.0604929 0.00703222i
\(46\) 0 0
\(47\) −1.36645 7.74952i −0.199317 1.13038i −0.906135 0.422988i \(-0.860981\pi\)
0.706818 0.707395i \(-0.250130\pi\)
\(48\) 0 0
\(49\) 4.59683 1.67311i 0.656691 0.239016i
\(50\) 0 0
\(51\) 1.50546 0.220036i 0.210806 0.0308111i
\(52\) 0 0
\(53\) 5.08895i 0.699021i −0.936932 0.349510i \(-0.886348\pi\)
0.936932 0.349510i \(-0.113652\pi\)
\(54\) 0 0
\(55\) −0.307115 −0.0414114
\(56\) 0 0
\(57\) −9.66954 3.84497i −1.28076 0.509279i
\(58\) 0 0
\(59\) −3.15956 8.68082i −0.411340 1.13015i −0.956479 0.291801i \(-0.905745\pi\)
0.545139 0.838346i \(-0.316477\pi\)
\(60\) 0 0
\(61\) 12.3724 2.18158i 1.58412 0.279323i 0.688869 0.724886i \(-0.258108\pi\)
0.895250 + 0.445563i \(0.146997\pi\)
\(62\) 0 0
\(63\) −4.34831 0.255992i −0.547836 0.0322519i
\(64\) 0 0
\(65\) −0.126273 0.0459596i −0.0156622 0.00570059i
\(66\) 0 0
\(67\) −5.90023 + 7.03162i −0.720828 + 0.859049i −0.994711 0.102714i \(-0.967247\pi\)
0.273883 + 0.961763i \(0.411692\pi\)
\(68\) 0 0
\(69\) −6.57388 + 3.54195i −0.791402 + 0.426401i
\(70\) 0 0
\(71\) 5.93006 10.2712i 0.703769 1.21896i −0.263366 0.964696i \(-0.584833\pi\)
0.967134 0.254267i \(-0.0818341\pi\)
\(72\) 0 0
\(73\) 4.88366 + 8.45874i 0.571589 + 0.990021i 0.996403 + 0.0847405i \(0.0270061\pi\)
−0.424814 + 0.905281i \(0.639661\pi\)
\(74\) 0 0
\(75\) −8.44934 1.74741i −0.975645 0.201773i
\(76\) 0 0
\(77\) 3.22477 + 0.568614i 0.367497 + 0.0647996i
\(78\) 0 0
\(79\) −5.49238 + 4.60866i −0.617941 + 0.518514i −0.897156 0.441714i \(-0.854370\pi\)
0.279214 + 0.960229i \(0.409926\pi\)
\(80\) 0 0
\(81\) −8.03763 4.04926i −0.893070 0.449918i
\(82\) 0 0
\(83\) −0.867764 1.03416i −0.0952494 0.113514i 0.716314 0.697778i \(-0.245828\pi\)
−0.811564 + 0.584264i \(0.801383\pi\)
\(84\) 0 0
\(85\) 0.117802 + 0.0207717i 0.0127774 + 0.00225301i
\(86\) 0 0
\(87\) −0.0799487 + 0.386581i −0.00857141 + 0.0414458i
\(88\) 0 0
\(89\) −3.19969 5.54203i −0.339167 0.587454i 0.645110 0.764090i \(-0.276812\pi\)
−0.984276 + 0.176636i \(0.943478\pi\)
\(90\) 0 0
\(91\) 1.24080 + 0.716376i 0.130071 + 0.0750966i
\(92\) 0 0
\(93\) 10.1585 5.47333i 1.05339 0.567558i
\(94\) 0 0
\(95\) −0.626728 0.525888i −0.0643010 0.0539549i
\(96\) 0 0
\(97\) 0.779817 + 0.283830i 0.0791784 + 0.0288186i 0.381306 0.924449i \(-0.375475\pi\)
−0.302127 + 0.953268i \(0.597697\pi\)
\(98\) 0 0
\(99\) 5.65040 + 3.72140i 0.567886 + 0.374014i
\(100\) 0 0
\(101\) 7.06509 1.24577i 0.703003 0.123958i 0.189291 0.981921i \(-0.439381\pi\)
0.513712 + 0.857963i \(0.328270\pi\)
\(102\) 0 0
\(103\) 7.48465 2.72419i 0.737484 0.268422i 0.0541548 0.998533i \(-0.482754\pi\)
0.683329 + 0.730110i \(0.260531\pi\)
\(104\) 0 0
\(105\) −0.318229 0.126540i −0.0310560 0.0123490i
\(106\) 0 0
\(107\) 19.5243i 1.88748i 0.330687 + 0.943740i \(0.392720\pi\)
−0.330687 + 0.943740i \(0.607280\pi\)
\(108\) 0 0
\(109\) 5.56480i 0.533011i −0.963833 0.266506i \(-0.914131\pi\)
0.963833 0.266506i \(-0.0858691\pi\)
\(110\) 0 0
\(111\) 2.67609 + 18.3095i 0.254003 + 1.73786i
\(112\) 0 0
\(113\) 11.5278 4.19578i 1.08445 0.394706i 0.262885 0.964827i \(-0.415326\pi\)
0.821561 + 0.570121i \(0.193104\pi\)
\(114\) 0 0
\(115\) −0.578178 + 0.101948i −0.0539154 + 0.00950674i
\(116\) 0 0
\(117\) 1.76631 + 2.37566i 0.163295 + 0.219630i
\(118\) 0 0
\(119\) −1.19849 0.436214i −0.109865 0.0399877i
\(120\) 0 0
\(121\) 4.53023 + 3.80132i 0.411840 + 0.345574i
\(122\) 0 0
\(123\) −0.0793116 + 2.69673i −0.00715129 + 0.243156i
\(124\) 0 0
\(125\) −1.17714 0.679623i −0.105287 0.0607873i
\(126\) 0 0
\(127\) 4.15115 + 7.19001i 0.368355 + 0.638010i 0.989309 0.145838i \(-0.0465877\pi\)
−0.620953 + 0.783848i \(0.713254\pi\)
\(128\) 0 0
\(129\) −5.33946 + 1.76745i −0.470113 + 0.155615i
\(130\) 0 0
\(131\) −16.3299 2.87941i −1.42675 0.251575i −0.593664 0.804713i \(-0.702319\pi\)
−0.833090 + 0.553138i \(0.813430\pi\)
\(132\) 0 0
\(133\) 5.60712 + 6.68230i 0.486199 + 0.579429i
\(134\) 0 0
\(135\) −0.499877 0.500816i −0.0430225 0.0431034i
\(136\) 0 0
\(137\) 6.20446 5.20616i 0.530083 0.444792i −0.338047 0.941129i \(-0.609766\pi\)
0.868130 + 0.496337i \(0.165322\pi\)
\(138\) 0 0
\(139\) −3.76315 0.663545i −0.319186 0.0562811i 0.0117598 0.999931i \(-0.496257\pi\)
−0.330946 + 0.943650i \(0.607368\pi\)
\(140\) 0 0
\(141\) −9.06410 + 10.1788i −0.763335 + 0.857212i
\(142\) 0 0
\(143\) −1.11272 1.92729i −0.0930505 0.161168i
\(144\) 0 0
\(145\) −0.0155185 + 0.0268788i −0.00128874 + 0.00223216i
\(146\) 0 0
\(147\) −7.21006 4.45035i −0.594676 0.367058i
\(148\) 0 0
\(149\) −14.3501 + 17.1018i −1.17561 + 1.40104i −0.277807 + 0.960637i \(0.589608\pi\)
−0.897802 + 0.440400i \(0.854837\pi\)
\(150\) 0 0
\(151\) 17.9058 + 6.51719i 1.45716 + 0.530362i 0.944581 0.328280i \(-0.106469\pi\)
0.512576 + 0.858642i \(0.328691\pi\)
\(152\) 0 0
\(153\) −1.91566 1.80960i −0.154872 0.146298i
\(154\) 0 0
\(155\) 0.893452 0.157540i 0.0717638 0.0126539i
\(156\) 0 0
\(157\) 2.93811 + 8.07239i 0.234487 + 0.644247i 1.00000 0.000826492i \(0.000263081\pi\)
−0.765513 + 0.643421i \(0.777515\pi\)
\(158\) 0 0
\(159\) −6.91580 + 5.46479i −0.548459 + 0.433386i
\(160\) 0 0
\(161\) 6.25975 0.493337
\(162\) 0 0
\(163\) 10.0518i 0.787315i −0.919257 0.393657i \(-0.871210\pi\)
0.919257 0.393657i \(-0.128790\pi\)
\(164\) 0 0
\(165\) 0.329797 + 0.417364i 0.0256746 + 0.0324918i
\(166\) 0 0
\(167\) −14.9465 + 5.44008i −1.15660 + 0.420966i −0.847880 0.530188i \(-0.822121\pi\)
−0.308715 + 0.951154i \(0.599899\pi\)
\(168\) 0 0
\(169\) 2.08834 + 11.8436i 0.160641 + 0.911043i
\(170\) 0 0
\(171\) 5.15843 + 17.2697i 0.394475 + 1.32065i
\(172\) 0 0
\(173\) 6.92421 19.0241i 0.526438 1.44638i −0.336798 0.941577i \(-0.609344\pi\)
0.863236 0.504800i \(-0.168434\pi\)
\(174\) 0 0
\(175\) 5.54065 + 4.64916i 0.418834 + 0.351444i
\(176\) 0 0
\(177\) −8.40419 + 13.6157i −0.631698 + 1.02342i
\(178\) 0 0
\(179\) 19.1336 + 11.0468i 1.43011 + 0.825676i 0.997129 0.0757257i \(-0.0241273\pi\)
0.432984 + 0.901402i \(0.357461\pi\)
\(180\) 0 0
\(181\) −15.2536 + 8.80669i −1.13379 + 0.654596i −0.944886 0.327399i \(-0.893828\pi\)
−0.188907 + 0.981995i \(0.560494\pi\)
\(182\) 0 0
\(183\) −16.2508 14.4711i −1.20130 1.06974i
\(184\) 0 0
\(185\) −0.252627 + 1.43272i −0.0185735 + 0.105336i
\(186\) 0 0
\(187\) 1.27339 + 1.51757i 0.0931195 + 0.110976i
\(188\) 0 0
\(189\) 4.32157 + 6.18419i 0.314348 + 0.449833i
\(190\) 0 0
\(191\) 7.20145 6.04274i 0.521079 0.437237i −0.343929 0.938996i \(-0.611758\pi\)
0.865008 + 0.501759i \(0.167313\pi\)
\(192\) 0 0
\(193\) −1.28620 + 7.29438i −0.0925824 + 0.525061i 0.902879 + 0.429895i \(0.141449\pi\)
−0.995461 + 0.0951660i \(0.969662\pi\)
\(194\) 0 0
\(195\) 0.0731404 + 0.220957i 0.00523769 + 0.0158230i
\(196\) 0 0
\(197\) −15.7746 + 9.10747i −1.12389 + 0.648881i −0.942392 0.334510i \(-0.891429\pi\)
−0.181502 + 0.983391i \(0.558096\pi\)
\(198\) 0 0
\(199\) 8.05228 13.9470i 0.570811 0.988674i −0.425672 0.904878i \(-0.639962\pi\)
0.996483 0.0837964i \(-0.0267045\pi\)
\(200\) 0 0
\(201\) 15.8918 + 0.467384i 1.12092 + 0.0329667i
\(202\) 0 0
\(203\) 0.212712 0.253501i 0.0149295 0.0177923i
\(204\) 0 0
\(205\) −0.0725472 + 0.199322i −0.00506692 + 0.0139212i
\(206\) 0 0
\(207\) 11.8728 + 5.13026i 0.825220 + 0.356578i
\(208\) 0 0
\(209\) −2.35282 13.3435i −0.162748 0.922988i
\(210\) 0 0
\(211\) 6.47874 + 17.8002i 0.446015 + 1.22542i 0.935476 + 0.353390i \(0.114971\pi\)
−0.489461 + 0.872025i \(0.662807\pi\)
\(212\) 0 0
\(213\) −20.3264 + 2.97088i −1.39274 + 0.203561i
\(214\) 0 0
\(215\) −0.442200 −0.0301578
\(216\) 0 0
\(217\) −9.67311 −0.656654
\(218\) 0 0
\(219\) 6.25096 15.7203i 0.422401 1.06228i
\(220\) 0 0
\(221\) 0.296462 + 0.814523i 0.0199422 + 0.0547908i
\(222\) 0 0
\(223\) −2.02862 11.5049i −0.135847 0.770424i −0.974267 0.225399i \(-0.927631\pi\)
0.838420 0.545025i \(-0.183480\pi\)
\(224\) 0 0
\(225\) 6.69866 + 13.3590i 0.446577 + 0.890598i
\(226\) 0 0
\(227\) 0.619851 1.70303i 0.0411409 0.113034i −0.917421 0.397918i \(-0.869733\pi\)
0.958562 + 0.284884i \(0.0919551\pi\)
\(228\) 0 0
\(229\) −7.88646 + 9.39872i −0.521152 + 0.621085i −0.960853 0.277060i \(-0.910640\pi\)
0.439701 + 0.898144i \(0.355085\pi\)
\(230\) 0 0
\(231\) −2.69020 4.99302i −0.177002 0.328517i
\(232\) 0 0
\(233\) −0.421533 + 0.730116i −0.0276155 + 0.0478315i −0.879503 0.475894i \(-0.842125\pi\)
0.851887 + 0.523725i \(0.175458\pi\)
\(234\) 0 0
\(235\) −0.928021 + 0.535793i −0.0605374 + 0.0349513i
\(236\) 0 0
\(237\) 12.1611 + 2.51504i 0.789949 + 0.163369i
\(238\) 0 0
\(239\) 1.87603 10.6395i 0.121350 0.688211i −0.862059 0.506808i \(-0.830825\pi\)
0.983409 0.181402i \(-0.0580637\pi\)
\(240\) 0 0
\(241\) 6.85566 5.75258i 0.441612 0.370557i −0.394700 0.918810i \(-0.629152\pi\)
0.836312 + 0.548253i \(0.184707\pi\)
\(242\) 0 0
\(243\) 3.12836 + 15.2713i 0.200685 + 0.979656i
\(244\) 0 0
\(245\) −0.428198 0.510307i −0.0273566 0.0326023i
\(246\) 0 0
\(247\) 1.02947 5.83839i 0.0655033 0.371488i
\(248\) 0 0
\(249\) −0.473556 + 2.28981i −0.0300104 + 0.145111i
\(250\) 0 0
\(251\) 6.48934 3.74662i 0.409603 0.236485i −0.281016 0.959703i \(-0.590671\pi\)
0.690619 + 0.723219i \(0.257338\pi\)
\(252\) 0 0
\(253\) −8.42041 4.86153i −0.529387 0.305641i
\(254\) 0 0
\(255\) −0.0982739 0.182397i −0.00615415 0.0114221i
\(256\) 0 0
\(257\) −12.7573 10.7046i −0.795777 0.667736i 0.151391 0.988474i \(-0.451625\pi\)
−0.947168 + 0.320738i \(0.896069\pi\)
\(258\) 0 0
\(259\) 5.30528 14.5761i 0.329654 0.905717i
\(260\) 0 0
\(261\) 0.611211 0.306483i 0.0378330 0.0189708i
\(262\) 0 0
\(263\) 3.21128 + 18.2121i 0.198016 + 1.12300i 0.908058 + 0.418844i \(0.137565\pi\)
−0.710042 + 0.704159i \(0.751324\pi\)
\(264\) 0 0
\(265\) −0.651206 + 0.237019i −0.0400032 + 0.0145600i
\(266\) 0 0
\(267\) −4.09553 + 10.2997i −0.250642 + 0.630329i
\(268\) 0 0
\(269\) 25.3167i 1.54359i 0.635873 + 0.771793i \(0.280640\pi\)
−0.635873 + 0.771793i \(0.719360\pi\)
\(270\) 0 0
\(271\) −16.6229 −1.00977 −0.504884 0.863187i \(-0.668465\pi\)
−0.504884 + 0.863187i \(0.668465\pi\)
\(272\) 0 0
\(273\) −0.358894 2.45551i −0.0217213 0.148614i
\(274\) 0 0
\(275\) −3.84242 10.5570i −0.231707 0.636608i
\(276\) 0 0
\(277\) 17.4590 3.07849i 1.04901 0.184969i 0.377534 0.925996i \(-0.376772\pi\)
0.671475 + 0.741027i \(0.265661\pi\)
\(278\) 0 0
\(279\) −18.3470 7.92773i −1.09840 0.474621i
\(280\) 0 0
\(281\) −15.3990 5.60477i −0.918626 0.334352i −0.160934 0.986965i \(-0.551451\pi\)
−0.757692 + 0.652613i \(0.773673\pi\)
\(282\) 0 0
\(283\) −11.8313 + 14.0999i −0.703295 + 0.838154i −0.992895 0.118993i \(-0.962033\pi\)
0.289600 + 0.957148i \(0.406478\pi\)
\(284\) 0 0
\(285\) −0.0416579 + 1.41644i −0.00246760 + 0.0839027i
\(286\) 0 0
\(287\) 1.13080 1.95860i 0.0667490 0.115613i
\(288\) 0 0
\(289\) 8.11420 + 14.0542i 0.477306 + 0.826718i
\(290\) 0 0
\(291\) −0.451689 1.36455i −0.0264785 0.0799914i
\(292\) 0 0
\(293\) −27.7186 4.88753i −1.61934 0.285533i −0.710818 0.703376i \(-0.751675\pi\)
−0.908519 + 0.417843i \(0.862786\pi\)
\(294\) 0 0
\(295\) −0.963681 + 0.808624i −0.0561077 + 0.0470799i
\(296\) 0 0
\(297\) −1.01039 11.6750i −0.0586286 0.677454i
\(298\) 0 0
\(299\) −2.73460 3.25897i −0.158146 0.188471i
\(300\) 0 0
\(301\) 4.64319 + 0.818720i 0.267629 + 0.0471903i
\(302\) 0 0
\(303\) −9.27986 8.26358i −0.533114 0.474730i
\(304\) 0 0
\(305\) −0.855412 1.48162i −0.0489808 0.0848372i
\(306\) 0 0
\(307\) −14.1955 8.19580i −0.810182 0.467759i 0.0368369 0.999321i \(-0.488272\pi\)
−0.847019 + 0.531562i \(0.821605\pi\)
\(308\) 0 0
\(309\) −11.7395 7.24613i −0.667839 0.412218i
\(310\) 0 0
\(311\) 23.5558 + 19.7657i 1.33573 + 1.12081i 0.982701 + 0.185197i \(0.0592924\pi\)
0.353028 + 0.935613i \(0.385152\pi\)
\(312\) 0 0
\(313\) −20.6090 7.50106i −1.16489 0.423985i −0.314048 0.949407i \(-0.601685\pi\)
−0.850842 + 0.525422i \(0.823907\pi\)
\(314\) 0 0
\(315\) 0.169766 + 0.568353i 0.00956524 + 0.0320231i
\(316\) 0 0
\(317\) 26.6872 4.70567i 1.49890 0.264297i 0.636799 0.771030i \(-0.280258\pi\)
0.862103 + 0.506733i \(0.169147\pi\)
\(318\) 0 0
\(319\) −0.483011 + 0.175802i −0.0270434 + 0.00984300i
\(320\) 0 0
\(321\) 26.5331 20.9662i 1.48094 1.17022i
\(322\) 0 0
\(323\) 5.27738i 0.293641i
\(324\) 0 0
\(325\) 4.91560i 0.272668i
\(326\) 0 0
\(327\) −7.56248 + 5.97579i −0.418206 + 0.330462i
\(328\) 0 0
\(329\) 10.7364 3.90774i 0.591918 0.215441i
\(330\) 0 0
\(331\) 14.1842 2.50105i 0.779633 0.137470i 0.230351 0.973108i \(-0.426013\pi\)
0.549282 + 0.835637i \(0.314901\pi\)
\(332\) 0 0
\(333\) 22.0086 23.2985i 1.20606 1.27675i
\(334\) 0 0
\(335\) 1.17460 + 0.427521i 0.0641755 + 0.0233580i
\(336\) 0 0
\(337\) −12.1559 10.2000i −0.662174 0.555630i 0.248564 0.968616i \(-0.420041\pi\)
−0.910737 + 0.412986i \(0.864486\pi\)
\(338\) 0 0
\(339\) −18.0812 11.1605i −0.982036 0.606153i
\(340\) 0 0
\(341\) 13.0120 + 7.51246i 0.704637 + 0.406822i
\(342\) 0 0
\(343\) 8.63317 + 14.9531i 0.466147 + 0.807391i
\(344\) 0 0
\(345\) 0.759425 + 0.676257i 0.0408861 + 0.0364085i
\(346\) 0 0
\(347\) −14.4283 2.54411i −0.774554 0.136575i −0.227619 0.973750i \(-0.573094\pi\)
−0.546934 + 0.837175i \(0.684205\pi\)
\(348\) 0 0
\(349\) 5.21744 + 6.21790i 0.279283 + 0.332837i 0.887391 0.461018i \(-0.152516\pi\)
−0.608108 + 0.793854i \(0.708071\pi\)
\(350\) 0 0
\(351\) 1.33173 4.95150i 0.0710827 0.264291i
\(352\) 0 0
\(353\) −9.20716 + 7.72572i −0.490047 + 0.411199i −0.854043 0.520202i \(-0.825857\pi\)
0.363996 + 0.931401i \(0.381412\pi\)
\(354\) 0 0
\(355\) −1.59054 0.280455i −0.0844171 0.0148850i
\(356\) 0 0
\(357\) 0.694194 + 2.09716i 0.0367406 + 0.110993i
\(358\) 0 0
\(359\) 6.32415 + 10.9538i 0.333776 + 0.578117i 0.983249 0.182268i \(-0.0583438\pi\)
−0.649473 + 0.760385i \(0.725010\pi\)
\(360\) 0 0
\(361\) 8.54731 14.8044i 0.449858 0.779178i
\(362\) 0 0
\(363\) 0.301120 10.2386i 0.0158047 0.537386i
\(364\) 0 0
\(365\) 0.854962 1.01890i 0.0447508 0.0533319i
\(366\) 0 0
\(367\) −15.1415 5.51105i −0.790380 0.287675i −0.0848857 0.996391i \(-0.527053\pi\)
−0.705494 + 0.708716i \(0.749275\pi\)
\(368\) 0 0
\(369\) 3.74998 2.78811i 0.195216 0.145143i
\(370\) 0 0
\(371\) 7.27663 1.28307i 0.377784 0.0666135i
\(372\) 0 0
\(373\) −5.87846 16.1509i −0.304375 0.836263i −0.993727 0.111836i \(-0.964327\pi\)
0.689352 0.724427i \(-0.257895\pi\)
\(374\) 0 0
\(375\) 0.340482 + 2.32953i 0.0175824 + 0.120297i
\(376\) 0 0
\(377\) −0.224903 −0.0115831
\(378\) 0 0
\(379\) 12.8581i 0.660478i −0.943897 0.330239i \(-0.892871\pi\)
0.943897 0.330239i \(-0.107129\pi\)
\(380\) 0 0
\(381\) 5.31337 13.3624i 0.272212 0.684575i
\(382\) 0 0
\(383\) −4.63308 + 1.68630i −0.236740 + 0.0861662i −0.457666 0.889124i \(-0.651314\pi\)
0.220926 + 0.975291i \(0.429092\pi\)
\(384\) 0 0
\(385\) −0.0774323 0.439140i −0.00394631 0.0223807i
\(386\) 0 0
\(387\) 8.13574 + 5.35826i 0.413563 + 0.272376i
\(388\) 0 0
\(389\) 5.45591 14.9900i 0.276625 0.760022i −0.721114 0.692817i \(-0.756369\pi\)
0.997739 0.0672055i \(-0.0214083\pi\)
\(390\) 0 0
\(391\) 2.90106 + 2.43428i 0.146713 + 0.123107i
\(392\) 0 0
\(393\) 13.6229 + 25.2842i 0.687185 + 1.27542i
\(394\) 0 0
\(395\) 0.845555 + 0.488181i 0.0425445 + 0.0245631i
\(396\) 0 0
\(397\) 18.8993 10.9115i 0.948529 0.547633i 0.0559050 0.998436i \(-0.482196\pi\)
0.892624 + 0.450803i \(0.148862\pi\)
\(398\) 0 0
\(399\) 3.05992 14.7958i 0.153187 0.740716i
\(400\) 0 0
\(401\) −6.01001 + 34.0844i −0.300125 + 1.70210i 0.345481 + 0.938426i \(0.387716\pi\)
−0.645607 + 0.763670i \(0.723395\pi\)
\(402\) 0 0
\(403\) 4.22574 + 5.03605i 0.210499 + 0.250863i
\(404\) 0 0
\(405\) −0.143807 + 1.21713i −0.00714581 + 0.0604796i
\(406\) 0 0
\(407\) −18.4568 + 15.4871i −0.914869 + 0.767667i
\(408\) 0 0
\(409\) −0.701192 + 3.97666i −0.0346717 + 0.196633i −0.997224 0.0744641i \(-0.976275\pi\)
0.962552 + 0.271097i \(0.0873865\pi\)
\(410\) 0 0
\(411\) −13.7378 2.84111i −0.677634 0.140141i
\(412\) 0 0
\(413\) 11.6160 6.70650i 0.571586 0.330005i
\(414\) 0 0
\(415\) −0.0919196 + 0.159209i −0.00451216 + 0.00781529i
\(416\) 0 0
\(417\) 3.13933 + 5.82661i 0.153733 + 0.285330i
\(418\) 0 0
\(419\) 7.00112 8.34360i 0.342027 0.407612i −0.567422 0.823427i \(-0.692059\pi\)
0.909449 + 0.415815i \(0.136504\pi\)
\(420\) 0 0
\(421\) −1.92901 + 5.29990i −0.0940141 + 0.258302i −0.977782 0.209624i \(-0.932776\pi\)
0.883768 + 0.467925i \(0.154998\pi\)
\(422\) 0 0
\(423\) 23.5664 + 1.38739i 1.14584 + 0.0674572i
\(424\) 0 0
\(425\) 0.759843 + 4.30928i 0.0368578 + 0.209031i
\(426\) 0 0
\(427\) 6.23884 + 17.1411i 0.301919 + 0.829514i
\(428\) 0 0
\(429\) −1.42426 + 3.58180i −0.0687638 + 0.172931i
\(430\) 0 0
\(431\) 12.2633 0.590701 0.295351 0.955389i \(-0.404564\pi\)
0.295351 + 0.955389i \(0.404564\pi\)
\(432\) 0 0
\(433\) −34.7890 −1.67185 −0.835927 0.548840i \(-0.815070\pi\)
−0.835927 + 0.548840i \(0.815070\pi\)
\(434\) 0 0
\(435\) 0.0531924 0.00777453i 0.00255038 0.000372760i
\(436\) 0 0
\(437\) −8.85888 24.3396i −0.423778 1.16432i
\(438\) 0 0
\(439\) −3.29026 18.6600i −0.157036 0.890594i −0.956901 0.290414i \(-0.906207\pi\)
0.799865 0.600180i \(-0.204904\pi\)
\(440\) 0 0
\(441\) 1.69460 + 14.5774i 0.0806953 + 0.694161i
\(442\) 0 0
\(443\) 8.57202 23.5514i 0.407269 1.11896i −0.551351 0.834274i \(-0.685887\pi\)
0.958620 0.284689i \(-0.0918904\pi\)
\(444\) 0 0
\(445\) −0.560157 + 0.667569i −0.0265540 + 0.0316458i
\(446\) 0 0
\(447\) 38.6511 + 1.13674i 1.82813 + 0.0537659i
\(448\) 0 0
\(449\) 2.07187 3.58859i 0.0977777 0.169356i −0.812987 0.582282i \(-0.802160\pi\)
0.910765 + 0.412926i \(0.135493\pi\)
\(450\) 0 0
\(451\) −3.04223 + 1.75643i −0.143253 + 0.0827072i
\(452\) 0 0
\(453\) −10.3715 31.3323i −0.487296 1.47212i
\(454\) 0 0
\(455\) 0.0338802 0.192144i 0.00158833 0.00900785i
\(456\) 0 0
\(457\) 11.4954 9.64582i 0.537734 0.451213i −0.333028 0.942917i \(-0.608070\pi\)
0.870762 + 0.491704i \(0.163626\pi\)
\(458\) 0 0
\(459\) −0.402079 + 4.54661i −0.0187674 + 0.212218i
\(460\) 0 0
\(461\) −2.36115 2.81391i −0.109970 0.131057i 0.708252 0.705960i \(-0.249484\pi\)
−0.818221 + 0.574903i \(0.805040\pi\)
\(462\) 0 0
\(463\) 1.02545 5.81561i 0.0476566 0.270274i −0.951663 0.307143i \(-0.900627\pi\)
0.999320 + 0.0368684i \(0.0117382\pi\)
\(464\) 0 0
\(465\) −1.17353 1.04501i −0.0544212 0.0484613i
\(466\) 0 0
\(467\) −4.79342 + 2.76748i −0.221813 + 0.128064i −0.606789 0.794863i \(-0.707543\pi\)
0.384976 + 0.922926i \(0.374210\pi\)
\(468\) 0 0
\(469\) −11.5421 6.66381i −0.532962 0.307706i
\(470\) 0 0
\(471\) 7.81515 12.6614i 0.360103 0.583407i
\(472\) 0 0
\(473\) −5.61003 4.70737i −0.257949 0.216445i
\(474\) 0 0
\(475\) 10.2360 28.1231i 0.469659 1.29038i
\(476\) 0 0
\(477\) 14.8531 + 3.53008i 0.680078 + 0.161631i
\(478\) 0 0
\(479\) −1.43530 8.13997i −0.0655804 0.371925i −0.999881 0.0154382i \(-0.995086\pi\)
0.934300 0.356487i \(-0.116025\pi\)
\(480\) 0 0
\(481\) −9.90631 + 3.60560i −0.451689 + 0.164401i
\(482\) 0 0
\(483\) −6.72205 8.50690i −0.305864 0.387077i
\(484\) 0 0
\(485\) 0.113009i 0.00513145i
\(486\) 0 0
\(487\) −16.8387 −0.763033 −0.381517 0.924362i \(-0.624598\pi\)
−0.381517 + 0.924362i \(0.624598\pi\)
\(488\) 0 0
\(489\) −13.6602 + 10.7941i −0.617735 + 0.488127i
\(490\) 0 0
\(491\) 11.2492 + 30.9069i 0.507669 + 1.39481i 0.883636 + 0.468175i \(0.155088\pi\)
−0.375967 + 0.926633i \(0.622689\pi\)
\(492\) 0 0
\(493\) 0.197162 0.0347650i 0.00887973 0.00156574i
\(494\) 0 0
\(495\) 0.213038 0.896377i 0.00957534 0.0402891i
\(496\) 0 0
\(497\) 16.1818 + 5.88968i 0.725851 + 0.264188i
\(498\) 0 0
\(499\) −5.09730 + 6.07473i −0.228187 + 0.271942i −0.867974 0.496610i \(-0.834578\pi\)
0.639787 + 0.768552i \(0.279022\pi\)
\(500\) 0 0
\(501\) 23.4434 + 14.4702i 1.04737 + 0.646481i
\(502\) 0 0
\(503\) −20.9414 + 36.2716i −0.933731 + 1.61727i −0.156850 + 0.987622i \(0.550134\pi\)
−0.776881 + 0.629647i \(0.783200\pi\)
\(504\) 0 0
\(505\) −0.488473 0.846060i −0.0217368 0.0376492i
\(506\) 0 0
\(507\) 13.8526 15.5563i 0.615217 0.690878i
\(508\) 0 0
\(509\) −1.32565 0.233747i −0.0587583 0.0103607i 0.144192 0.989550i \(-0.453942\pi\)
−0.202950 + 0.979189i \(0.565053\pi\)
\(510\) 0 0
\(511\) −10.8638 + 9.11578i −0.480584 + 0.403258i
\(512\) 0 0
\(513\) 17.9298 25.5553i 0.791621 1.12830i
\(514\) 0 0
\(515\) −0.697200 0.830890i −0.0307223 0.0366134i
\(516\) 0 0
\(517\) −17.4772 3.08170i −0.768645 0.135533i
\(518\) 0 0
\(519\) −33.2891 + 11.0192i −1.46123 + 0.483691i
\(520\) 0 0
\(521\) 13.6363 + 23.6187i 0.597416 + 1.03475i 0.993201 + 0.116412i \(0.0371392\pi\)
−0.395785 + 0.918343i \(0.629527\pi\)
\(522\) 0 0
\(523\) −26.9016 15.5317i −1.17633 0.679152i −0.221164 0.975237i \(-0.570986\pi\)
−0.955162 + 0.296085i \(0.904319\pi\)
\(524\) 0 0
\(525\) 0.368281 12.5222i 0.0160731 0.546513i
\(526\) 0 0
\(527\) −4.48298 3.76167i −0.195282 0.163861i
\(528\) 0 0
\(529\) 4.14676 + 1.50930i 0.180294 + 0.0656217i
\(530\) 0 0
\(531\) 27.5284 3.20015i 1.19463 0.138875i
\(532\) 0 0
\(533\) −1.51369 + 0.266904i −0.0655651 + 0.0115609i
\(534\) 0 0
\(535\) 2.49841 0.909349i 0.108016 0.0393146i
\(536\) 0 0
\(537\) −5.53429 37.8649i −0.238822 1.63399i
\(538\) 0 0
\(539\) 11.0324i 0.475199i
\(540\) 0 0
\(541\) 20.2507i 0.870645i −0.900274 0.435323i \(-0.856634\pi\)
0.900274 0.435323i \(-0.143366\pi\)
\(542\) 0 0
\(543\) 28.3483 + 11.2723i 1.21654 + 0.483742i
\(544\) 0 0
\(545\) −0.712098 + 0.259182i −0.0305029 + 0.0111022i
\(546\) 0 0
\(547\) 13.5248 2.38478i 0.578278 0.101966i 0.123144 0.992389i \(-0.460702\pi\)
0.455134 + 0.890423i \(0.349591\pi\)
\(548\) 0 0
\(549\) −2.21501 + 37.6245i −0.0945345 + 1.60578i
\(550\) 0 0
\(551\) −1.28671 0.468325i −0.0548158 0.0199513i
\(552\) 0 0
\(553\) −7.97465 6.69153i −0.339117 0.284553i
\(554\) 0 0
\(555\) 2.21833 1.19522i 0.0941628 0.0507341i
\(556\) 0 0
\(557\) 8.93296 + 5.15745i 0.378502 + 0.218528i 0.677166 0.735830i \(-0.263208\pi\)
−0.298665 + 0.954358i \(0.596541\pi\)
\(558\) 0 0
\(559\) −1.60216 2.77502i −0.0677640 0.117371i
\(560\) 0 0
\(561\) 0.694914 3.36016i 0.0293393 0.141866i
\(562\) 0 0
\(563\) −3.14086 0.553818i −0.132371 0.0233406i 0.107070 0.994251i \(-0.465853\pi\)
−0.239441 + 0.970911i \(0.576964\pi\)
\(564\) 0 0
\(565\) −1.07382 1.27973i −0.0451761 0.0538388i
\(566\) 0 0
\(567\) 3.76348 12.5139i 0.158051 0.525532i
\(568\) 0 0
\(569\) −7.37287 + 6.18657i −0.309087 + 0.259355i −0.784114 0.620616i \(-0.786882\pi\)
0.475028 + 0.879971i \(0.342438\pi\)
\(570\) 0 0
\(571\) −6.25643 1.10318i −0.261823 0.0461665i 0.0411954 0.999151i \(-0.486883\pi\)
−0.303019 + 0.952985i \(0.597995\pi\)
\(572\) 0 0
\(573\) −15.9453 3.29764i −0.666124 0.137761i
\(574\) 0 0
\(575\) −10.7382 18.5991i −0.447815 0.775638i
\(576\) 0 0
\(577\) 16.7124 28.9468i 0.695748 1.20507i −0.274179 0.961679i \(-0.588406\pi\)
0.969928 0.243393i \(-0.0782604\pi\)
\(578\) 0 0
\(579\) 11.2941 6.08518i 0.469368 0.252891i
\(580\) 0 0
\(581\) 1.25995 1.50155i 0.0522714 0.0622947i
\(582\) 0 0
\(583\) −10.7848 3.92533i −0.446659 0.162571i
\(584\) 0 0
\(585\) 0.221735 0.336672i 0.00916760 0.0139197i
\(586\) 0 0
\(587\) 11.4100 2.01190i 0.470943 0.0830399i 0.0668600 0.997762i \(-0.478702\pi\)
0.404083 + 0.914722i \(0.367591\pi\)
\(588\) 0 0
\(589\) 13.6895 + 37.6117i 0.564067 + 1.54976i
\(590\) 0 0
\(591\) 29.3165 + 11.6573i 1.20592 + 0.479519i
\(592\) 0 0
\(593\) −11.5506 −0.474326 −0.237163 0.971470i \(-0.576218\pi\)
−0.237163 + 0.971470i \(0.576218\pi\)
\(594\) 0 0
\(595\) 0.173681i 0.00712023i
\(596\) 0 0
\(597\) −27.6007 + 4.03408i −1.12962 + 0.165104i
\(598\) 0 0
\(599\) −27.1047 + 9.86532i −1.10747 + 0.403086i −0.830065 0.557667i \(-0.811697\pi\)
−0.277405 + 0.960753i \(0.589474\pi\)
\(600\) 0 0
\(601\) −1.58173 8.97043i −0.0645201 0.365911i −0.999924 0.0123304i \(-0.996075\pi\)
0.935404 0.353581i \(-0.115036\pi\)
\(602\) 0 0
\(603\) −16.4304 22.0987i −0.669096 0.899927i
\(604\) 0 0
\(605\) 0.275437 0.756758i 0.0111981 0.0307666i
\(606\) 0 0
\(607\) −22.8418 19.1665i −0.927119 0.777945i 0.0481792 0.998839i \(-0.484658\pi\)
−0.975298 + 0.220894i \(0.929103\pi\)
\(608\) 0 0
\(609\) −0.572925 0.0168499i −0.0232161 0.000682792i
\(610\) 0 0
\(611\) −6.72472 3.88252i −0.272053 0.157070i
\(612\) 0 0
\(613\) 2.09252 1.20812i 0.0845161 0.0487954i −0.457146 0.889391i \(-0.651128\pi\)
0.541662 + 0.840596i \(0.317795\pi\)
\(614\) 0 0
\(615\) 0.348780 0.115452i 0.0140642 0.00465548i
\(616\) 0 0
\(617\) −6.36070 + 36.0733i −0.256072 + 1.45226i 0.537233 + 0.843434i \(0.319470\pi\)
−0.793305 + 0.608824i \(0.791641\pi\)
\(618\) 0 0
\(619\) 19.5701 + 23.3228i 0.786590 + 0.937421i 0.999211 0.0397133i \(-0.0126445\pi\)
−0.212621 + 0.977135i \(0.568200\pi\)
\(620\) 0 0
\(621\) −5.77776 21.6442i −0.231853 0.868550i
\(622\) 0 0
\(623\) 7.11775 5.97250i 0.285167 0.239283i
\(624\) 0 0
\(625\) 4.29296 24.3466i 0.171718 0.973864i
\(626\) 0 0
\(627\) −15.6070 + 17.5264i −0.623284 + 0.699937i
\(628\) 0 0
\(629\) 8.12706 4.69216i 0.324047 0.187089i
\(630\) 0 0
\(631\) 19.0463 32.9892i 0.758221 1.31328i −0.185536 0.982637i \(-0.559402\pi\)
0.943757 0.330640i \(-0.107265\pi\)
\(632\) 0 0
\(633\) 17.2329 27.9193i 0.684948 1.10969i
\(634\) 0 0
\(635\) 0.726725 0.866078i 0.0288392 0.0343692i
\(636\) 0 0
\(637\) 1.65099 4.53606i 0.0654147 0.179725i
\(638\) 0 0
\(639\) 25.8649 + 24.4329i 1.02320 + 0.966551i
\(640\) 0 0
\(641\) 3.09962 + 17.5788i 0.122427 + 0.694321i 0.982803 + 0.184659i \(0.0591182\pi\)
−0.860375 + 0.509661i \(0.829771\pi\)
\(642\) 0 0
\(643\) −3.02218 8.30337i −0.119183 0.327453i 0.865728 0.500515i \(-0.166856\pi\)
−0.984911 + 0.173062i \(0.944634\pi\)
\(644\) 0 0
\(645\) 0.474858 + 0.600943i 0.0186975 + 0.0236621i
\(646\) 0 0
\(647\) −20.3838 −0.801371 −0.400686 0.916216i \(-0.631228\pi\)
−0.400686 + 0.916216i \(0.631228\pi\)
\(648\) 0 0
\(649\) −20.8340 −0.817804
\(650\) 0 0
\(651\) 10.3875 + 13.1456i 0.407119 + 0.515217i
\(652\) 0 0
\(653\) −6.26659 17.2173i −0.245230 0.673765i −0.999845 0.0175970i \(-0.994398\pi\)
0.754615 0.656168i \(-0.227824\pi\)
\(654\) 0 0
\(655\) 0.392110 + 2.22376i 0.0153210 + 0.0868897i
\(656\) 0 0
\(657\) −28.0762 + 8.38632i −1.09536 + 0.327182i
\(658\) 0 0
\(659\) −1.95819 + 5.38009i −0.0762803 + 0.209579i −0.971972 0.235098i \(-0.924459\pi\)
0.895691 + 0.444676i \(0.146681\pi\)
\(660\) 0 0
\(661\) −15.7491 + 18.7691i −0.612569 + 0.730032i −0.979774 0.200109i \(-0.935871\pi\)
0.367204 + 0.930140i \(0.380315\pi\)
\(662\) 0 0
\(663\) 0.788567 1.27757i 0.0306254 0.0496166i
\(664\) 0 0
\(665\) 0.593945 1.02874i 0.0230322 0.0398929i
\(666\) 0 0
\(667\) −0.850963 + 0.491304i −0.0329494 + 0.0190234i
\(668\) 0 0
\(669\) −13.4565 + 15.1114i −0.520259 + 0.584242i
\(670\) 0 0
\(671\) 4.92003 27.9029i 0.189936 1.07718i
\(672\) 0 0
\(673\) −19.5576 + 16.4108i −0.753889 + 0.632588i −0.936528 0.350592i \(-0.885980\pi\)
0.182639 + 0.983180i \(0.441536\pi\)
\(674\) 0 0
\(675\) 10.9612 23.4490i 0.421898 0.902551i
\(676\) 0 0
\(677\) 14.0009 + 16.6857i 0.538100 + 0.641283i 0.964761 0.263129i \(-0.0847545\pi\)
−0.426660 + 0.904412i \(0.640310\pi\)
\(678\) 0 0
\(679\) −0.209232 + 1.18661i −0.00802959 + 0.0455380i
\(680\) 0 0
\(681\) −2.98001 + 0.986434i −0.114194 + 0.0378002i
\(682\) 0 0
\(683\) −24.8360 + 14.3391i −0.950322 + 0.548669i −0.893181 0.449697i \(-0.851532\pi\)
−0.0571411 + 0.998366i \(0.518198\pi\)
\(684\) 0 0
\(685\) −0.955179 0.551473i −0.0364955 0.0210707i
\(686\) 0 0
\(687\) 21.2416 + 0.624722i 0.810418 + 0.0238346i
\(688\) 0 0
\(689\) −3.84682 3.22787i −0.146552 0.122972i
\(690\) 0 0
\(691\) −10.5292 + 28.9287i −0.400549 + 1.10050i 0.561465 + 0.827501i \(0.310238\pi\)
−0.962014 + 0.273000i \(0.911984\pi\)
\(692\) 0 0
\(693\) −3.89656 + 9.01771i −0.148018 + 0.342555i
\(694\) 0 0
\(695\) 0.0903596 + 0.512455i 0.00342754 + 0.0194385i
\(696\) 0 0
\(697\) 1.28572 0.467965i 0.0487003 0.0177255i
\(698\) 0 0
\(699\) 1.44488 0.211182i 0.0546504 0.00798763i
\(700\) 0 0
\(701\) 41.7650i 1.57744i 0.614751 + 0.788722i \(0.289257\pi\)
−0.614751 + 0.788722i \(0.710743\pi\)
\(702\) 0 0
\(703\) −64.1840 −2.42075
\(704\) 0 0
\(705\) 1.72469 + 0.685802i 0.0649557 + 0.0258288i
\(706\) 0 0
\(707\) 3.56262 + 9.78821i 0.133986 + 0.368123i
\(708\) 0 0
\(709\) 11.9516 2.10739i 0.448852 0.0791446i 0.0553467 0.998467i \(-0.482374\pi\)
0.393505 + 0.919323i \(0.371262\pi\)
\(710\) 0 0
\(711\) −9.64136 19.2275i −0.361579 0.721089i
\(712\) 0 0
\(713\) 26.9903 + 9.82365i 1.01079 + 0.367899i
\(714\) 0 0
\(715\) −0.194800 + 0.232153i −0.00728510 + 0.00868205i
\(716\) 0 0
\(717\) −16.4735 + 8.87576i −0.615213 + 0.331471i
\(718\) 0 0
\(719\) 9.22099 15.9712i 0.343885 0.595626i −0.641266 0.767319i \(-0.721590\pi\)
0.985151 + 0.171693i \(0.0549236\pi\)
\(720\) 0 0
\(721\) 5.78238 + 10.0154i 0.215347 + 0.372992i
\(722\) 0 0
\(723\) −15.1797 3.13930i −0.564537 0.116752i
\(724\) 0 0
\(725\) −1.11810 0.197152i −0.0415253 0.00732204i
\(726\) 0 0
\(727\) 13.7551 11.5419i 0.510147 0.428065i −0.351034 0.936363i \(-0.614170\pi\)
0.861181 + 0.508298i \(0.169725\pi\)
\(728\) 0 0
\(729\) 17.3941 20.6506i 0.644225 0.764836i
\(730\) 0 0
\(731\) 1.83349 + 2.18507i 0.0678142 + 0.0808178i
\(732\) 0 0
\(733\) −7.91675 1.39594i −0.292412 0.0515601i 0.0255180 0.999674i \(-0.491877\pi\)
−0.317930 + 0.948114i \(0.602988\pi\)
\(734\) 0 0
\(735\) −0.233676 + 1.12991i −0.00861928 + 0.0416773i
\(736\) 0 0
\(737\) 10.3507 + 17.9279i 0.381272 + 0.660382i
\(738\) 0 0
\(739\) −6.23912 3.60216i −0.229510 0.132508i 0.380836 0.924643i \(-0.375636\pi\)
−0.610346 + 0.792135i \(0.708970\pi\)
\(740\) 0 0
\(741\) −9.03977 + 4.87055i −0.332084 + 0.178924i
\(742\) 0 0
\(743\) 28.1102 + 23.5873i 1.03126 + 0.865334i 0.991001 0.133856i \(-0.0427358\pi\)
0.0402635 + 0.999189i \(0.487180\pi\)
\(744\) 0 0
\(745\) 2.85679 + 1.03979i 0.104665 + 0.0380949i
\(746\) 0 0
\(747\) 3.62035 1.81537i 0.132462 0.0664210i
\(748\) 0 0
\(749\) −27.9175 + 4.92261i −1.02008 + 0.179868i
\(750\) 0 0
\(751\) −34.3650 + 12.5079i −1.25400 + 0.456418i −0.881751 0.471716i \(-0.843635\pi\)
−0.372247 + 0.928134i \(0.621413\pi\)
\(752\) 0 0
\(753\) −12.0602 4.79558i −0.439498 0.174761i
\(754\) 0 0
\(755\) 2.59486i 0.0944365i
\(756\) 0 0
\(757\) 36.5128i 1.32708i 0.748140 + 0.663541i \(0.230947\pi\)
−0.748140 + 0.663541i \(0.769053\pi\)
\(758\) 0 0
\(759\) 2.43556 + 16.6638i 0.0884051 + 0.604857i
\(760\) 0 0
\(761\) −4.63196 + 1.68589i −0.167908 + 0.0611136i −0.424607 0.905378i \(-0.639588\pi\)
0.256698 + 0.966492i \(0.417365\pi\)
\(762\) 0 0
\(763\) 7.95705 1.40304i 0.288065 0.0507935i
\(764\) 0 0
\(765\) −0.142343 + 0.329420i −0.00514641 + 0.0119102i
\(766\) 0 0
\(767\) −8.56606 3.11779i −0.309303 0.112577i
\(768\) 0 0
\(769\) 37.4770 + 31.4469i 1.35145 + 1.13400i 0.978521 + 0.206146i \(0.0660921\pi\)
0.372932 + 0.927858i \(0.378352\pi\)
\(770\) 0 0
\(771\) −0.847962 + 28.8321i −0.0305386 + 1.03836i
\(772\) 0 0
\(773\) 8.17747 + 4.72126i 0.294123 + 0.169812i 0.639800 0.768542i \(-0.279017\pi\)
−0.345677 + 0.938354i \(0.612351\pi\)
\(774\) 0 0
\(775\) 16.5936 + 28.7410i 0.596061 + 1.03241i
\(776\) 0 0
\(777\) −25.5058 + 8.44285i −0.915016 + 0.302886i
\(778\) 0 0
\(779\) −9.21589 1.62501i −0.330194 0.0582220i
\(780\) 0 0
\(781\) −17.1931 20.4899i −0.615216 0.733186i
\(782\) 0 0
\(783\) −1.07286 0.501508i −0.0383408 0.0179224i
\(784\) 0 0
\(785\) 0.896137 0.751949i 0.0319845 0.0268382i
\(786\) 0 0
\(787\) 15.6553 + 2.76045i 0.558050 + 0.0983993i 0.445558 0.895253i \(-0.353005\pi\)
0.112493 + 0.993653i \(0.464117\pi\)
\(788\) 0 0
\(789\) 21.3014 23.9212i 0.758352 0.851616i
\(790\) 0 0
\(791\) 8.90599 + 15.4256i 0.316661 + 0.548472i
\(792\) 0 0
\(793\) 6.19857 10.7362i 0.220118 0.381255i
\(794\) 0 0
\(795\) 1.02141 + 0.630454i 0.0362255 + 0.0223599i
\(796\) 0 0
\(797\) 9.18613 10.9476i 0.325389 0.387784i −0.578406 0.815749i \(-0.696325\pi\)
0.903795 + 0.427965i \(0.140769\pi\)
\(798\) 0 0
\(799\) 6.49541 + 2.36413i 0.229791 + 0.0836371i
\(800\) 0 0
\(801\) 18.3951 5.49458i 0.649958 0.194141i
\(802\) 0 0
\(803\) 21.6932 3.82509i 0.765536 0.134985i
\(804\) 0 0
\(805\) −0.291550 0.801026i −0.0102758 0.0282325i
\(806\) 0 0
\(807\) 34.4050 27.1865i 1.21111 0.957008i
\(808\) 0 0
\(809\) 2.71159 0.0953343 0.0476672 0.998863i \(-0.484821\pi\)
0.0476672 + 0.998863i \(0.484821\pi\)
\(810\) 0 0
\(811\) 38.7762i 1.36162i 0.732462 + 0.680808i \(0.238371\pi\)
−0.732462 + 0.680808i \(0.761629\pi\)
\(812\) 0 0
\(813\) 17.8505 + 22.5902i 0.626046 + 0.792274i
\(814\) 0 0
\(815\) −1.28627 + 0.468164i −0.0450561 + 0.0163991i
\(816\) 0 0
\(817\) −3.38771 19.2126i −0.118521 0.672165i
\(818\) 0 0
\(819\) −2.95160 + 3.12459i −0.103137 + 0.109182i
\(820\) 0 0
\(821\) −12.6956 + 34.8810i −0.443081 + 1.21736i 0.494374 + 0.869249i \(0.335397\pi\)
−0.937455 + 0.348106i \(0.886825\pi\)
\(822\) 0 0
\(823\) 16.3072 + 13.6834i 0.568433 + 0.476972i 0.881126 0.472882i \(-0.156786\pi\)
−0.312692 + 0.949854i \(0.601231\pi\)
\(824\) 0 0
\(825\) −10.2205 + 16.5584i −0.355833 + 0.576490i
\(826\) 0 0
\(827\) 7.73838 + 4.46776i 0.269090 + 0.155359i 0.628474 0.777831i \(-0.283680\pi\)
−0.359384 + 0.933190i \(0.617013\pi\)
\(828\) 0 0
\(829\) 19.4960 11.2560i 0.677124 0.390938i −0.121647 0.992573i \(-0.538817\pi\)
0.798771 + 0.601636i \(0.205484\pi\)
\(830\) 0 0
\(831\) −22.9320 20.4207i −0.795504 0.708385i
\(832\) 0 0
\(833\) −0.746175 + 4.23177i −0.0258534 + 0.146622i
\(834\) 0 0
\(835\) 1.39228 + 1.65925i 0.0481817 + 0.0574207i
\(836\) 0 0
\(837\) 8.92830 + 33.4465i 0.308607 + 1.15608i
\(838\) 0 0
\(839\) 0.793395 0.665737i 0.0273910 0.0229838i −0.628989 0.777414i \(-0.716531\pi\)
0.656380 + 0.754430i \(0.272087\pi\)
\(840\) 0 0
\(841\) 5.02678 28.5083i 0.173337 0.983044i
\(842\) 0 0
\(843\) 8.91946 + 26.9457i 0.307203 + 0.928058i
\(844\) 0 0
\(845\) 1.41829 0.818851i 0.0487907 0.0281693i
\(846\) 0 0
\(847\) −4.29326 + 7.43615i −0.147518 + 0.255509i
\(848\) 0 0
\(849\) 31.8666 + 0.937207i 1.09366 + 0.0321649i
\(850\) 0 0
\(851\) −29.6060 + 35.2830i −1.01488 + 1.20949i
\(852\) 0 0
\(853\) 8.12987 22.3366i 0.278361 0.764792i −0.719187 0.694816i \(-0.755486\pi\)
0.997549 0.0699754i \(-0.0222921\pi\)
\(854\) 0 0
\(855\) 1.96965 1.46444i 0.0673608 0.0500827i
\(856\) 0 0
\(857\) 4.07463 + 23.1084i 0.139187 + 0.789367i 0.971852 + 0.235591i \(0.0757026\pi\)
−0.832666 + 0.553776i \(0.813186\pi\)
\(858\) 0 0
\(859\) −11.7827 32.3728i −0.402022 1.10455i −0.961285 0.275555i \(-0.911138\pi\)
0.559264 0.828990i \(-0.311084\pi\)
\(860\) 0 0
\(861\) −3.87602 + 0.566515i −0.132094 + 0.0193068i
\(862\) 0 0
\(863\) 26.5038 0.902199 0.451100 0.892474i \(-0.351032\pi\)
0.451100 + 0.892474i \(0.351032\pi\)
\(864\) 0 0
\(865\) −2.75691 −0.0937378
\(866\) 0 0
\(867\) 10.3860 26.1192i 0.352726 0.887055i
\(868\) 0 0
\(869\) 5.53038 + 15.1946i 0.187605 + 0.515442i
\(870\) 0 0
\(871\) 1.57287 + 8.92017i 0.0532946 + 0.302248i
\(872\) 0 0
\(873\) −1.36936 + 2.07917i −0.0463456 + 0.0703691i
\(874\) 0 0
\(875\) 0.674995 1.85453i 0.0228190 0.0626947i
\(876\) 0 0
\(877\) −12.6506 + 15.0765i −0.427182 + 0.509096i −0.936107 0.351715i \(-0.885599\pi\)
0.508925 + 0.860811i \(0.330043\pi\)
\(878\) 0 0
\(879\) 23.1236 + 42.9176i 0.779941 + 1.44757i
\(880\) 0 0
\(881\) −0.970676 + 1.68126i −0.0327029 + 0.0566431i −0.881914 0.471411i \(-0.843745\pi\)
0.849211 + 0.528054i \(0.177078\pi\)
\(882\) 0 0
\(883\) −3.58570 + 2.07021i −0.120669 + 0.0696680i −0.559119 0.829087i \(-0.688861\pi\)
0.438451 + 0.898755i \(0.355527\pi\)
\(884\) 0 0
\(885\) 2.13376 + 0.441282i 0.0717256 + 0.0148335i
\(886\) 0 0
\(887\) −4.24470 + 24.0729i −0.142523 + 0.808289i 0.826799 + 0.562497i \(0.190159\pi\)
−0.969323 + 0.245792i \(0.920952\pi\)
\(888\) 0 0
\(889\) −9.23429 + 7.74849i −0.309708 + 0.259876i
\(890\) 0 0
\(891\) −14.7812 + 13.9104i −0.495188 + 0.466015i
\(892\) 0 0
\(893\) −30.3887 36.2158i −1.01692 1.21192i
\(894\) 0 0
\(895\) 0.522445 2.96293i 0.0174634 0.0990399i
\(896\) 0 0
\(897\) −1.49233 + 7.21593i −0.0498273 + 0.240933i
\(898\) 0 0
\(899\) 1.31498 0.759206i 0.0438572 0.0253209i
\(900\) 0 0
\(901\) 3.87129 + 2.23509i 0.128971 + 0.0744617i
\(902\) 0 0
\(903\) −3.87349 7.18921i −0.128902 0.239242i
\(904\) 0 0
\(905\) 1.83739 + 1.54175i 0.0610768 + 0.0512495i
\(906\) 0 0
\(907\) −19.8264 + 54.4726i −0.658325 + 1.80873i −0.0739328 + 0.997263i \(0.523555\pi\)
−0.584393 + 0.811471i \(0.698667\pi\)
\(908\) 0 0
\(909\) −1.26486 + 21.4851i −0.0419527 + 0.712614i
\(910\) 0 0
\(911\) −1.13796 6.45371i −0.0377024 0.213821i 0.960136 0.279532i \(-0.0901794\pi\)
−0.997839 + 0.0657114i \(0.979068\pi\)
\(912\) 0 0
\(913\) −2.86099 + 1.04132i −0.0946850 + 0.0344625i
\(914\) 0 0
\(915\) −1.09491 + 2.75353i −0.0361965 + 0.0910290i
\(916\) 0 0
\(917\) 24.0760i 0.795059i
\(918\) 0 0
\(919\) 17.7731 0.586281 0.293140 0.956069i \(-0.405300\pi\)
0.293140 + 0.956069i \(0.405300\pi\)
\(920\) 0 0
\(921\) 4.10598 + 28.0926i 0.135297 + 0.925683i
\(922\) 0 0
\(923\) −4.00277 10.9975i −0.131753 0.361988i
\(924\) 0 0
\(925\) −52.4099 + 9.24128i −1.72323 + 0.303851i
\(926\) 0 0
\(927\) 2.75918 + 23.7351i 0.0906234 + 0.779564i
\(928\) 0 0
\(929\) −53.7456 19.5618i −1.76333 0.641801i −0.763344 0.645993i \(-0.776444\pi\)
−0.999991 + 0.00419109i \(0.998666\pi\)
\(930\) 0 0
\(931\) 18.8913 22.5138i 0.619137 0.737859i
\(932\) 0 0
\(933\) 1.56573 53.2375i 0.0512597 1.74292i
\(934\) 0 0
\(935\) 0.134886 0.233630i 0.00441126 0.00764052i
\(936\) 0 0
\(937\) 13.7103 + 23.7470i 0.447897 + 0.775780i 0.998249 0.0591527i \(-0.0188399\pi\)
−0.550352 + 0.834933i \(0.685507\pi\)
\(938\) 0 0
\(939\) 11.9372 + 36.0623i 0.389557 + 1.17685i
\(940\) 0 0
\(941\) 47.0141 + 8.28985i 1.53261 + 0.270241i 0.875376 0.483442i \(-0.160614\pi\)
0.657238 + 0.753683i \(0.271725\pi\)
\(942\) 0 0
\(943\) −5.14428 + 4.31656i −0.167521 + 0.140567i
\(944\) 0 0
\(945\) 0.590079 0.841038i 0.0191953 0.0273590i
\(946\) 0 0
\(947\) 9.31764 + 11.1043i 0.302783 + 0.360842i 0.895886 0.444284i \(-0.146542\pi\)
−0.593103 + 0.805126i \(0.702097\pi\)
\(948\) 0 0
\(949\) 9.49177 + 1.67365i 0.308116 + 0.0543291i
\(950\) 0 0
\(951\) −35.0531 31.2143i −1.13667 1.01219i
\(952\) 0 0
\(953\) −17.4033 30.1434i −0.563749 0.976442i −0.997165 0.0752476i \(-0.976025\pi\)
0.433416 0.901194i \(-0.357308\pi\)
\(954\) 0 0
\(955\) −1.10867 0.640089i −0.0358756 0.0207128i
\(956\) 0 0
\(957\) 0.757595 + 0.467619i 0.0244896 + 0.0151160i
\(958\) 0 0
\(959\) 9.00855 + 7.55907i 0.290901 + 0.244095i
\(960\) 0 0
\(961\) −12.5773 4.57775i −0.405718 0.147669i
\(962\) 0 0
\(963\) −56.9855 13.5435i −1.83633 0.436433i
\(964\) 0 0
\(965\) 0.993327 0.175150i 0.0319763 0.00563829i
\(966\) 0 0
\(967\) 7.31794 2.66351i 0.235329 0.0856527i −0.221664 0.975123i \(-0.571149\pi\)
0.456993 + 0.889470i \(0.348927\pi\)
\(968\) 0 0
\(969\) 7.17188 5.66714i 0.230394 0.182055i
\(970\) 0 0
\(971\) 2.23282i 0.0716547i −0.999358 0.0358273i \(-0.988593\pi\)
0.999358 0.0358273i \(-0.0114066\pi\)
\(972\) 0 0
\(973\) 5.54818i 0.177867i
\(974\) 0 0
\(975\) −6.68022 + 5.27864i −0.213938 + 0.169052i
\(976\) 0 0
\(977\) 42.2729 15.3861i 1.35243 0.492244i 0.438725 0.898621i \(-0.355430\pi\)
0.913706 + 0.406377i \(0.133208\pi\)
\(978\) 0 0
\(979\) −14.2130 + 2.50614i −0.454250 + 0.0800965i
\(980\) 0 0
\(981\) 16.2420 + 3.86016i 0.518567 + 0.123246i
\(982\) 0 0
\(983\) 11.4136 + 4.15422i 0.364038 + 0.132499i 0.517562 0.855646i \(-0.326840\pi\)
−0.153523 + 0.988145i \(0.549062\pi\)
\(984\) 0 0
\(985\) 1.90014 + 1.59441i 0.0605436 + 0.0508021i
\(986\) 0 0
\(987\) −16.8399 10.3943i −0.536020 0.330854i
\(988\) 0 0
\(989\) −12.1241 6.99988i −0.385525 0.222583i
\(990\) 0 0
\(991\) 24.4431 + 42.3367i 0.776462 + 1.34487i 0.933969 + 0.357353i \(0.116321\pi\)
−0.157508 + 0.987518i \(0.550346\pi\)
\(992\) 0 0
\(993\) −18.6306 16.5903i −0.591225 0.526477i
\(994\) 0 0
\(995\) −2.15976 0.380823i −0.0684689 0.0120729i
\(996\) 0 0
\(997\) 3.84922 + 4.58733i 0.121906 + 0.145282i 0.823546 0.567250i \(-0.191993\pi\)
−0.701639 + 0.712532i \(0.747548\pi\)
\(998\) 0 0
\(999\) −55.2963 4.89012i −1.74950 0.154717i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.49.11 204
4.3 odd 2 216.2.t.a.157.29 yes 204
8.3 odd 2 216.2.t.a.157.26 204
8.5 even 2 inner 864.2.bf.a.49.24 204
12.11 even 2 648.2.t.a.37.6 204
24.11 even 2 648.2.t.a.37.9 204
27.16 even 9 inner 864.2.bf.a.529.24 204
108.11 even 18 648.2.t.a.613.9 204
108.43 odd 18 216.2.t.a.205.26 yes 204
216.11 even 18 648.2.t.a.613.6 204
216.43 odd 18 216.2.t.a.205.29 yes 204
216.205 even 18 inner 864.2.bf.a.529.11 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.26 204 8.3 odd 2
216.2.t.a.157.29 yes 204 4.3 odd 2
216.2.t.a.205.26 yes 204 108.43 odd 18
216.2.t.a.205.29 yes 204 216.43 odd 18
648.2.t.a.37.6 204 12.11 even 2
648.2.t.a.37.9 204 24.11 even 2
648.2.t.a.613.6 204 216.11 even 18
648.2.t.a.613.9 204 108.11 even 18
864.2.bf.a.49.11 204 1.1 even 1 trivial
864.2.bf.a.49.24 204 8.5 even 2 inner
864.2.bf.a.529.11 204 216.205 even 18 inner
864.2.bf.a.529.24 204 27.16 even 9 inner