Properties

Label 864.2.bf.a.337.34
Level $864$
Weight $2$
Character 864.337
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 337.34
Character \(\chi\) \(=\) 864.337
Dual form 864.2.bf.a.241.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73179 + 0.0302651i) q^{3} +(0.721676 - 0.860059i) q^{5} +(-1.31793 - 0.479686i) q^{7} +(2.99817 + 0.104825i) q^{9} +(1.05816 + 1.26106i) q^{11} +(0.671077 + 0.118329i) q^{13} +(1.27582 - 1.46760i) q^{15} +(0.907443 - 1.57174i) q^{17} +(2.96777 - 1.71344i) q^{19} +(-2.26785 - 0.870601i) q^{21} +(3.62278 - 1.31858i) q^{23} +(0.649354 + 3.68267i) q^{25} +(5.18901 + 0.272275i) q^{27} +(-3.92395 + 0.691898i) q^{29} +(6.21468 - 2.26196i) q^{31} +(1.79434 + 2.21592i) q^{33} +(-1.36367 + 0.787317i) q^{35} +(-3.83532 - 2.21432i) q^{37} +(1.15858 + 0.225231i) q^{39} +(0.952217 - 5.40029i) q^{41} +(-7.26017 - 8.65234i) q^{43} +(2.25386 - 2.50295i) q^{45} +(11.5469 + 4.20273i) q^{47} +(-3.85548 - 3.23513i) q^{49} +(1.61907 - 2.69445i) q^{51} +6.89741i q^{53} +1.84824 q^{55} +(5.19140 - 2.87750i) q^{57} +(-6.78921 + 8.09106i) q^{59} +(-1.24084 + 3.40917i) q^{61} +(-3.90108 - 1.57633i) q^{63} +(0.586070 - 0.491771i) q^{65} +(-11.9425 - 2.10578i) q^{67} +(6.31378 - 2.17386i) q^{69} +(-6.80355 + 11.7841i) q^{71} +(4.73823 + 8.20685i) q^{73} +(1.01309 + 6.39725i) q^{75} +(-0.789660 - 2.16957i) q^{77} +(-1.59290 - 9.03380i) q^{79} +(8.97802 + 0.628568i) q^{81} +(1.29853 - 0.228966i) q^{83} +(-0.696908 - 1.91474i) q^{85} +(-6.81638 + 1.07946i) q^{87} +(-3.52339 - 6.10270i) q^{89} +(-0.827669 - 0.477855i) q^{91} +(10.8310 - 3.72914i) q^{93} +(0.668104 - 3.78901i) q^{95} +(-6.33275 + 5.31381i) q^{97} +(3.04035 + 3.89180i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73179 + 0.0302651i 0.999847 + 0.0174736i
\(4\) 0 0
\(5\) 0.721676 0.860059i 0.322743 0.384630i −0.580140 0.814517i \(-0.697002\pi\)
0.902883 + 0.429887i \(0.141447\pi\)
\(6\) 0 0
\(7\) −1.31793 0.479686i −0.498129 0.181304i 0.0807232 0.996737i \(-0.474277\pi\)
−0.578852 + 0.815432i \(0.696499\pi\)
\(8\) 0 0
\(9\) 2.99817 + 0.104825i 0.999389 + 0.0349418i
\(10\) 0 0
\(11\) 1.05816 + 1.26106i 0.319047 + 0.380225i 0.901602 0.432566i \(-0.142392\pi\)
−0.582556 + 0.812791i \(0.697947\pi\)
\(12\) 0 0
\(13\) 0.671077 + 0.118329i 0.186123 + 0.0328186i 0.265933 0.963992i \(-0.414320\pi\)
−0.0798095 + 0.996810i \(0.525431\pi\)
\(14\) 0 0
\(15\) 1.27582 1.46760i 0.329415 0.378932i
\(16\) 0 0
\(17\) 0.907443 1.57174i 0.220087 0.381202i −0.734747 0.678341i \(-0.762699\pi\)
0.954834 + 0.297139i \(0.0960324\pi\)
\(18\) 0 0
\(19\) 2.96777 1.71344i 0.680853 0.393091i −0.119323 0.992855i \(-0.538073\pi\)
0.800176 + 0.599765i \(0.204739\pi\)
\(20\) 0 0
\(21\) −2.26785 0.870601i −0.494885 0.189981i
\(22\) 0 0
\(23\) 3.62278 1.31858i 0.755401 0.274944i 0.0645244 0.997916i \(-0.479447\pi\)
0.690877 + 0.722973i \(0.257225\pi\)
\(24\) 0 0
\(25\) 0.649354 + 3.68267i 0.129871 + 0.736534i
\(26\) 0 0
\(27\) 5.18901 + 0.272275i 0.998626 + 0.0523993i
\(28\) 0 0
\(29\) −3.92395 + 0.691898i −0.728659 + 0.128482i −0.525657 0.850696i \(-0.676181\pi\)
−0.203001 + 0.979179i \(0.565070\pi\)
\(30\) 0 0
\(31\) 6.21468 2.26196i 1.11619 0.406260i 0.282930 0.959141i \(-0.408694\pi\)
0.833260 + 0.552881i \(0.186471\pi\)
\(32\) 0 0
\(33\) 1.79434 + 2.21592i 0.312354 + 0.385742i
\(34\) 0 0
\(35\) −1.36367 + 0.787317i −0.230503 + 0.133081i
\(36\) 0 0
\(37\) −3.83532 2.21432i −0.630522 0.364032i 0.150432 0.988620i \(-0.451934\pi\)
−0.780954 + 0.624588i \(0.785267\pi\)
\(38\) 0 0
\(39\) 1.15858 + 0.225231i 0.185521 + 0.0360658i
\(40\) 0 0
\(41\) 0.952217 5.40029i 0.148711 0.843384i −0.815601 0.578615i \(-0.803593\pi\)
0.964312 0.264769i \(-0.0852956\pi\)
\(42\) 0 0
\(43\) −7.26017 8.65234i −1.10717 1.31947i −0.942909 0.333051i \(-0.891922\pi\)
−0.164257 0.986418i \(-0.552523\pi\)
\(44\) 0 0
\(45\) 2.25386 2.50295i 0.335986 0.373118i
\(46\) 0 0
\(47\) 11.5469 + 4.20273i 1.68429 + 0.613031i 0.993888 0.110395i \(-0.0352116\pi\)
0.690402 + 0.723426i \(0.257434\pi\)
\(48\) 0 0
\(49\) −3.85548 3.23513i −0.550783 0.462162i
\(50\) 0 0
\(51\) 1.61907 2.69445i 0.226715 0.377298i
\(52\) 0 0
\(53\) 6.89741i 0.947432i 0.880678 + 0.473716i \(0.157088\pi\)
−0.880678 + 0.473716i \(0.842912\pi\)
\(54\) 0 0
\(55\) 1.84824 0.249216
\(56\) 0 0
\(57\) 5.19140 2.87750i 0.687618 0.381134i
\(58\) 0 0
\(59\) −6.78921 + 8.09106i −0.883880 + 1.05337i 0.114323 + 0.993444i \(0.463530\pi\)
−0.998203 + 0.0599230i \(0.980914\pi\)
\(60\) 0 0
\(61\) −1.24084 + 3.40917i −0.158873 + 0.436499i −0.993433 0.114418i \(-0.963500\pi\)
0.834560 + 0.550917i \(0.185722\pi\)
\(62\) 0 0
\(63\) −3.90108 1.57633i −0.491490 0.198599i
\(64\) 0 0
\(65\) 0.586070 0.491771i 0.0726930 0.0609967i
\(66\) 0 0
\(67\) −11.9425 2.10578i −1.45901 0.257263i −0.612852 0.790198i \(-0.709978\pi\)
−0.846156 + 0.532935i \(0.821089\pi\)
\(68\) 0 0
\(69\) 6.31378 2.17386i 0.760090 0.261702i
\(70\) 0 0
\(71\) −6.80355 + 11.7841i −0.807432 + 1.39851i 0.107204 + 0.994237i \(0.465810\pi\)
−0.914637 + 0.404277i \(0.867523\pi\)
\(72\) 0 0
\(73\) 4.73823 + 8.20685i 0.554567 + 0.960539i 0.997937 + 0.0642000i \(0.0204496\pi\)
−0.443370 + 0.896339i \(0.646217\pi\)
\(74\) 0 0
\(75\) 1.01309 + 6.39725i 0.116981 + 0.738691i
\(76\) 0 0
\(77\) −0.789660 2.16957i −0.0899901 0.247246i
\(78\) 0 0
\(79\) −1.59290 9.03380i −0.179215 1.01638i −0.933165 0.359449i \(-0.882965\pi\)
0.753949 0.656933i \(-0.228146\pi\)
\(80\) 0 0
\(81\) 8.97802 + 0.628568i 0.997558 + 0.0698409i
\(82\) 0 0
\(83\) 1.29853 0.228966i 0.142532 0.0251322i −0.101927 0.994792i \(-0.532501\pi\)
0.244459 + 0.969660i \(0.421390\pi\)
\(84\) 0 0
\(85\) −0.696908 1.91474i −0.0755903 0.207683i
\(86\) 0 0
\(87\) −6.81638 + 1.07946i −0.730792 + 0.115730i
\(88\) 0 0
\(89\) −3.52339 6.10270i −0.373479 0.646884i 0.616619 0.787262i \(-0.288502\pi\)
−0.990098 + 0.140377i \(0.955168\pi\)
\(90\) 0 0
\(91\) −0.827669 0.477855i −0.0867633 0.0500928i
\(92\) 0 0
\(93\) 10.8310 3.72914i 1.12312 0.386694i
\(94\) 0 0
\(95\) 0.668104 3.78901i 0.0685460 0.388744i
\(96\) 0 0
\(97\) −6.33275 + 5.31381i −0.642993 + 0.539535i −0.904936 0.425548i \(-0.860081\pi\)
0.261943 + 0.965083i \(0.415637\pi\)
\(98\) 0 0
\(99\) 3.04035 + 3.89180i 0.305566 + 0.391141i
\(100\) 0 0
\(101\) −6.04137 + 16.5985i −0.601139 + 1.65162i 0.147832 + 0.989012i \(0.452770\pi\)
−0.748971 + 0.662603i \(0.769452\pi\)
\(102\) 0 0
\(103\) 2.98038 + 2.50084i 0.293666 + 0.246415i 0.777702 0.628633i \(-0.216385\pi\)
−0.484036 + 0.875048i \(0.660830\pi\)
\(104\) 0 0
\(105\) −2.38542 + 1.32219i −0.232793 + 0.129033i
\(106\) 0 0
\(107\) 4.16409i 0.402558i 0.979534 + 0.201279i \(0.0645098\pi\)
−0.979534 + 0.201279i \(0.935490\pi\)
\(108\) 0 0
\(109\) 20.6082i 1.97391i −0.161002 0.986954i \(-0.551473\pi\)
0.161002 0.986954i \(-0.448527\pi\)
\(110\) 0 0
\(111\) −6.57493 3.95081i −0.624065 0.374994i
\(112\) 0 0
\(113\) 2.03205 + 1.70510i 0.191160 + 0.160402i 0.733344 0.679857i \(-0.237958\pi\)
−0.542185 + 0.840259i \(0.682403\pi\)
\(114\) 0 0
\(115\) 1.48041 4.06739i 0.138049 0.379286i
\(116\) 0 0
\(117\) 1.99960 + 0.425116i 0.184863 + 0.0393020i
\(118\) 0 0
\(119\) −1.94988 + 1.63615i −0.178745 + 0.149985i
\(120\) 0 0
\(121\) 1.43955 8.16407i 0.130868 0.742188i
\(122\) 0 0
\(123\) 1.81248 9.32333i 0.163426 0.840656i
\(124\) 0 0
\(125\) 8.49749 + 4.90603i 0.760039 + 0.438809i
\(126\) 0 0
\(127\) 2.14785 + 3.72019i 0.190591 + 0.330113i 0.945446 0.325778i \(-0.105626\pi\)
−0.754855 + 0.655891i \(0.772293\pi\)
\(128\) 0 0
\(129\) −12.3112 15.2037i −1.08394 1.33861i
\(130\) 0 0
\(131\) 2.70846 + 7.44142i 0.236639 + 0.650160i 0.999991 + 0.00417788i \(0.00132986\pi\)
−0.763352 + 0.645982i \(0.776448\pi\)
\(132\) 0 0
\(133\) −4.73321 + 0.834593i −0.410422 + 0.0723684i
\(134\) 0 0
\(135\) 3.97896 4.26637i 0.342454 0.367190i
\(136\) 0 0
\(137\) 2.73472 + 15.5094i 0.233643 + 1.32506i 0.845452 + 0.534051i \(0.179331\pi\)
−0.611809 + 0.791006i \(0.709558\pi\)
\(138\) 0 0
\(139\) 0.133147 + 0.365819i 0.0112934 + 0.0310283i 0.945211 0.326459i \(-0.105856\pi\)
−0.933918 + 0.357488i \(0.883633\pi\)
\(140\) 0 0
\(141\) 19.8696 + 7.62770i 1.67332 + 0.642368i
\(142\) 0 0
\(143\) 0.560885 + 0.971482i 0.0469036 + 0.0812394i
\(144\) 0 0
\(145\) −2.23674 + 3.87415i −0.185751 + 0.321731i
\(146\) 0 0
\(147\) −6.57896 5.71924i −0.542623 0.471715i
\(148\) 0 0
\(149\) −11.6562 2.05530i −0.954913 0.168377i −0.325581 0.945514i \(-0.605560\pi\)
−0.629331 + 0.777137i \(0.716671\pi\)
\(150\) 0 0
\(151\) −7.05111 + 5.91658i −0.573811 + 0.481485i −0.882908 0.469546i \(-0.844418\pi\)
0.309097 + 0.951031i \(0.399973\pi\)
\(152\) 0 0
\(153\) 2.88542 4.61721i 0.233273 0.373279i
\(154\) 0 0
\(155\) 2.53957 6.97740i 0.203983 0.560438i
\(156\) 0 0
\(157\) 8.84016 10.5353i 0.705521 0.840807i −0.287618 0.957745i \(-0.592863\pi\)
0.993139 + 0.116938i \(0.0373078\pi\)
\(158\) 0 0
\(159\) −0.208751 + 11.9448i −0.0165550 + 0.947288i
\(160\) 0 0
\(161\) −5.40706 −0.426136
\(162\) 0 0
\(163\) 12.7196i 0.996272i 0.867099 + 0.498136i \(0.165982\pi\)
−0.867099 + 0.498136i \(0.834018\pi\)
\(164\) 0 0
\(165\) 3.20075 + 0.0559371i 0.249178 + 0.00435470i
\(166\) 0 0
\(167\) −15.1696 12.7288i −1.17386 0.984986i −1.00000 0.000215714i \(-0.999931\pi\)
−0.173861 0.984770i \(-0.555624\pi\)
\(168\) 0 0
\(169\) −11.7797 4.28745i −0.906128 0.329804i
\(170\) 0 0
\(171\) 9.07748 4.82609i 0.694172 0.369060i
\(172\) 0 0
\(173\) 3.14984 + 3.75384i 0.239478 + 0.285399i 0.872375 0.488837i \(-0.162579\pi\)
−0.632897 + 0.774236i \(0.718134\pi\)
\(174\) 0 0
\(175\) 0.910724 5.16497i 0.0688443 0.390435i
\(176\) 0 0
\(177\) −12.0023 + 13.8065i −0.902151 + 1.03776i
\(178\) 0 0
\(179\) −3.21176 1.85431i −0.240058 0.138598i 0.375145 0.926966i \(-0.377593\pi\)
−0.615204 + 0.788368i \(0.710926\pi\)
\(180\) 0 0
\(181\) −14.1322 + 8.15921i −1.05044 + 0.606470i −0.922771 0.385348i \(-0.874081\pi\)
−0.127665 + 0.991817i \(0.540748\pi\)
\(182\) 0 0
\(183\) −2.25204 + 5.86640i −0.166476 + 0.433657i
\(184\) 0 0
\(185\) −4.67230 + 1.70058i −0.343515 + 0.125029i
\(186\) 0 0
\(187\) 2.94228 0.518804i 0.215161 0.0379387i
\(188\) 0 0
\(189\) −6.70813 2.84793i −0.487945 0.207157i
\(190\) 0 0
\(191\) −1.19811 6.79482i −0.0866922 0.491656i −0.996979 0.0776767i \(-0.975250\pi\)
0.910286 0.413979i \(-0.135861\pi\)
\(192\) 0 0
\(193\) 8.95564 3.25959i 0.644641 0.234630i 0.00104978 0.999999i \(-0.499666\pi\)
0.643591 + 0.765369i \(0.277444\pi\)
\(194\) 0 0
\(195\) 1.02983 0.833905i 0.0737477 0.0597172i
\(196\) 0 0
\(197\) −1.74001 + 1.00460i −0.123971 + 0.0715746i −0.560703 0.828017i \(-0.689469\pi\)
0.436732 + 0.899592i \(0.356136\pi\)
\(198\) 0 0
\(199\) −10.6564 + 18.4573i −0.755409 + 1.30841i 0.189762 + 0.981830i \(0.439228\pi\)
−0.945171 + 0.326576i \(0.894105\pi\)
\(200\) 0 0
\(201\) −20.6181 4.00821i −1.45429 0.282717i
\(202\) 0 0
\(203\) 5.50336 + 0.970392i 0.386260 + 0.0681081i
\(204\) 0 0
\(205\) −3.95738 4.71622i −0.276395 0.329395i
\(206\) 0 0
\(207\) 10.9999 3.57357i 0.764547 0.248381i
\(208\) 0 0
\(209\) 5.30113 + 1.92945i 0.366687 + 0.133463i
\(210\) 0 0
\(211\) 5.98817 7.13642i 0.412242 0.491291i −0.519470 0.854489i \(-0.673870\pi\)
0.931712 + 0.363197i \(0.118315\pi\)
\(212\) 0 0
\(213\) −12.1389 + 20.2016i −0.831746 + 1.38419i
\(214\) 0 0
\(215\) −12.6810 −0.864838
\(216\) 0 0
\(217\) −9.27552 −0.629664
\(218\) 0 0
\(219\) 7.95721 + 14.3559i 0.537699 + 0.970083i
\(220\) 0 0
\(221\) 0.794946 0.947380i 0.0534739 0.0637277i
\(222\) 0 0
\(223\) −23.1313 8.41909i −1.54898 0.563784i −0.580805 0.814043i \(-0.697262\pi\)
−0.968179 + 0.250259i \(0.919484\pi\)
\(224\) 0 0
\(225\) 1.56084 + 11.1093i 0.104056 + 0.740622i
\(226\) 0 0
\(227\) 2.62591 + 3.12944i 0.174288 + 0.207708i 0.846116 0.532999i \(-0.178935\pi\)
−0.671828 + 0.740707i \(0.734491\pi\)
\(228\) 0 0
\(229\) −12.4279 2.19138i −0.821261 0.144810i −0.252798 0.967519i \(-0.581351\pi\)
−0.568463 + 0.822709i \(0.692462\pi\)
\(230\) 0 0
\(231\) −1.30186 3.78114i −0.0856561 0.248781i
\(232\) 0 0
\(233\) −12.2882 + 21.2839i −0.805030 + 1.39435i 0.111241 + 0.993793i \(0.464517\pi\)
−0.916271 + 0.400559i \(0.868816\pi\)
\(234\) 0 0
\(235\) 11.9477 6.89802i 0.779383 0.449977i
\(236\) 0 0
\(237\) −2.48516 15.6928i −0.161428 1.01936i
\(238\) 0 0
\(239\) 10.1778 3.70441i 0.658346 0.239618i 0.00882395 0.999961i \(-0.497191\pi\)
0.649522 + 0.760343i \(0.274969\pi\)
\(240\) 0 0
\(241\) −2.29103 12.9931i −0.147579 0.836959i −0.965261 0.261289i \(-0.915852\pi\)
0.817682 0.575670i \(-0.195259\pi\)
\(242\) 0 0
\(243\) 15.5290 + 1.36027i 0.996185 + 0.0872611i
\(244\) 0 0
\(245\) −5.56481 + 0.981227i −0.355523 + 0.0626883i
\(246\) 0 0
\(247\) 2.19435 0.798678i 0.139623 0.0508187i
\(248\) 0 0
\(249\) 2.25570 0.357219i 0.142949 0.0226379i
\(250\) 0 0
\(251\) −17.6367 + 10.1826i −1.11322 + 0.642717i −0.939661 0.342106i \(-0.888860\pi\)
−0.173558 + 0.984824i \(0.555526\pi\)
\(252\) 0 0
\(253\) 5.49629 + 3.17328i 0.345549 + 0.199503i
\(254\) 0 0
\(255\) −1.14895 3.33701i −0.0719498 0.208972i
\(256\) 0 0
\(257\) 2.07937 11.7927i 0.129707 0.735606i −0.848693 0.528886i \(-0.822610\pi\)
0.978400 0.206720i \(-0.0662790\pi\)
\(258\) 0 0
\(259\) 3.99249 + 4.75806i 0.248081 + 0.295651i
\(260\) 0 0
\(261\) −11.8372 + 1.66310i −0.732703 + 0.102943i
\(262\) 0 0
\(263\) 9.28725 + 3.38028i 0.572677 + 0.208437i 0.612093 0.790786i \(-0.290328\pi\)
−0.0394166 + 0.999223i \(0.512550\pi\)
\(264\) 0 0
\(265\) 5.93218 + 4.97769i 0.364411 + 0.305777i
\(266\) 0 0
\(267\) −5.91706 10.6752i −0.362118 0.653312i
\(268\) 0 0
\(269\) 5.38944i 0.328600i −0.986410 0.164300i \(-0.947463\pi\)
0.986410 0.164300i \(-0.0525365\pi\)
\(270\) 0 0
\(271\) 6.24978 0.379647 0.189823 0.981818i \(-0.439208\pi\)
0.189823 + 0.981818i \(0.439208\pi\)
\(272\) 0 0
\(273\) −1.41888 0.852592i −0.0858747 0.0516012i
\(274\) 0 0
\(275\) −3.95697 + 4.71573i −0.238614 + 0.284369i
\(276\) 0 0
\(277\) −4.85450 + 13.3376i −0.291679 + 0.801381i 0.704143 + 0.710059i \(0.251332\pi\)
−0.995821 + 0.0913223i \(0.970891\pi\)
\(278\) 0 0
\(279\) 18.8698 6.13028i 1.12970 0.367010i
\(280\) 0 0
\(281\) 21.3543 17.9184i 1.27389 1.06892i 0.279837 0.960047i \(-0.409720\pi\)
0.994055 0.108875i \(-0.0347249\pi\)
\(282\) 0 0
\(283\) −22.0316 3.88476i −1.30964 0.230925i −0.525121 0.851027i \(-0.675980\pi\)
−0.784521 + 0.620102i \(0.787091\pi\)
\(284\) 0 0
\(285\) 1.27169 6.54153i 0.0753283 0.387487i
\(286\) 0 0
\(287\) −3.84539 + 6.66042i −0.226986 + 0.393152i
\(288\) 0 0
\(289\) 6.85309 + 11.8699i 0.403123 + 0.698230i
\(290\) 0 0
\(291\) −11.1278 + 9.01072i −0.652323 + 0.528218i
\(292\) 0 0
\(293\) 0.130208 + 0.357742i 0.00760680 + 0.0208995i 0.943438 0.331549i \(-0.107571\pi\)
−0.935831 + 0.352449i \(0.885349\pi\)
\(294\) 0 0
\(295\) 2.05919 + 11.6782i 0.119891 + 0.679934i
\(296\) 0 0
\(297\) 5.14744 + 6.83179i 0.298685 + 0.396421i
\(298\) 0 0
\(299\) 2.58719 0.456191i 0.149621 0.0263822i
\(300\) 0 0
\(301\) 5.41797 + 14.8857i 0.312286 + 0.858000i
\(302\) 0 0
\(303\) −10.9647 + 28.5623i −0.629907 + 1.64086i
\(304\) 0 0
\(305\) 2.03661 + 3.52751i 0.116616 + 0.201984i
\(306\) 0 0
\(307\) −9.47107 5.46813i −0.540543 0.312083i 0.204756 0.978813i \(-0.434360\pi\)
−0.745299 + 0.666731i \(0.767693\pi\)
\(308\) 0 0
\(309\) 5.08570 + 4.42112i 0.289315 + 0.251509i
\(310\) 0 0
\(311\) 3.17033 17.9798i 0.179773 1.01954i −0.752717 0.658344i \(-0.771257\pi\)
0.932490 0.361197i \(-0.117632\pi\)
\(312\) 0 0
\(313\) 2.49125 2.09041i 0.140814 0.118157i −0.569660 0.821880i \(-0.692925\pi\)
0.710474 + 0.703724i \(0.248481\pi\)
\(314\) 0 0
\(315\) −4.17105 + 2.21756i −0.235012 + 0.124945i
\(316\) 0 0
\(317\) 5.82505 16.0042i 0.327167 0.898885i −0.661658 0.749806i \(-0.730147\pi\)
0.988825 0.149079i \(-0.0476309\pi\)
\(318\) 0 0
\(319\) −5.02469 4.21621i −0.281328 0.236063i
\(320\) 0 0
\(321\) −0.126027 + 7.21132i −0.00703412 + 0.402497i
\(322\) 0 0
\(323\) 6.21940i 0.346057i
\(324\) 0 0
\(325\) 2.54819i 0.141348i
\(326\) 0 0
\(327\) 0.623709 35.6890i 0.0344912 1.97361i
\(328\) 0 0
\(329\) −13.2020 11.0778i −0.727849 0.610737i
\(330\) 0 0
\(331\) 1.92215 5.28106i 0.105651 0.290273i −0.875591 0.483053i \(-0.839528\pi\)
0.981242 + 0.192780i \(0.0617502\pi\)
\(332\) 0 0
\(333\) −11.2668 7.04095i −0.617417 0.385841i
\(334\) 0 0
\(335\) −10.4297 + 8.75156i −0.569836 + 0.478149i
\(336\) 0 0
\(337\) 3.30062 18.7188i 0.179796 1.01968i −0.752665 0.658404i \(-0.771232\pi\)
0.932461 0.361271i \(-0.117657\pi\)
\(338\) 0 0
\(339\) 3.46748 + 3.01436i 0.188328 + 0.163718i
\(340\) 0 0
\(341\) 9.42860 + 5.44360i 0.510587 + 0.294788i
\(342\) 0 0
\(343\) 8.43817 + 14.6153i 0.455618 + 0.789154i
\(344\) 0 0
\(345\) 2.68685 6.99905i 0.144655 0.376816i
\(346\) 0 0
\(347\) 3.17358 + 8.71933i 0.170366 + 0.468078i 0.995265 0.0972035i \(-0.0309898\pi\)
−0.824898 + 0.565282i \(0.808768\pi\)
\(348\) 0 0
\(349\) 7.31028 1.28900i 0.391310 0.0689985i 0.0254684 0.999676i \(-0.491892\pi\)
0.365842 + 0.930677i \(0.380781\pi\)
\(350\) 0 0
\(351\) 3.45001 + 0.796728i 0.184148 + 0.0425262i
\(352\) 0 0
\(353\) 4.91102 + 27.8518i 0.261387 + 1.48240i 0.779129 + 0.626864i \(0.215662\pi\)
−0.517742 + 0.855537i \(0.673227\pi\)
\(354\) 0 0
\(355\) 5.22506 + 14.3557i 0.277318 + 0.761924i
\(356\) 0 0
\(357\) −3.42630 + 2.77444i −0.181339 + 0.146839i
\(358\) 0 0
\(359\) −8.47821 14.6847i −0.447463 0.775029i 0.550757 0.834666i \(-0.314339\pi\)
−0.998220 + 0.0596369i \(0.981006\pi\)
\(360\) 0 0
\(361\) −3.62823 + 6.28428i −0.190960 + 0.330752i
\(362\) 0 0
\(363\) 2.74007 14.0949i 0.143817 0.739788i
\(364\) 0 0
\(365\) 10.4778 + 1.84753i 0.548435 + 0.0967039i
\(366\) 0 0
\(367\) −6.19539 + 5.19855i −0.323397 + 0.271362i −0.790003 0.613103i \(-0.789921\pi\)
0.466606 + 0.884465i \(0.345477\pi\)
\(368\) 0 0
\(369\) 3.42099 16.0912i 0.178090 0.837673i
\(370\) 0 0
\(371\) 3.30859 9.09028i 0.171773 0.471944i
\(372\) 0 0
\(373\) 14.1644 16.8805i 0.733405 0.874038i −0.262454 0.964944i \(-0.584532\pi\)
0.995859 + 0.0909062i \(0.0289763\pi\)
\(374\) 0 0
\(375\) 14.5674 + 8.75337i 0.752255 + 0.452022i
\(376\) 0 0
\(377\) −2.71514 −0.139837
\(378\) 0 0
\(379\) 9.42240i 0.483996i 0.970277 + 0.241998i \(0.0778027\pi\)
−0.970277 + 0.241998i \(0.922197\pi\)
\(380\) 0 0
\(381\) 3.60703 + 6.50757i 0.184794 + 0.333393i
\(382\) 0 0
\(383\) 13.2473 + 11.1158i 0.676904 + 0.567989i 0.915100 0.403228i \(-0.132112\pi\)
−0.238196 + 0.971217i \(0.576556\pi\)
\(384\) 0 0
\(385\) −2.43584 0.886573i −0.124142 0.0451840i
\(386\) 0 0
\(387\) −20.8602 26.7022i −1.06039 1.35735i
\(388\) 0 0
\(389\) −15.9667 19.0284i −0.809546 0.964780i 0.190310 0.981724i \(-0.439051\pi\)
−0.999856 + 0.0169443i \(0.994606\pi\)
\(390\) 0 0
\(391\) 1.21500 6.89059i 0.0614451 0.348472i
\(392\) 0 0
\(393\) 4.46525 + 12.9689i 0.225242 + 0.654196i
\(394\) 0 0
\(395\) −8.91916 5.14948i −0.448772 0.259098i
\(396\) 0 0
\(397\) 5.94466 3.43215i 0.298354 0.172255i −0.343349 0.939208i \(-0.611561\pi\)
0.641703 + 0.766953i \(0.278228\pi\)
\(398\) 0 0
\(399\) −8.22217 + 1.30209i −0.411624 + 0.0651858i
\(400\) 0 0
\(401\) 11.8463 4.31169i 0.591574 0.215315i −0.0288475 0.999584i \(-0.509184\pi\)
0.620422 + 0.784268i \(0.286961\pi\)
\(402\) 0 0
\(403\) 4.43819 0.782572i 0.221082 0.0389827i
\(404\) 0 0
\(405\) 7.01983 7.26801i 0.348818 0.361150i
\(406\) 0 0
\(407\) −1.26597 7.17969i −0.0627519 0.355884i
\(408\) 0 0
\(409\) 32.0334 11.6592i 1.58395 0.576510i 0.607891 0.794020i \(-0.292016\pi\)
0.976058 + 0.217510i \(0.0697935\pi\)
\(410\) 0 0
\(411\) 4.26657 + 26.9417i 0.210454 + 1.32894i
\(412\) 0 0
\(413\) 12.8288 7.40673i 0.631266 0.364462i
\(414\) 0 0
\(415\) 0.740192 1.28205i 0.0363346 0.0629334i
\(416\) 0 0
\(417\) 0.219511 + 0.637549i 0.0107495 + 0.0312209i
\(418\) 0 0
\(419\) −10.9419 1.92935i −0.534545 0.0942547i −0.100142 0.994973i \(-0.531930\pi\)
−0.434403 + 0.900718i \(0.643041\pi\)
\(420\) 0 0
\(421\) 12.6851 + 15.1175i 0.618232 + 0.736780i 0.980765 0.195190i \(-0.0625325\pi\)
−0.362533 + 0.931971i \(0.618088\pi\)
\(422\) 0 0
\(423\) 34.1790 + 13.8109i 1.66184 + 0.671509i
\(424\) 0 0
\(425\) 6.37744 + 2.32120i 0.309352 + 0.112595i
\(426\) 0 0
\(427\) 3.27066 3.89782i 0.158278 0.188629i
\(428\) 0 0
\(429\) 0.941932 + 1.69937i 0.0454769 + 0.0820466i
\(430\) 0 0
\(431\) 0.293057 0.0141161 0.00705803 0.999975i \(-0.497753\pi\)
0.00705803 + 0.999975i \(0.497753\pi\)
\(432\) 0 0
\(433\) 18.2482 0.876954 0.438477 0.898742i \(-0.355518\pi\)
0.438477 + 0.898742i \(0.355518\pi\)
\(434\) 0 0
\(435\) −3.99081 + 6.64151i −0.191345 + 0.318436i
\(436\) 0 0
\(437\) 8.49225 10.1207i 0.406239 0.484137i
\(438\) 0 0
\(439\) −0.920498 0.335034i −0.0439330 0.0159903i 0.319960 0.947431i \(-0.396330\pi\)
−0.363893 + 0.931441i \(0.618553\pi\)
\(440\) 0 0
\(441\) −11.2203 10.1036i −0.534298 0.481125i
\(442\) 0 0
\(443\) −3.31318 3.94849i −0.157414 0.187599i 0.681573 0.731750i \(-0.261296\pi\)
−0.838987 + 0.544151i \(0.816852\pi\)
\(444\) 0 0
\(445\) −7.79143 1.37384i −0.369349 0.0651262i
\(446\) 0 0
\(447\) −20.1238 3.91212i −0.951825 0.185037i
\(448\) 0 0
\(449\) −6.21921 + 10.7720i −0.293503 + 0.508362i −0.974635 0.223798i \(-0.928154\pi\)
0.681133 + 0.732160i \(0.261488\pi\)
\(450\) 0 0
\(451\) 7.81771 4.51356i 0.368122 0.212535i
\(452\) 0 0
\(453\) −12.3901 + 10.0329i −0.582137 + 0.471385i
\(454\) 0 0
\(455\) −1.00829 + 0.366988i −0.0472695 + 0.0172047i
\(456\) 0 0
\(457\) −4.18789 23.7507i −0.195901 1.11101i −0.911129 0.412121i \(-0.864788\pi\)
0.715228 0.698891i \(-0.246323\pi\)
\(458\) 0 0
\(459\) 5.13668 7.90869i 0.239760 0.369146i
\(460\) 0 0
\(461\) 36.0117 6.34983i 1.67723 0.295741i 0.747577 0.664175i \(-0.231217\pi\)
0.929654 + 0.368434i \(0.120106\pi\)
\(462\) 0 0
\(463\) 21.2745 7.74329i 0.988711 0.359861i 0.203490 0.979077i \(-0.434772\pi\)
0.785221 + 0.619216i \(0.212549\pi\)
\(464\) 0 0
\(465\) 4.60916 12.0065i 0.213744 0.556788i
\(466\) 0 0
\(467\) 20.1982 11.6614i 0.934662 0.539628i 0.0463792 0.998924i \(-0.485232\pi\)
0.888283 + 0.459296i \(0.151898\pi\)
\(468\) 0 0
\(469\) 14.7292 + 8.50392i 0.680132 + 0.392674i
\(470\) 0 0
\(471\) 15.6281 17.9773i 0.720105 0.828351i
\(472\) 0 0
\(473\) 3.22874 18.3111i 0.148458 0.841945i
\(474\) 0 0
\(475\) 8.23718 + 9.81669i 0.377948 + 0.450420i
\(476\) 0 0
\(477\) −0.723024 + 20.6796i −0.0331050 + 0.946854i
\(478\) 0 0
\(479\) 37.4812 + 13.6420i 1.71256 + 0.623320i 0.997154 0.0753898i \(-0.0240201\pi\)
0.715405 + 0.698710i \(0.246242\pi\)
\(480\) 0 0
\(481\) −2.31177 1.93981i −0.105408 0.0884477i
\(482\) 0 0
\(483\) −9.36387 0.163645i −0.426071 0.00744611i
\(484\) 0 0
\(485\) 9.28139i 0.421446i
\(486\) 0 0
\(487\) 32.0323 1.45152 0.725762 0.687946i \(-0.241488\pi\)
0.725762 + 0.687946i \(0.241488\pi\)
\(488\) 0 0
\(489\) −0.384959 + 22.0276i −0.0174084 + 0.996120i
\(490\) 0 0
\(491\) 16.9415 20.1901i 0.764559 0.911166i −0.233568 0.972341i \(-0.575040\pi\)
0.998127 + 0.0611743i \(0.0194845\pi\)
\(492\) 0 0
\(493\) −2.47328 + 6.79527i −0.111391 + 0.306044i
\(494\) 0 0
\(495\) 5.54133 + 0.193742i 0.249064 + 0.00870806i
\(496\) 0 0
\(497\) 14.6192 12.2670i 0.655762 0.550250i
\(498\) 0 0
\(499\) 0.796549 + 0.140453i 0.0356584 + 0.00628755i 0.191449 0.981503i \(-0.438681\pi\)
−0.155790 + 0.987790i \(0.549792\pi\)
\(500\) 0 0
\(501\) −25.8853 22.5027i −1.15647 1.00535i
\(502\) 0 0
\(503\) 0.838775 1.45280i 0.0373991 0.0647772i −0.846720 0.532039i \(-0.821426\pi\)
0.884119 + 0.467262i \(0.154759\pi\)
\(504\) 0 0
\(505\) 9.91581 + 17.1747i 0.441248 + 0.764264i
\(506\) 0 0
\(507\) −20.2701 7.78145i −0.900227 0.345586i
\(508\) 0 0
\(509\) −2.89525 7.95462i −0.128330 0.352583i 0.858843 0.512239i \(-0.171184\pi\)
−0.987173 + 0.159656i \(0.948961\pi\)
\(510\) 0 0
\(511\) −2.30792 13.0889i −0.102096 0.579018i
\(512\) 0 0
\(513\) 15.8663 8.08303i 0.700515 0.356874i
\(514\) 0 0
\(515\) 4.30174 0.758513i 0.189557 0.0334241i
\(516\) 0 0
\(517\) 6.91855 + 19.0085i 0.304277 + 0.835995i
\(518\) 0 0
\(519\) 5.34124 + 6.59617i 0.234455 + 0.289540i
\(520\) 0 0
\(521\) 1.96303 + 3.40007i 0.0860020 + 0.148960i 0.905818 0.423668i \(-0.139258\pi\)
−0.819816 + 0.572627i \(0.805924\pi\)
\(522\) 0 0
\(523\) 14.9783 + 8.64774i 0.654956 + 0.378139i 0.790353 0.612652i \(-0.209897\pi\)
−0.135396 + 0.990792i \(0.543231\pi\)
\(524\) 0 0
\(525\) 1.73350 8.91707i 0.0756561 0.389173i
\(526\) 0 0
\(527\) 2.08426 11.8205i 0.0907920 0.514907i
\(528\) 0 0
\(529\) −6.23317 + 5.23025i −0.271008 + 0.227402i
\(530\) 0 0
\(531\) −21.2033 + 23.5467i −0.920146 + 1.02184i
\(532\) 0 0
\(533\) 1.27802 3.51134i 0.0553573 0.152093i
\(534\) 0 0
\(535\) 3.58137 + 3.00512i 0.154836 + 0.129923i
\(536\) 0 0
\(537\) −5.50597 3.30848i −0.237600 0.142771i
\(538\) 0 0
\(539\) 8.28529i 0.356873i
\(540\) 0 0
\(541\) 11.4118i 0.490630i 0.969443 + 0.245315i \(0.0788914\pi\)
−0.969443 + 0.245315i \(0.921109\pi\)
\(542\) 0 0
\(543\) −24.7208 + 13.7023i −1.06087 + 0.588022i
\(544\) 0 0
\(545\) −17.7243 14.8724i −0.759225 0.637065i
\(546\) 0 0
\(547\) −4.84214 + 13.3037i −0.207035 + 0.568824i −0.999136 0.0415665i \(-0.986765\pi\)
0.792101 + 0.610390i \(0.208987\pi\)
\(548\) 0 0
\(549\) −4.07760 + 10.0912i −0.174028 + 0.430681i
\(550\) 0 0
\(551\) −10.4598 + 8.77685i −0.445604 + 0.373906i
\(552\) 0 0
\(553\) −2.23406 + 12.6700i −0.0950018 + 0.538782i
\(554\) 0 0
\(555\) −8.14290 + 2.80363i −0.345647 + 0.119008i
\(556\) 0 0
\(557\) −29.6837 17.1379i −1.25774 0.726155i −0.285103 0.958497i \(-0.592028\pi\)
−0.972634 + 0.232342i \(0.925361\pi\)
\(558\) 0 0
\(559\) −3.84831 6.66547i −0.162766 0.281919i
\(560\) 0 0
\(561\) 5.11110 0.809409i 0.215791 0.0341733i
\(562\) 0 0
\(563\) −11.1729 30.6973i −0.470882 1.29374i −0.917044 0.398786i \(-0.869432\pi\)
0.446162 0.894952i \(-0.352790\pi\)
\(564\) 0 0
\(565\) 2.93297 0.517161i 0.123391 0.0217571i
\(566\) 0 0
\(567\) −11.5309 5.13504i −0.484250 0.215651i
\(568\) 0 0
\(569\) 4.57663 + 25.9553i 0.191862 + 1.08810i 0.916817 + 0.399308i \(0.130750\pi\)
−0.724955 + 0.688797i \(0.758139\pi\)
\(570\) 0 0
\(571\) 14.3103 + 39.3171i 0.598865 + 1.64537i 0.753539 + 0.657404i \(0.228345\pi\)
−0.154673 + 0.987966i \(0.549432\pi\)
\(572\) 0 0
\(573\) −1.86922 11.8034i −0.0780880 0.493095i
\(574\) 0 0
\(575\) 7.20837 + 12.4853i 0.300610 + 0.520672i
\(576\) 0 0
\(577\) −6.39933 + 11.0840i −0.266408 + 0.461431i −0.967931 0.251215i \(-0.919170\pi\)
0.701524 + 0.712646i \(0.252503\pi\)
\(578\) 0 0
\(579\) 15.6079 5.37387i 0.648643 0.223330i
\(580\) 0 0
\(581\) −1.82120 0.321126i −0.0755560 0.0133226i
\(582\) 0 0
\(583\) −8.69808 + 7.29856i −0.360238 + 0.302275i
\(584\) 0 0
\(585\) 1.80869 1.41298i 0.0747800 0.0584194i
\(586\) 0 0
\(587\) 4.86117 13.3560i 0.200642 0.551260i −0.798039 0.602606i \(-0.794129\pi\)
0.998681 + 0.0513464i \(0.0163513\pi\)
\(588\) 0 0
\(589\) 14.5680 17.3615i 0.600264 0.715367i
\(590\) 0 0
\(591\) −3.04374 + 1.68709i −0.125203 + 0.0693975i
\(592\) 0 0
\(593\) −22.4225 −0.920782 −0.460391 0.887716i \(-0.652291\pi\)
−0.460391 + 0.887716i \(0.652291\pi\)
\(594\) 0 0
\(595\) 2.85778i 0.117158i
\(596\) 0 0
\(597\) −19.0131 + 31.6417i −0.778156 + 1.29501i
\(598\) 0 0
\(599\) −3.21966 2.70162i −0.131552 0.110385i 0.574638 0.818408i \(-0.305143\pi\)
−0.706190 + 0.708023i \(0.749587\pi\)
\(600\) 0 0
\(601\) −12.5218 4.55756i −0.510775 0.185907i 0.0737590 0.997276i \(-0.476500\pi\)
−0.584534 + 0.811369i \(0.698723\pi\)
\(602\) 0 0
\(603\) −35.5849 7.56537i −1.44913 0.308086i
\(604\) 0 0
\(605\) −5.98270 7.12991i −0.243231 0.289872i
\(606\) 0 0
\(607\) 5.79180 32.8469i 0.235082 1.33322i −0.607359 0.794428i \(-0.707771\pi\)
0.842441 0.538789i \(-0.181118\pi\)
\(608\) 0 0
\(609\) 9.50128 + 1.84707i 0.385011 + 0.0748471i
\(610\) 0 0
\(611\) 7.25156 + 4.18669i 0.293367 + 0.169375i
\(612\) 0 0
\(613\) −11.1640 + 6.44552i −0.450908 + 0.260332i −0.708214 0.705998i \(-0.750499\pi\)
0.257305 + 0.966330i \(0.417165\pi\)
\(614\) 0 0
\(615\) −6.71060 8.28726i −0.270597 0.334174i
\(616\) 0 0
\(617\) 20.7471 7.55132i 0.835246 0.304005i 0.111236 0.993794i \(-0.464519\pi\)
0.724010 + 0.689789i \(0.242297\pi\)
\(618\) 0 0
\(619\) 0.110454 0.0194760i 0.00443952 0.000782807i −0.171428 0.985197i \(-0.554838\pi\)
0.175867 + 0.984414i \(0.443727\pi\)
\(620\) 0 0
\(621\) 19.1577 5.85575i 0.768770 0.234983i
\(622\) 0 0
\(623\) 1.71619 + 9.73302i 0.0687579 + 0.389945i
\(624\) 0 0
\(625\) −7.21791 + 2.62710i −0.288716 + 0.105084i
\(626\) 0 0
\(627\) 9.12203 + 3.50184i 0.364299 + 0.139850i
\(628\) 0 0
\(629\) −6.96066 + 4.01874i −0.277540 + 0.160238i
\(630\) 0 0
\(631\) 7.25883 12.5727i 0.288970 0.500510i −0.684595 0.728924i \(-0.740021\pi\)
0.973564 + 0.228414i \(0.0733540\pi\)
\(632\) 0 0
\(633\) 10.5862 12.1775i 0.420764 0.484013i
\(634\) 0 0
\(635\) 4.74963 + 0.837488i 0.188483 + 0.0332347i
\(636\) 0 0
\(637\) −2.20451 2.62724i −0.0873460 0.104095i
\(638\) 0 0
\(639\) −21.6334 + 34.6175i −0.855806 + 1.36945i
\(640\) 0 0
\(641\) −26.9693 9.81603i −1.06522 0.387710i −0.250835 0.968030i \(-0.580705\pi\)
−0.814389 + 0.580320i \(0.802928\pi\)
\(642\) 0 0
\(643\) 16.9076 20.1497i 0.666772 0.794628i −0.321569 0.946886i \(-0.604210\pi\)
0.988341 + 0.152258i \(0.0486546\pi\)
\(644\) 0 0
\(645\) −21.9608 0.383792i −0.864706 0.0151118i
\(646\) 0 0
\(647\) −31.9679 −1.25679 −0.628394 0.777895i \(-0.716287\pi\)
−0.628394 + 0.777895i \(0.716287\pi\)
\(648\) 0 0
\(649\) −17.3874 −0.682516
\(650\) 0 0
\(651\) −16.0632 0.280725i −0.629567 0.0110025i
\(652\) 0 0
\(653\) −24.4383 + 29.1244i −0.956344 + 1.13973i 0.0337653 + 0.999430i \(0.489250\pi\)
−0.990109 + 0.140297i \(0.955194\pi\)
\(654\) 0 0
\(655\) 8.35469 + 3.04086i 0.326445 + 0.118816i
\(656\) 0 0
\(657\) 13.3457 + 25.1022i 0.520666 + 0.979330i
\(658\) 0 0
\(659\) 13.8230 + 16.4736i 0.538469 + 0.641722i 0.964844 0.262825i \(-0.0846540\pi\)
−0.426375 + 0.904546i \(0.640210\pi\)
\(660\) 0 0
\(661\) −40.0325 7.05881i −1.55708 0.274556i −0.672201 0.740369i \(-0.734651\pi\)
−0.884883 + 0.465813i \(0.845762\pi\)
\(662\) 0 0
\(663\) 1.40535 1.61660i 0.0545793 0.0627836i
\(664\) 0 0
\(665\) −2.69804 + 4.67315i −0.104626 + 0.181217i
\(666\) 0 0
\(667\) −13.3033 + 7.68064i −0.515104 + 0.297396i
\(668\) 0 0
\(669\) −39.8036 15.2801i −1.53890 0.590764i
\(670\) 0 0
\(671\) −5.61218 + 2.04267i −0.216656 + 0.0788563i
\(672\) 0 0
\(673\) 7.13129 + 40.4435i 0.274891 + 1.55898i 0.739308 + 0.673367i \(0.235153\pi\)
−0.464417 + 0.885616i \(0.653736\pi\)
\(674\) 0 0
\(675\) 2.36681 + 19.2862i 0.0910985 + 0.742328i
\(676\) 0 0
\(677\) −17.2637 + 3.04406i −0.663499 + 0.116993i −0.495248 0.868752i \(-0.664923\pi\)
−0.168251 + 0.985744i \(0.553812\pi\)
\(678\) 0 0
\(679\) 10.8951 3.96547i 0.418114 0.152181i
\(680\) 0 0
\(681\) 4.45280 + 5.49899i 0.170632 + 0.210722i
\(682\) 0 0
\(683\) 34.2463 19.7721i 1.31040 0.756558i 0.328235 0.944596i \(-0.393546\pi\)
0.982162 + 0.188038i \(0.0602127\pi\)
\(684\) 0 0
\(685\) 15.3126 + 8.84073i 0.585064 + 0.337787i
\(686\) 0 0
\(687\) −21.4562 4.17113i −0.818605 0.159139i
\(688\) 0 0
\(689\) −0.816164 + 4.62869i −0.0310934 + 0.176339i
\(690\) 0 0
\(691\) 13.9569 + 16.6332i 0.530946 + 0.632757i 0.963133 0.269027i \(-0.0867022\pi\)
−0.432186 + 0.901784i \(0.642258\pi\)
\(692\) 0 0
\(693\) −2.14011 6.58752i −0.0812960 0.250239i
\(694\) 0 0
\(695\) 0.410715 + 0.149488i 0.0155793 + 0.00567040i
\(696\) 0 0
\(697\) −7.62376 6.39709i −0.288770 0.242307i
\(698\) 0 0
\(699\) −21.9248 + 36.4872i −0.829271 + 1.38007i
\(700\) 0 0
\(701\) 24.5820i 0.928448i −0.885718 0.464224i \(-0.846333\pi\)
0.885718 0.464224i \(-0.153667\pi\)
\(702\) 0 0
\(703\) −15.1764 −0.572390
\(704\) 0 0
\(705\) 20.8997 11.5843i 0.787127 0.436290i
\(706\) 0 0
\(707\) 15.9242 18.9777i 0.598889 0.713729i
\(708\) 0 0
\(709\) 14.8834 40.8919i 0.558959 1.53573i −0.262193 0.965016i \(-0.584446\pi\)
0.821151 0.570711i \(-0.193332\pi\)
\(710\) 0 0
\(711\) −3.82882 27.2518i −0.143592 1.02202i
\(712\) 0 0
\(713\) 19.5318 16.3891i 0.731473 0.613778i
\(714\) 0 0
\(715\) 1.24031 + 0.218700i 0.0463850 + 0.00817892i
\(716\) 0 0
\(717\) 17.7379 6.10722i 0.662433 0.228078i
\(718\) 0 0
\(719\) −2.30085 + 3.98520i −0.0858074 + 0.148623i −0.905735 0.423844i \(-0.860680\pi\)
0.819928 + 0.572467i \(0.194014\pi\)
\(720\) 0 0
\(721\) −2.72831 4.72557i −0.101607 0.175989i
\(722\) 0 0
\(723\) −3.57434 22.5706i −0.132931 0.839410i
\(724\) 0 0
\(725\) −5.09606 14.0013i −0.189263 0.519996i
\(726\) 0 0
\(727\) 0.922052 + 5.22921i 0.0341970 + 0.193941i 0.997120 0.0758339i \(-0.0241619\pi\)
−0.962923 + 0.269775i \(0.913051\pi\)
\(728\) 0 0
\(729\) 26.8517 + 2.82568i 0.994509 + 0.104655i
\(730\) 0 0
\(731\) −20.1874 + 3.55958i −0.746658 + 0.131656i
\(732\) 0 0
\(733\) 17.7690 + 48.8201i 0.656315 + 1.80321i 0.592980 + 0.805217i \(0.297951\pi\)
0.0633350 + 0.997992i \(0.479826\pi\)
\(734\) 0 0
\(735\) −9.66676 + 1.53086i −0.356564 + 0.0564664i
\(736\) 0 0
\(737\) −9.98153 17.2885i −0.367674 0.636831i
\(738\) 0 0
\(739\) −8.21344 4.74203i −0.302136 0.174439i 0.341266 0.939967i \(-0.389144\pi\)
−0.643402 + 0.765528i \(0.722478\pi\)
\(740\) 0 0
\(741\) 3.82432 1.31673i 0.140490 0.0483712i
\(742\) 0 0
\(743\) −1.45201 + 8.23477i −0.0532691 + 0.302104i −0.999789 0.0205412i \(-0.993461\pi\)
0.946520 + 0.322646i \(0.104572\pi\)
\(744\) 0 0
\(745\) −10.1797 + 8.54176i −0.372954 + 0.312946i
\(746\) 0 0
\(747\) 3.91721 0.550359i 0.143323 0.0201366i
\(748\) 0 0
\(749\) 1.99746 5.48797i 0.0729855 0.200526i
\(750\) 0 0
\(751\) −36.5089 30.6346i −1.33223 1.11787i −0.983551 0.180632i \(-0.942186\pi\)
−0.348680 0.937242i \(-0.613370\pi\)
\(752\) 0 0
\(753\) −30.8512 + 17.1002i −1.12428 + 0.623167i
\(754\) 0 0
\(755\) 10.3342i 0.376101i
\(756\) 0 0
\(757\) 22.8271i 0.829666i 0.909898 + 0.414833i \(0.136160\pi\)
−0.909898 + 0.414833i \(0.863840\pi\)
\(758\) 0 0
\(759\) 9.42236 + 5.66180i 0.342010 + 0.205510i
\(760\) 0 0
\(761\) −9.00453 7.55570i −0.326414 0.273894i 0.464823 0.885404i \(-0.346118\pi\)
−0.791237 + 0.611510i \(0.790562\pi\)
\(762\) 0 0
\(763\) −9.88546 + 27.1601i −0.357878 + 0.983261i
\(764\) 0 0
\(765\) −1.88873 5.81376i −0.0682873 0.210197i
\(766\) 0 0
\(767\) −5.51349 + 4.62637i −0.199081 + 0.167048i
\(768\) 0 0
\(769\) −3.03895 + 17.2347i −0.109587 + 0.621501i 0.879701 + 0.475527i \(0.157743\pi\)
−0.989288 + 0.145974i \(0.953369\pi\)
\(770\) 0 0
\(771\) 3.95792 20.3594i 0.142541 0.733228i
\(772\) 0 0
\(773\) 20.9933 + 12.1205i 0.755076 + 0.435943i 0.827525 0.561429i \(-0.189748\pi\)
−0.0724491 + 0.997372i \(0.523081\pi\)
\(774\) 0 0
\(775\) 12.3656 + 21.4178i 0.444185 + 0.769351i
\(776\) 0 0
\(777\) 6.77013 + 8.36077i 0.242877 + 0.299941i
\(778\) 0 0
\(779\) −6.42713 17.6584i −0.230276 0.632677i
\(780\) 0 0
\(781\) −22.0597 + 3.88972i −0.789359 + 0.139185i
\(782\) 0 0
\(783\) −20.5498 + 2.52187i −0.734390 + 0.0901244i
\(784\) 0 0
\(785\) −2.68125 15.2061i −0.0956979 0.542730i
\(786\) 0 0
\(787\) 2.60184 + 7.14850i 0.0927457 + 0.254817i 0.977388 0.211454i \(-0.0678197\pi\)
−0.884642 + 0.466270i \(0.845597\pi\)
\(788\) 0 0
\(789\) 15.9812 + 6.13501i 0.568947 + 0.218412i
\(790\) 0 0
\(791\) −1.86019 3.22194i −0.0661406 0.114559i
\(792\) 0 0
\(793\) −1.23610 + 2.14099i −0.0438952 + 0.0760287i
\(794\) 0 0
\(795\) 10.1226 + 8.79984i 0.359012 + 0.312098i
\(796\) 0 0
\(797\) 13.7809 + 2.42995i 0.488146 + 0.0860733i 0.412304 0.911047i \(-0.364724\pi\)
0.0758424 + 0.997120i \(0.475835\pi\)
\(798\) 0 0
\(799\) 17.0837 14.3350i 0.604380 0.507135i
\(800\) 0 0
\(801\) −9.92401 18.6662i −0.350648 0.659539i
\(802\) 0 0
\(803\) −5.33557 + 14.6594i −0.188288 + 0.517317i
\(804\) 0 0
\(805\) −3.90214 + 4.65039i −0.137532 + 0.163905i
\(806\) 0 0
\(807\) 0.163112 9.33336i 0.00574181 0.328550i
\(808\) 0 0
\(809\) −20.7183 −0.728415 −0.364208 0.931318i \(-0.618660\pi\)
−0.364208 + 0.931318i \(0.618660\pi\)
\(810\) 0 0
\(811\) 43.7615i 1.53668i −0.640045 0.768338i \(-0.721084\pi\)
0.640045 0.768338i \(-0.278916\pi\)
\(812\) 0 0
\(813\) 10.8233 + 0.189150i 0.379589 + 0.00663378i
\(814\) 0 0
\(815\) 10.9396 + 9.17939i 0.383197 + 0.321540i
\(816\) 0 0
\(817\) −36.3718 13.2382i −1.27249 0.463148i
\(818\) 0 0
\(819\) −2.43140 1.51945i −0.0849600 0.0530939i
\(820\) 0 0
\(821\) 12.4887 + 14.8834i 0.435858 + 0.519435i 0.938603 0.345000i \(-0.112121\pi\)
−0.502745 + 0.864435i \(0.667677\pi\)
\(822\) 0 0
\(823\) −6.24682 + 35.4275i −0.217750 + 1.23492i 0.658319 + 0.752739i \(0.271268\pi\)
−0.876069 + 0.482185i \(0.839843\pi\)
\(824\) 0 0
\(825\) −6.99534 + 8.04688i −0.243547 + 0.280156i
\(826\) 0 0
\(827\) 35.6157 + 20.5627i 1.23848 + 0.715037i 0.968783 0.247909i \(-0.0797433\pi\)
0.269697 + 0.962945i \(0.413077\pi\)
\(828\) 0 0
\(829\) 43.3862 25.0490i 1.50687 0.869989i 0.506897 0.862006i \(-0.330792\pi\)
0.999968 0.00798294i \(-0.00254108\pi\)
\(830\) 0 0
\(831\) −8.81063 + 22.9510i −0.305637 + 0.796162i
\(832\) 0 0
\(833\) −8.58341 + 3.12411i −0.297397 + 0.108244i
\(834\) 0 0
\(835\) −21.8951 + 3.86070i −0.757711 + 0.133605i
\(836\) 0 0
\(837\) 32.8640 10.0452i 1.13594 0.347214i
\(838\) 0 0
\(839\) −2.93816 16.6631i −0.101436 0.575275i −0.992584 0.121561i \(-0.961210\pi\)
0.891148 0.453714i \(-0.149901\pi\)
\(840\) 0 0
\(841\) −12.3325 + 4.48865i −0.425257 + 0.154781i
\(842\) 0 0
\(843\) 37.5234 30.3846i 1.29238 1.04650i
\(844\) 0 0
\(845\) −12.1886 + 7.03706i −0.419299 + 0.242082i
\(846\) 0 0
\(847\) −5.81341 + 10.0691i −0.199751 + 0.345979i
\(848\) 0 0
\(849\) −38.0364 7.39437i −1.30541 0.253774i
\(850\) 0 0
\(851\) −16.8143 2.96481i −0.576385 0.101632i
\(852\) 0 0
\(853\) 16.8126 + 20.0365i 0.575653 + 0.686037i 0.972781 0.231726i \(-0.0744374\pi\)
−0.397128 + 0.917763i \(0.629993\pi\)
\(854\) 0 0
\(855\) 2.40027 11.2900i 0.0820876 0.386111i
\(856\) 0 0
\(857\) −39.5672 14.4013i −1.35159 0.491938i −0.438146 0.898904i \(-0.644365\pi\)
−0.913444 + 0.406965i \(0.866587\pi\)
\(858\) 0 0
\(859\) 27.7503 33.0715i 0.946827 1.12838i −0.0447668 0.998997i \(-0.514254\pi\)
0.991594 0.129387i \(-0.0413011\pi\)
\(860\) 0 0
\(861\) −6.86098 + 11.4180i −0.233822 + 0.389126i
\(862\) 0 0
\(863\) 31.5239 1.07308 0.536542 0.843873i \(-0.319730\pi\)
0.536542 + 0.843873i \(0.319730\pi\)
\(864\) 0 0
\(865\) 5.50169 0.187063
\(866\) 0 0
\(867\) 11.5089 + 20.7636i 0.390861 + 0.705167i
\(868\) 0 0
\(869\) 9.70666 11.5679i 0.329276 0.392416i
\(870\) 0 0
\(871\) −7.76516 2.82629i −0.263112 0.0957651i
\(872\) 0 0
\(873\) −19.5437 + 15.2679i −0.661453 + 0.516739i
\(874\) 0 0
\(875\) −8.84571 10.5419i −0.299040 0.356382i
\(876\) 0 0
\(877\) −22.1917 3.91299i −0.749360 0.132132i −0.214091 0.976814i \(-0.568679\pi\)
−0.535269 + 0.844681i \(0.679790\pi\)
\(878\) 0 0
\(879\) 0.214665 + 0.623474i 0.00724045 + 0.0210293i
\(880\) 0 0
\(881\) 15.0315 26.0353i 0.506424 0.877153i −0.493548 0.869719i \(-0.664300\pi\)
0.999972 0.00743425i \(-0.00236642\pi\)
\(882\) 0 0
\(883\) −11.7757 + 6.79869i −0.396283 + 0.228794i −0.684879 0.728657i \(-0.740145\pi\)
0.288596 + 0.957451i \(0.406812\pi\)
\(884\) 0 0
\(885\) 3.21263 + 20.2865i 0.107991 + 0.681925i
\(886\) 0 0
\(887\) −34.6577 + 12.6144i −1.16369 + 0.423549i −0.850415 0.526112i \(-0.823649\pi\)
−0.313277 + 0.949662i \(0.601427\pi\)
\(888\) 0 0
\(889\) −1.04619 5.93322i −0.0350880 0.198994i
\(890\) 0 0
\(891\) 8.70751 + 11.9870i 0.291713 + 0.401579i
\(892\) 0 0
\(893\) 41.4697 7.31222i 1.38773 0.244694i
\(894\) 0 0
\(895\) −3.91267 + 1.42409i −0.130786 + 0.0476022i
\(896\) 0 0
\(897\) 4.49426 0.711724i 0.150059 0.0237638i
\(898\) 0 0
\(899\) −22.8210 + 13.1757i −0.761124 + 0.439435i
\(900\) 0 0
\(901\) 10.8409 + 6.25901i 0.361163 + 0.208518i
\(902\) 0 0
\(903\) 8.93224 + 25.9429i 0.297246 + 0.863326i
\(904\) 0 0
\(905\) −3.18143 + 18.0428i −0.105754 + 0.599763i
\(906\) 0 0
\(907\) 2.75537 + 3.28372i 0.0914905 + 0.109034i 0.809847 0.586641i \(-0.199550\pi\)
−0.718357 + 0.695675i \(0.755105\pi\)
\(908\) 0 0
\(909\) −19.8530 + 49.1319i −0.658482 + 1.62960i
\(910\) 0 0
\(911\) 26.1940 + 9.53385i 0.867847 + 0.315871i 0.737295 0.675571i \(-0.236103\pi\)
0.130552 + 0.991441i \(0.458325\pi\)
\(912\) 0 0
\(913\) 1.66279 + 1.39525i 0.0550303 + 0.0461759i
\(914\) 0 0
\(915\) 3.42021 + 6.17053i 0.113069 + 0.203991i
\(916\) 0 0
\(917\) 11.1065i 0.366767i
\(918\) 0 0
\(919\) −54.1746 −1.78705 −0.893527 0.449009i \(-0.851777\pi\)
−0.893527 + 0.449009i \(0.851777\pi\)
\(920\) 0 0
\(921\) −16.2364 9.75627i −0.535007 0.321480i
\(922\) 0 0
\(923\) −5.96010 + 7.10297i −0.196179 + 0.233797i
\(924\) 0 0
\(925\) 5.66414 15.5621i 0.186236 0.511678i
\(926\) 0 0
\(927\) 8.67354 + 7.81035i 0.284876 + 0.256526i
\(928\) 0 0
\(929\) −26.4712 + 22.2120i −0.868491 + 0.728751i −0.963780 0.266699i \(-0.914067\pi\)
0.0952887 + 0.995450i \(0.469623\pi\)
\(930\) 0 0
\(931\) −16.9854 2.99498i −0.556674 0.0981566i
\(932\) 0 0
\(933\) 6.03449 31.0412i 0.197560 1.01624i
\(934\) 0 0
\(935\) 1.67717 2.90494i 0.0548493 0.0950018i
\(936\) 0 0
\(937\) −13.1443 22.7665i −0.429404 0.743750i 0.567416 0.823431i \(-0.307943\pi\)
−0.996820 + 0.0796811i \(0.974610\pi\)
\(938\) 0 0
\(939\) 4.37758 3.54474i 0.142857 0.115678i
\(940\) 0 0
\(941\) 13.8588 + 38.0767i 0.451784 + 1.24127i 0.931467 + 0.363825i \(0.118529\pi\)
−0.479683 + 0.877442i \(0.659248\pi\)
\(942\) 0 0
\(943\) −3.67106 20.8196i −0.119546 0.677980i
\(944\) 0 0
\(945\) −7.29049 + 3.71411i −0.237160 + 0.120820i
\(946\) 0 0
\(947\) −38.4009 + 6.77112i −1.24786 + 0.220032i −0.758282 0.651926i \(-0.773961\pi\)
−0.489580 + 0.871958i \(0.662850\pi\)
\(948\) 0 0
\(949\) 2.20861 + 6.06810i 0.0716944 + 0.196979i
\(950\) 0 0
\(951\) 10.5721 27.5395i 0.342824 0.893031i
\(952\) 0 0
\(953\) 12.7586 + 22.0985i 0.413291 + 0.715842i 0.995247 0.0973785i \(-0.0310458\pi\)
−0.581956 + 0.813220i \(0.697712\pi\)
\(954\) 0 0
\(955\) −6.70859 3.87321i −0.217085 0.125334i
\(956\) 0 0
\(957\) −8.57408 7.45365i −0.277161 0.240942i
\(958\) 0 0
\(959\) 3.83547 21.7520i 0.123854 0.702410i
\(960\) 0 0
\(961\) 9.75845 8.18831i 0.314789 0.264139i
\(962\) 0 0
\(963\) −0.436503 + 12.4847i −0.0140661 + 0.402312i
\(964\) 0 0
\(965\) 3.65963 10.0547i 0.117808 0.323674i
\(966\) 0 0
\(967\) 35.3489 + 29.6612i 1.13674 + 0.953841i 0.999327 0.0366729i \(-0.0116760\pi\)
0.137416 + 0.990513i \(0.456120\pi\)
\(968\) 0 0
\(969\) 0.188231 10.7707i 0.00604685 0.346004i
\(970\) 0 0
\(971\) 1.40859i 0.0452039i −0.999745 0.0226020i \(-0.992805\pi\)
0.999745 0.0226020i \(-0.00719504\pi\)
\(972\) 0 0
\(973\) 0.545991i 0.0175037i
\(974\) 0 0
\(975\) −0.0771213 + 4.41293i −0.00246986 + 0.141327i
\(976\) 0 0
\(977\) 36.5361 + 30.6574i 1.16889 + 0.980817i 0.999988 0.00481536i \(-0.00153278\pi\)
0.168904 + 0.985633i \(0.445977\pi\)
\(978\) 0 0
\(979\) 3.96758 10.9008i 0.126805 0.348393i
\(980\) 0 0
\(981\) 2.16026 61.7869i 0.0689719 1.97270i
\(982\) 0 0
\(983\) −13.2755 + 11.1394i −0.423421 + 0.355293i −0.829463 0.558562i \(-0.811353\pi\)
0.406041 + 0.913855i \(0.366909\pi\)
\(984\) 0 0
\(985\) −0.391712 + 2.22151i −0.0124810 + 0.0707832i
\(986\) 0 0
\(987\) −22.5277 19.5839i −0.717066 0.623362i
\(988\) 0 0
\(989\) −37.7108 21.7723i −1.19913 0.692320i
\(990\) 0 0
\(991\) −16.1511 27.9745i −0.513056 0.888638i −0.999885 0.0151416i \(-0.995180\pi\)
0.486830 0.873497i \(-0.338153\pi\)
\(992\) 0 0
\(993\) 3.48858 9.08749i 0.110707 0.288383i
\(994\) 0 0
\(995\) 8.18398 + 22.4853i 0.259450 + 0.712832i
\(996\) 0 0
\(997\) 24.1513 4.25852i 0.764879 0.134869i 0.222420 0.974951i \(-0.428604\pi\)
0.542459 + 0.840082i \(0.317493\pi\)
\(998\) 0 0
\(999\) −19.2986 12.5344i −0.610581 0.396571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.337.34 204
4.3 odd 2 216.2.t.a.13.34 yes 204
8.3 odd 2 216.2.t.a.13.4 204
8.5 even 2 inner 864.2.bf.a.337.1 204
12.11 even 2 648.2.t.a.253.1 204
24.11 even 2 648.2.t.a.253.31 204
27.25 even 9 inner 864.2.bf.a.241.1 204
108.79 odd 18 216.2.t.a.133.4 yes 204
108.83 even 18 648.2.t.a.397.31 204
216.83 even 18 648.2.t.a.397.1 204
216.133 even 18 inner 864.2.bf.a.241.34 204
216.187 odd 18 216.2.t.a.133.34 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.4 204 8.3 odd 2
216.2.t.a.13.34 yes 204 4.3 odd 2
216.2.t.a.133.4 yes 204 108.79 odd 18
216.2.t.a.133.34 yes 204 216.187 odd 18
648.2.t.a.253.1 204 12.11 even 2
648.2.t.a.253.31 204 24.11 even 2
648.2.t.a.397.1 204 216.83 even 18
648.2.t.a.397.31 204 108.83 even 18
864.2.bf.a.241.1 204 27.25 even 9 inner
864.2.bf.a.241.34 204 216.133 even 18 inner
864.2.bf.a.337.1 204 8.5 even 2 inner
864.2.bf.a.337.34 204 1.1 even 1 trivial