Properties

Label 864.2.bf.a.241.34
Level $864$
Weight $2$
Character 864.241
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 241.34
Character \(\chi\) \(=\) 864.241
Dual form 864.2.bf.a.337.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73179 - 0.0302651i) q^{3} +(0.721676 + 0.860059i) q^{5} +(-1.31793 + 0.479686i) q^{7} +(2.99817 - 0.104825i) q^{9} +(1.05816 - 1.26106i) q^{11} +(0.671077 - 0.118329i) q^{13} +(1.27582 + 1.46760i) q^{15} +(0.907443 + 1.57174i) q^{17} +(2.96777 + 1.71344i) q^{19} +(-2.26785 + 0.870601i) q^{21} +(3.62278 + 1.31858i) q^{23} +(0.649354 - 3.68267i) q^{25} +(5.18901 - 0.272275i) q^{27} +(-3.92395 - 0.691898i) q^{29} +(6.21468 + 2.26196i) q^{31} +(1.79434 - 2.21592i) q^{33} +(-1.36367 - 0.787317i) q^{35} +(-3.83532 + 2.21432i) q^{37} +(1.15858 - 0.225231i) q^{39} +(0.952217 + 5.40029i) q^{41} +(-7.26017 + 8.65234i) q^{43} +(2.25386 + 2.50295i) q^{45} +(11.5469 - 4.20273i) q^{47} +(-3.85548 + 3.23513i) q^{49} +(1.61907 + 2.69445i) q^{51} -6.89741i q^{53} +1.84824 q^{55} +(5.19140 + 2.87750i) q^{57} +(-6.78921 - 8.09106i) q^{59} +(-1.24084 - 3.40917i) q^{61} +(-3.90108 + 1.57633i) q^{63} +(0.586070 + 0.491771i) q^{65} +(-11.9425 + 2.10578i) q^{67} +(6.31378 + 2.17386i) q^{69} +(-6.80355 - 11.7841i) q^{71} +(4.73823 - 8.20685i) q^{73} +(1.01309 - 6.39725i) q^{75} +(-0.789660 + 2.16957i) q^{77} +(-1.59290 + 9.03380i) q^{79} +(8.97802 - 0.628568i) q^{81} +(1.29853 + 0.228966i) q^{83} +(-0.696908 + 1.91474i) q^{85} +(-6.81638 - 1.07946i) q^{87} +(-3.52339 + 6.10270i) q^{89} +(-0.827669 + 0.477855i) q^{91} +(10.8310 + 3.72914i) q^{93} +(0.668104 + 3.78901i) q^{95} +(-6.33275 - 5.31381i) q^{97} +(3.04035 - 3.89180i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73179 0.0302651i 0.999847 0.0174736i
\(4\) 0 0
\(5\) 0.721676 + 0.860059i 0.322743 + 0.384630i 0.902883 0.429887i \(-0.141447\pi\)
−0.580140 + 0.814517i \(0.697002\pi\)
\(6\) 0 0
\(7\) −1.31793 + 0.479686i −0.498129 + 0.181304i −0.578852 0.815432i \(-0.696499\pi\)
0.0807232 + 0.996737i \(0.474277\pi\)
\(8\) 0 0
\(9\) 2.99817 0.104825i 0.999389 0.0349418i
\(10\) 0 0
\(11\) 1.05816 1.26106i 0.319047 0.380225i −0.582556 0.812791i \(-0.697947\pi\)
0.901602 + 0.432566i \(0.142392\pi\)
\(12\) 0 0
\(13\) 0.671077 0.118329i 0.186123 0.0328186i −0.0798095 0.996810i \(-0.525431\pi\)
0.265933 + 0.963992i \(0.414320\pi\)
\(14\) 0 0
\(15\) 1.27582 + 1.46760i 0.329415 + 0.378932i
\(16\) 0 0
\(17\) 0.907443 + 1.57174i 0.220087 + 0.381202i 0.954834 0.297139i \(-0.0960324\pi\)
−0.734747 + 0.678341i \(0.762699\pi\)
\(18\) 0 0
\(19\) 2.96777 + 1.71344i 0.680853 + 0.393091i 0.800176 0.599765i \(-0.204739\pi\)
−0.119323 + 0.992855i \(0.538073\pi\)
\(20\) 0 0
\(21\) −2.26785 + 0.870601i −0.494885 + 0.189981i
\(22\) 0 0
\(23\) 3.62278 + 1.31858i 0.755401 + 0.274944i 0.690877 0.722973i \(-0.257225\pi\)
0.0645244 + 0.997916i \(0.479447\pi\)
\(24\) 0 0
\(25\) 0.649354 3.68267i 0.129871 0.736534i
\(26\) 0 0
\(27\) 5.18901 0.272275i 0.998626 0.0523993i
\(28\) 0 0
\(29\) −3.92395 0.691898i −0.728659 0.128482i −0.203001 0.979179i \(-0.565070\pi\)
−0.525657 + 0.850696i \(0.676181\pi\)
\(30\) 0 0
\(31\) 6.21468 + 2.26196i 1.11619 + 0.406260i 0.833260 0.552881i \(-0.186471\pi\)
0.282930 + 0.959141i \(0.408694\pi\)
\(32\) 0 0
\(33\) 1.79434 2.21592i 0.312354 0.385742i
\(34\) 0 0
\(35\) −1.36367 0.787317i −0.230503 0.133081i
\(36\) 0 0
\(37\) −3.83532 + 2.21432i −0.630522 + 0.364032i −0.780954 0.624588i \(-0.785267\pi\)
0.150432 + 0.988620i \(0.451934\pi\)
\(38\) 0 0
\(39\) 1.15858 0.225231i 0.185521 0.0360658i
\(40\) 0 0
\(41\) 0.952217 + 5.40029i 0.148711 + 0.843384i 0.964312 + 0.264769i \(0.0852956\pi\)
−0.815601 + 0.578615i \(0.803593\pi\)
\(42\) 0 0
\(43\) −7.26017 + 8.65234i −1.10717 + 1.31947i −0.164257 + 0.986418i \(0.552523\pi\)
−0.942909 + 0.333051i \(0.891922\pi\)
\(44\) 0 0
\(45\) 2.25386 + 2.50295i 0.335986 + 0.373118i
\(46\) 0 0
\(47\) 11.5469 4.20273i 1.68429 0.613031i 0.690402 0.723426i \(-0.257434\pi\)
0.993888 + 0.110395i \(0.0352116\pi\)
\(48\) 0 0
\(49\) −3.85548 + 3.23513i −0.550783 + 0.462162i
\(50\) 0 0
\(51\) 1.61907 + 2.69445i 0.226715 + 0.377298i
\(52\) 0 0
\(53\) 6.89741i 0.947432i −0.880678 0.473716i \(-0.842912\pi\)
0.880678 0.473716i \(-0.157088\pi\)
\(54\) 0 0
\(55\) 1.84824 0.249216
\(56\) 0 0
\(57\) 5.19140 + 2.87750i 0.687618 + 0.381134i
\(58\) 0 0
\(59\) −6.78921 8.09106i −0.883880 1.05337i −0.998203 0.0599230i \(-0.980914\pi\)
0.114323 0.993444i \(-0.463530\pi\)
\(60\) 0 0
\(61\) −1.24084 3.40917i −0.158873 0.436499i 0.834560 0.550917i \(-0.185722\pi\)
−0.993433 + 0.114418i \(0.963500\pi\)
\(62\) 0 0
\(63\) −3.90108 + 1.57633i −0.491490 + 0.198599i
\(64\) 0 0
\(65\) 0.586070 + 0.491771i 0.0726930 + 0.0609967i
\(66\) 0 0
\(67\) −11.9425 + 2.10578i −1.45901 + 0.257263i −0.846156 0.532935i \(-0.821089\pi\)
−0.612852 + 0.790198i \(0.709978\pi\)
\(68\) 0 0
\(69\) 6.31378 + 2.17386i 0.760090 + 0.261702i
\(70\) 0 0
\(71\) −6.80355 11.7841i −0.807432 1.39851i −0.914637 0.404277i \(-0.867523\pi\)
0.107204 0.994237i \(-0.465810\pi\)
\(72\) 0 0
\(73\) 4.73823 8.20685i 0.554567 0.960539i −0.443370 0.896339i \(-0.646217\pi\)
0.997937 0.0642000i \(-0.0204496\pi\)
\(74\) 0 0
\(75\) 1.01309 6.39725i 0.116981 0.738691i
\(76\) 0 0
\(77\) −0.789660 + 2.16957i −0.0899901 + 0.247246i
\(78\) 0 0
\(79\) −1.59290 + 9.03380i −0.179215 + 1.01638i 0.753949 + 0.656933i \(0.228146\pi\)
−0.933165 + 0.359449i \(0.882965\pi\)
\(80\) 0 0
\(81\) 8.97802 0.628568i 0.997558 0.0698409i
\(82\) 0 0
\(83\) 1.29853 + 0.228966i 0.142532 + 0.0251322i 0.244459 0.969660i \(-0.421390\pi\)
−0.101927 + 0.994792i \(0.532501\pi\)
\(84\) 0 0
\(85\) −0.696908 + 1.91474i −0.0755903 + 0.207683i
\(86\) 0 0
\(87\) −6.81638 1.07946i −0.730792 0.115730i
\(88\) 0 0
\(89\) −3.52339 + 6.10270i −0.373479 + 0.646884i −0.990098 0.140377i \(-0.955168\pi\)
0.616619 + 0.787262i \(0.288502\pi\)
\(90\) 0 0
\(91\) −0.827669 + 0.477855i −0.0867633 + 0.0500928i
\(92\) 0 0
\(93\) 10.8310 + 3.72914i 1.12312 + 0.386694i
\(94\) 0 0
\(95\) 0.668104 + 3.78901i 0.0685460 + 0.388744i
\(96\) 0 0
\(97\) −6.33275 5.31381i −0.642993 0.539535i 0.261943 0.965083i \(-0.415637\pi\)
−0.904936 + 0.425548i \(0.860081\pi\)
\(98\) 0 0
\(99\) 3.04035 3.89180i 0.305566 0.391141i
\(100\) 0 0
\(101\) −6.04137 16.5985i −0.601139 1.65162i −0.748971 0.662603i \(-0.769452\pi\)
0.147832 0.989012i \(-0.452770\pi\)
\(102\) 0 0
\(103\) 2.98038 2.50084i 0.293666 0.246415i −0.484036 0.875048i \(-0.660830\pi\)
0.777702 + 0.628633i \(0.216385\pi\)
\(104\) 0 0
\(105\) −2.38542 1.32219i −0.232793 0.129033i
\(106\) 0 0
\(107\) 4.16409i 0.402558i −0.979534 0.201279i \(-0.935490\pi\)
0.979534 0.201279i \(-0.0645098\pi\)
\(108\) 0 0
\(109\) 20.6082i 1.97391i 0.161002 + 0.986954i \(0.448527\pi\)
−0.161002 + 0.986954i \(0.551473\pi\)
\(110\) 0 0
\(111\) −6.57493 + 3.95081i −0.624065 + 0.374994i
\(112\) 0 0
\(113\) 2.03205 1.70510i 0.191160 0.160402i −0.542185 0.840259i \(-0.682403\pi\)
0.733344 + 0.679857i \(0.237958\pi\)
\(114\) 0 0
\(115\) 1.48041 + 4.06739i 0.138049 + 0.379286i
\(116\) 0 0
\(117\) 1.99960 0.425116i 0.184863 0.0393020i
\(118\) 0 0
\(119\) −1.94988 1.63615i −0.178745 0.149985i
\(120\) 0 0
\(121\) 1.43955 + 8.16407i 0.130868 + 0.742188i
\(122\) 0 0
\(123\) 1.81248 + 9.32333i 0.163426 + 0.840656i
\(124\) 0 0
\(125\) 8.49749 4.90603i 0.760039 0.438809i
\(126\) 0 0
\(127\) 2.14785 3.72019i 0.190591 0.330113i −0.754855 0.655891i \(-0.772293\pi\)
0.945446 + 0.325778i \(0.105626\pi\)
\(128\) 0 0
\(129\) −12.3112 + 15.2037i −1.08394 + 1.33861i
\(130\) 0 0
\(131\) 2.70846 7.44142i 0.236639 0.650160i −0.763352 0.645982i \(-0.776448\pi\)
0.999991 0.00417788i \(-0.00132986\pi\)
\(132\) 0 0
\(133\) −4.73321 0.834593i −0.410422 0.0723684i
\(134\) 0 0
\(135\) 3.97896 + 4.26637i 0.342454 + 0.367190i
\(136\) 0 0
\(137\) 2.73472 15.5094i 0.233643 1.32506i −0.611809 0.791006i \(-0.709558\pi\)
0.845452 0.534051i \(-0.179331\pi\)
\(138\) 0 0
\(139\) 0.133147 0.365819i 0.0112934 0.0310283i −0.933918 0.357488i \(-0.883633\pi\)
0.945211 + 0.326459i \(0.105856\pi\)
\(140\) 0 0
\(141\) 19.8696 7.62770i 1.67332 0.642368i
\(142\) 0 0
\(143\) 0.560885 0.971482i 0.0469036 0.0812394i
\(144\) 0 0
\(145\) −2.23674 3.87415i −0.185751 0.321731i
\(146\) 0 0
\(147\) −6.57896 + 5.71924i −0.542623 + 0.471715i
\(148\) 0 0
\(149\) −11.6562 + 2.05530i −0.954913 + 0.168377i −0.629331 0.777137i \(-0.716671\pi\)
−0.325581 + 0.945514i \(0.605560\pi\)
\(150\) 0 0
\(151\) −7.05111 5.91658i −0.573811 0.481485i 0.309097 0.951031i \(-0.399973\pi\)
−0.882908 + 0.469546i \(0.844418\pi\)
\(152\) 0 0
\(153\) 2.88542 + 4.61721i 0.233273 + 0.373279i
\(154\) 0 0
\(155\) 2.53957 + 6.97740i 0.203983 + 0.560438i
\(156\) 0 0
\(157\) 8.84016 + 10.5353i 0.705521 + 0.840807i 0.993139 0.116938i \(-0.0373078\pi\)
−0.287618 + 0.957745i \(0.592863\pi\)
\(158\) 0 0
\(159\) −0.208751 11.9448i −0.0165550 0.947288i
\(160\) 0 0
\(161\) −5.40706 −0.426136
\(162\) 0 0
\(163\) 12.7196i 0.996272i −0.867099 0.498136i \(-0.834018\pi\)
0.867099 0.498136i \(-0.165982\pi\)
\(164\) 0 0
\(165\) 3.20075 0.0559371i 0.249178 0.00435470i
\(166\) 0 0
\(167\) −15.1696 + 12.7288i −1.17386 + 0.984986i −0.173861 + 0.984770i \(0.555624\pi\)
−1.00000 0.000215714i \(0.999931\pi\)
\(168\) 0 0
\(169\) −11.7797 + 4.28745i −0.906128 + 0.329804i
\(170\) 0 0
\(171\) 9.07748 + 4.82609i 0.694172 + 0.369060i
\(172\) 0 0
\(173\) 3.14984 3.75384i 0.239478 0.285399i −0.632897 0.774236i \(-0.718134\pi\)
0.872375 + 0.488837i \(0.162579\pi\)
\(174\) 0 0
\(175\) 0.910724 + 5.16497i 0.0688443 + 0.390435i
\(176\) 0 0
\(177\) −12.0023 13.8065i −0.902151 1.03776i
\(178\) 0 0
\(179\) −3.21176 + 1.85431i −0.240058 + 0.138598i −0.615204 0.788368i \(-0.710926\pi\)
0.375145 + 0.926966i \(0.377593\pi\)
\(180\) 0 0
\(181\) −14.1322 8.15921i −1.05044 0.606470i −0.127665 0.991817i \(-0.540748\pi\)
−0.922771 + 0.385348i \(0.874081\pi\)
\(182\) 0 0
\(183\) −2.25204 5.86640i −0.166476 0.433657i
\(184\) 0 0
\(185\) −4.67230 1.70058i −0.343515 0.125029i
\(186\) 0 0
\(187\) 2.94228 + 0.518804i 0.215161 + 0.0379387i
\(188\) 0 0
\(189\) −6.70813 + 2.84793i −0.487945 + 0.207157i
\(190\) 0 0
\(191\) −1.19811 + 6.79482i −0.0866922 + 0.491656i 0.910286 + 0.413979i \(0.135861\pi\)
−0.996979 + 0.0776767i \(0.975250\pi\)
\(192\) 0 0
\(193\) 8.95564 + 3.25959i 0.644641 + 0.234630i 0.643591 0.765369i \(-0.277444\pi\)
0.00104978 + 0.999999i \(0.499666\pi\)
\(194\) 0 0
\(195\) 1.02983 + 0.833905i 0.0737477 + 0.0597172i
\(196\) 0 0
\(197\) −1.74001 1.00460i −0.123971 0.0715746i 0.436732 0.899592i \(-0.356136\pi\)
−0.560703 + 0.828017i \(0.689469\pi\)
\(198\) 0 0
\(199\) −10.6564 18.4573i −0.755409 1.30841i −0.945171 0.326576i \(-0.894105\pi\)
0.189762 0.981830i \(-0.439228\pi\)
\(200\) 0 0
\(201\) −20.6181 + 4.00821i −1.45429 + 0.282717i
\(202\) 0 0
\(203\) 5.50336 0.970392i 0.386260 0.0681081i
\(204\) 0 0
\(205\) −3.95738 + 4.71622i −0.276395 + 0.329395i
\(206\) 0 0
\(207\) 10.9999 + 3.57357i 0.764547 + 0.248381i
\(208\) 0 0
\(209\) 5.30113 1.92945i 0.366687 0.133463i
\(210\) 0 0
\(211\) 5.98817 + 7.13642i 0.412242 + 0.491291i 0.931712 0.363197i \(-0.118315\pi\)
−0.519470 + 0.854489i \(0.673870\pi\)
\(212\) 0 0
\(213\) −12.1389 20.2016i −0.831746 1.38419i
\(214\) 0 0
\(215\) −12.6810 −0.864838
\(216\) 0 0
\(217\) −9.27552 −0.629664
\(218\) 0 0
\(219\) 7.95721 14.3559i 0.537699 0.970083i
\(220\) 0 0
\(221\) 0.794946 + 0.947380i 0.0534739 + 0.0637277i
\(222\) 0 0
\(223\) −23.1313 + 8.41909i −1.54898 + 0.563784i −0.968179 0.250259i \(-0.919484\pi\)
−0.580805 + 0.814043i \(0.697262\pi\)
\(224\) 0 0
\(225\) 1.56084 11.1093i 0.104056 0.740622i
\(226\) 0 0
\(227\) 2.62591 3.12944i 0.174288 0.207708i −0.671828 0.740707i \(-0.734491\pi\)
0.846116 + 0.532999i \(0.178935\pi\)
\(228\) 0 0
\(229\) −12.4279 + 2.19138i −0.821261 + 0.144810i −0.568463 0.822709i \(-0.692462\pi\)
−0.252798 + 0.967519i \(0.581351\pi\)
\(230\) 0 0
\(231\) −1.30186 + 3.78114i −0.0856561 + 0.248781i
\(232\) 0 0
\(233\) −12.2882 21.2839i −0.805030 1.39435i −0.916271 0.400559i \(-0.868816\pi\)
0.111241 0.993793i \(-0.464517\pi\)
\(234\) 0 0
\(235\) 11.9477 + 6.89802i 0.779383 + 0.449977i
\(236\) 0 0
\(237\) −2.48516 + 15.6928i −0.161428 + 1.01936i
\(238\) 0 0
\(239\) 10.1778 + 3.70441i 0.658346 + 0.239618i 0.649522 0.760343i \(-0.274969\pi\)
0.00882395 + 0.999961i \(0.497191\pi\)
\(240\) 0 0
\(241\) −2.29103 + 12.9931i −0.147579 + 0.836959i 0.817682 + 0.575670i \(0.195259\pi\)
−0.965261 + 0.261289i \(0.915852\pi\)
\(242\) 0 0
\(243\) 15.5290 1.36027i 0.996185 0.0872611i
\(244\) 0 0
\(245\) −5.56481 0.981227i −0.355523 0.0626883i
\(246\) 0 0
\(247\) 2.19435 + 0.798678i 0.139623 + 0.0508187i
\(248\) 0 0
\(249\) 2.25570 + 0.357219i 0.142949 + 0.0226379i
\(250\) 0 0
\(251\) −17.6367 10.1826i −1.11322 0.642717i −0.173558 0.984824i \(-0.555526\pi\)
−0.939661 + 0.342106i \(0.888860\pi\)
\(252\) 0 0
\(253\) 5.49629 3.17328i 0.345549 0.199503i
\(254\) 0 0
\(255\) −1.14895 + 3.33701i −0.0719498 + 0.208972i
\(256\) 0 0
\(257\) 2.07937 + 11.7927i 0.129707 + 0.735606i 0.978400 + 0.206720i \(0.0662790\pi\)
−0.848693 + 0.528886i \(0.822610\pi\)
\(258\) 0 0
\(259\) 3.99249 4.75806i 0.248081 0.295651i
\(260\) 0 0
\(261\) −11.8372 1.66310i −0.732703 0.102943i
\(262\) 0 0
\(263\) 9.28725 3.38028i 0.572677 0.208437i −0.0394166 0.999223i \(-0.512550\pi\)
0.612093 + 0.790786i \(0.290328\pi\)
\(264\) 0 0
\(265\) 5.93218 4.97769i 0.364411 0.305777i
\(266\) 0 0
\(267\) −5.91706 + 10.6752i −0.362118 + 0.653312i
\(268\) 0 0
\(269\) 5.38944i 0.328600i 0.986410 + 0.164300i \(0.0525365\pi\)
−0.986410 + 0.164300i \(0.947463\pi\)
\(270\) 0 0
\(271\) 6.24978 0.379647 0.189823 0.981818i \(-0.439208\pi\)
0.189823 + 0.981818i \(0.439208\pi\)
\(272\) 0 0
\(273\) −1.41888 + 0.852592i −0.0858747 + 0.0516012i
\(274\) 0 0
\(275\) −3.95697 4.71573i −0.238614 0.284369i
\(276\) 0 0
\(277\) −4.85450 13.3376i −0.291679 0.801381i −0.995821 0.0913223i \(-0.970891\pi\)
0.704143 0.710059i \(-0.251332\pi\)
\(278\) 0 0
\(279\) 18.8698 + 6.13028i 1.12970 + 0.367010i
\(280\) 0 0
\(281\) 21.3543 + 17.9184i 1.27389 + 1.06892i 0.994055 + 0.108875i \(0.0347249\pi\)
0.279837 + 0.960047i \(0.409720\pi\)
\(282\) 0 0
\(283\) −22.0316 + 3.88476i −1.30964 + 0.230925i −0.784521 0.620102i \(-0.787091\pi\)
−0.525121 + 0.851027i \(0.675980\pi\)
\(284\) 0 0
\(285\) 1.27169 + 6.54153i 0.0753283 + 0.387487i
\(286\) 0 0
\(287\) −3.84539 6.66042i −0.226986 0.393152i
\(288\) 0 0
\(289\) 6.85309 11.8699i 0.403123 0.698230i
\(290\) 0 0
\(291\) −11.1278 9.01072i −0.652323 0.528218i
\(292\) 0 0
\(293\) 0.130208 0.357742i 0.00760680 0.0208995i −0.935831 0.352449i \(-0.885349\pi\)
0.943438 + 0.331549i \(0.107571\pi\)
\(294\) 0 0
\(295\) 2.05919 11.6782i 0.119891 0.679934i
\(296\) 0 0
\(297\) 5.14744 6.83179i 0.298685 0.396421i
\(298\) 0 0
\(299\) 2.58719 + 0.456191i 0.149621 + 0.0263822i
\(300\) 0 0
\(301\) 5.41797 14.8857i 0.312286 0.858000i
\(302\) 0 0
\(303\) −10.9647 28.5623i −0.629907 1.64086i
\(304\) 0 0
\(305\) 2.03661 3.52751i 0.116616 0.201984i
\(306\) 0 0
\(307\) −9.47107 + 5.46813i −0.540543 + 0.312083i −0.745299 0.666731i \(-0.767693\pi\)
0.204756 + 0.978813i \(0.434360\pi\)
\(308\) 0 0
\(309\) 5.08570 4.42112i 0.289315 0.251509i
\(310\) 0 0
\(311\) 3.17033 + 17.9798i 0.179773 + 1.01954i 0.932490 + 0.361197i \(0.117632\pi\)
−0.752717 + 0.658344i \(0.771257\pi\)
\(312\) 0 0
\(313\) 2.49125 + 2.09041i 0.140814 + 0.118157i 0.710474 0.703724i \(-0.248481\pi\)
−0.569660 + 0.821880i \(0.692925\pi\)
\(314\) 0 0
\(315\) −4.17105 2.21756i −0.235012 0.124945i
\(316\) 0 0
\(317\) 5.82505 + 16.0042i 0.327167 + 0.898885i 0.988825 + 0.149079i \(0.0476309\pi\)
−0.661658 + 0.749806i \(0.730147\pi\)
\(318\) 0 0
\(319\) −5.02469 + 4.21621i −0.281328 + 0.236063i
\(320\) 0 0
\(321\) −0.126027 7.21132i −0.00703412 0.402497i
\(322\) 0 0
\(323\) 6.21940i 0.346057i
\(324\) 0 0
\(325\) 2.54819i 0.141348i
\(326\) 0 0
\(327\) 0.623709 + 35.6890i 0.0344912 + 1.97361i
\(328\) 0 0
\(329\) −13.2020 + 11.0778i −0.727849 + 0.610737i
\(330\) 0 0
\(331\) 1.92215 + 5.28106i 0.105651 + 0.290273i 0.981242 0.192780i \(-0.0617502\pi\)
−0.875591 + 0.483053i \(0.839528\pi\)
\(332\) 0 0
\(333\) −11.2668 + 7.04095i −0.617417 + 0.385841i
\(334\) 0 0
\(335\) −10.4297 8.75156i −0.569836 0.478149i
\(336\) 0 0
\(337\) 3.30062 + 18.7188i 0.179796 + 1.01968i 0.932461 + 0.361271i \(0.117657\pi\)
−0.752665 + 0.658404i \(0.771232\pi\)
\(338\) 0 0
\(339\) 3.46748 3.01436i 0.188328 0.163718i
\(340\) 0 0
\(341\) 9.42860 5.44360i 0.510587 0.294788i
\(342\) 0 0
\(343\) 8.43817 14.6153i 0.455618 0.789154i
\(344\) 0 0
\(345\) 2.68685 + 6.99905i 0.144655 + 0.376816i
\(346\) 0 0
\(347\) 3.17358 8.71933i 0.170366 0.468078i −0.824898 0.565282i \(-0.808768\pi\)
0.995265 + 0.0972035i \(0.0309898\pi\)
\(348\) 0 0
\(349\) 7.31028 + 1.28900i 0.391310 + 0.0689985i 0.365842 0.930677i \(-0.380781\pi\)
0.0254684 + 0.999676i \(0.491892\pi\)
\(350\) 0 0
\(351\) 3.45001 0.796728i 0.184148 0.0425262i
\(352\) 0 0
\(353\) 4.91102 27.8518i 0.261387 1.48240i −0.517742 0.855537i \(-0.673227\pi\)
0.779129 0.626864i \(-0.215662\pi\)
\(354\) 0 0
\(355\) 5.22506 14.3557i 0.277318 0.761924i
\(356\) 0 0
\(357\) −3.42630 2.77444i −0.181339 0.146839i
\(358\) 0 0
\(359\) −8.47821 + 14.6847i −0.447463 + 0.775029i −0.998220 0.0596369i \(-0.981006\pi\)
0.550757 + 0.834666i \(0.314339\pi\)
\(360\) 0 0
\(361\) −3.62823 6.28428i −0.190960 0.330752i
\(362\) 0 0
\(363\) 2.74007 + 14.0949i 0.143817 + 0.739788i
\(364\) 0 0
\(365\) 10.4778 1.84753i 0.548435 0.0967039i
\(366\) 0 0
\(367\) −6.19539 5.19855i −0.323397 0.271362i 0.466606 0.884465i \(-0.345477\pi\)
−0.790003 + 0.613103i \(0.789921\pi\)
\(368\) 0 0
\(369\) 3.42099 + 16.0912i 0.178090 + 0.837673i
\(370\) 0 0
\(371\) 3.30859 + 9.09028i 0.171773 + 0.471944i
\(372\) 0 0
\(373\) 14.1644 + 16.8805i 0.733405 + 0.874038i 0.995859 0.0909062i \(-0.0289763\pi\)
−0.262454 + 0.964944i \(0.584532\pi\)
\(374\) 0 0
\(375\) 14.5674 8.75337i 0.752255 0.452022i
\(376\) 0 0
\(377\) −2.71514 −0.139837
\(378\) 0 0
\(379\) 9.42240i 0.483996i −0.970277 0.241998i \(-0.922197\pi\)
0.970277 0.241998i \(-0.0778027\pi\)
\(380\) 0 0
\(381\) 3.60703 6.50757i 0.184794 0.333393i
\(382\) 0 0
\(383\) 13.2473 11.1158i 0.676904 0.567989i −0.238196 0.971217i \(-0.576556\pi\)
0.915100 + 0.403228i \(0.132112\pi\)
\(384\) 0 0
\(385\) −2.43584 + 0.886573i −0.124142 + 0.0451840i
\(386\) 0 0
\(387\) −20.8602 + 26.7022i −1.06039 + 1.35735i
\(388\) 0 0
\(389\) −15.9667 + 19.0284i −0.809546 + 0.964780i −0.999856 0.0169443i \(-0.994606\pi\)
0.190310 + 0.981724i \(0.439051\pi\)
\(390\) 0 0
\(391\) 1.21500 + 6.89059i 0.0614451 + 0.348472i
\(392\) 0 0
\(393\) 4.46525 12.9689i 0.225242 0.654196i
\(394\) 0 0
\(395\) −8.91916 + 5.14948i −0.448772 + 0.259098i
\(396\) 0 0
\(397\) 5.94466 + 3.43215i 0.298354 + 0.172255i 0.641703 0.766953i \(-0.278228\pi\)
−0.343349 + 0.939208i \(0.611561\pi\)
\(398\) 0 0
\(399\) −8.22217 1.30209i −0.411624 0.0651858i
\(400\) 0 0
\(401\) 11.8463 + 4.31169i 0.591574 + 0.215315i 0.620422 0.784268i \(-0.286961\pi\)
−0.0288475 + 0.999584i \(0.509184\pi\)
\(402\) 0 0
\(403\) 4.43819 + 0.782572i 0.221082 + 0.0389827i
\(404\) 0 0
\(405\) 7.01983 + 7.26801i 0.348818 + 0.361150i
\(406\) 0 0
\(407\) −1.26597 + 7.17969i −0.0627519 + 0.355884i
\(408\) 0 0
\(409\) 32.0334 + 11.6592i 1.58395 + 0.576510i 0.976058 0.217510i \(-0.0697935\pi\)
0.607891 + 0.794020i \(0.292016\pi\)
\(410\) 0 0
\(411\) 4.26657 26.9417i 0.210454 1.32894i
\(412\) 0 0
\(413\) 12.8288 + 7.40673i 0.631266 + 0.364462i
\(414\) 0 0
\(415\) 0.740192 + 1.28205i 0.0363346 + 0.0629334i
\(416\) 0 0
\(417\) 0.219511 0.637549i 0.0107495 0.0312209i
\(418\) 0 0
\(419\) −10.9419 + 1.92935i −0.534545 + 0.0942547i −0.434403 0.900718i \(-0.643041\pi\)
−0.100142 + 0.994973i \(0.531930\pi\)
\(420\) 0 0
\(421\) 12.6851 15.1175i 0.618232 0.736780i −0.362533 0.931971i \(-0.618088\pi\)
0.980765 + 0.195190i \(0.0625325\pi\)
\(422\) 0 0
\(423\) 34.1790 13.8109i 1.66184 0.671509i
\(424\) 0 0
\(425\) 6.37744 2.32120i 0.309352 0.112595i
\(426\) 0 0
\(427\) 3.27066 + 3.89782i 0.158278 + 0.188629i
\(428\) 0 0
\(429\) 0.941932 1.69937i 0.0454769 0.0820466i
\(430\) 0 0
\(431\) 0.293057 0.0141161 0.00705803 0.999975i \(-0.497753\pi\)
0.00705803 + 0.999975i \(0.497753\pi\)
\(432\) 0 0
\(433\) 18.2482 0.876954 0.438477 0.898742i \(-0.355518\pi\)
0.438477 + 0.898742i \(0.355518\pi\)
\(434\) 0 0
\(435\) −3.99081 6.64151i −0.191345 0.318436i
\(436\) 0 0
\(437\) 8.49225 + 10.1207i 0.406239 + 0.484137i
\(438\) 0 0
\(439\) −0.920498 + 0.335034i −0.0439330 + 0.0159903i −0.363893 0.931441i \(-0.618553\pi\)
0.319960 + 0.947431i \(0.396330\pi\)
\(440\) 0 0
\(441\) −11.2203 + 10.1036i −0.534298 + 0.481125i
\(442\) 0 0
\(443\) −3.31318 + 3.94849i −0.157414 + 0.187599i −0.838987 0.544151i \(-0.816852\pi\)
0.681573 + 0.731750i \(0.261296\pi\)
\(444\) 0 0
\(445\) −7.79143 + 1.37384i −0.369349 + 0.0651262i
\(446\) 0 0
\(447\) −20.1238 + 3.91212i −0.951825 + 0.185037i
\(448\) 0 0
\(449\) −6.21921 10.7720i −0.293503 0.508362i 0.681133 0.732160i \(-0.261488\pi\)
−0.974635 + 0.223798i \(0.928154\pi\)
\(450\) 0 0
\(451\) 7.81771 + 4.51356i 0.368122 + 0.212535i
\(452\) 0 0
\(453\) −12.3901 10.0329i −0.582137 0.471385i
\(454\) 0 0
\(455\) −1.00829 0.366988i −0.0472695 0.0172047i
\(456\) 0 0
\(457\) −4.18789 + 23.7507i −0.195901 + 1.11101i 0.715228 + 0.698891i \(0.246323\pi\)
−0.911129 + 0.412121i \(0.864788\pi\)
\(458\) 0 0
\(459\) 5.13668 + 7.90869i 0.239760 + 0.369146i
\(460\) 0 0
\(461\) 36.0117 + 6.34983i 1.67723 + 0.295741i 0.929654 0.368434i \(-0.120106\pi\)
0.747577 + 0.664175i \(0.231217\pi\)
\(462\) 0 0
\(463\) 21.2745 + 7.74329i 0.988711 + 0.359861i 0.785221 0.619216i \(-0.212549\pi\)
0.203490 + 0.979077i \(0.434772\pi\)
\(464\) 0 0
\(465\) 4.60916 + 12.0065i 0.213744 + 0.556788i
\(466\) 0 0
\(467\) 20.1982 + 11.6614i 0.934662 + 0.539628i 0.888283 0.459296i \(-0.151898\pi\)
0.0463792 + 0.998924i \(0.485232\pi\)
\(468\) 0 0
\(469\) 14.7292 8.50392i 0.680132 0.392674i
\(470\) 0 0
\(471\) 15.6281 + 17.9773i 0.720105 + 0.828351i
\(472\) 0 0
\(473\) 3.22874 + 18.3111i 0.148458 + 0.841945i
\(474\) 0 0
\(475\) 8.23718 9.81669i 0.377948 0.450420i
\(476\) 0 0
\(477\) −0.723024 20.6796i −0.0331050 0.946854i
\(478\) 0 0
\(479\) 37.4812 13.6420i 1.71256 0.623320i 0.715405 0.698710i \(-0.246242\pi\)
0.997154 + 0.0753898i \(0.0240201\pi\)
\(480\) 0 0
\(481\) −2.31177 + 1.93981i −0.105408 + 0.0884477i
\(482\) 0 0
\(483\) −9.36387 + 0.163645i −0.426071 + 0.00744611i
\(484\) 0 0
\(485\) 9.28139i 0.421446i
\(486\) 0 0
\(487\) 32.0323 1.45152 0.725762 0.687946i \(-0.241488\pi\)
0.725762 + 0.687946i \(0.241488\pi\)
\(488\) 0 0
\(489\) −0.384959 22.0276i −0.0174084 0.996120i
\(490\) 0 0
\(491\) 16.9415 + 20.1901i 0.764559 + 0.911166i 0.998127 0.0611743i \(-0.0194845\pi\)
−0.233568 + 0.972341i \(0.575040\pi\)
\(492\) 0 0
\(493\) −2.47328 6.79527i −0.111391 0.306044i
\(494\) 0 0
\(495\) 5.54133 0.193742i 0.249064 0.00870806i
\(496\) 0 0
\(497\) 14.6192 + 12.2670i 0.655762 + 0.550250i
\(498\) 0 0
\(499\) 0.796549 0.140453i 0.0356584 0.00628755i −0.155790 0.987790i \(-0.549792\pi\)
0.191449 + 0.981503i \(0.438681\pi\)
\(500\) 0 0
\(501\) −25.8853 + 22.5027i −1.15647 + 1.00535i
\(502\) 0 0
\(503\) 0.838775 + 1.45280i 0.0373991 + 0.0647772i 0.884119 0.467262i \(-0.154759\pi\)
−0.846720 + 0.532039i \(0.821426\pi\)
\(504\) 0 0
\(505\) 9.91581 17.1747i 0.441248 0.764264i
\(506\) 0 0
\(507\) −20.2701 + 7.78145i −0.900227 + 0.345586i
\(508\) 0 0
\(509\) −2.89525 + 7.95462i −0.128330 + 0.352583i −0.987173 0.159656i \(-0.948961\pi\)
0.858843 + 0.512239i \(0.171184\pi\)
\(510\) 0 0
\(511\) −2.30792 + 13.0889i −0.102096 + 0.579018i
\(512\) 0 0
\(513\) 15.8663 + 8.08303i 0.700515 + 0.356874i
\(514\) 0 0
\(515\) 4.30174 + 0.758513i 0.189557 + 0.0334241i
\(516\) 0 0
\(517\) 6.91855 19.0085i 0.304277 0.835995i
\(518\) 0 0
\(519\) 5.34124 6.59617i 0.234455 0.289540i
\(520\) 0 0
\(521\) 1.96303 3.40007i 0.0860020 0.148960i −0.819816 0.572627i \(-0.805924\pi\)
0.905818 + 0.423668i \(0.139258\pi\)
\(522\) 0 0
\(523\) 14.9783 8.64774i 0.654956 0.378139i −0.135396 0.990792i \(-0.543231\pi\)
0.790353 + 0.612652i \(0.209897\pi\)
\(524\) 0 0
\(525\) 1.73350 + 8.91707i 0.0756561 + 0.389173i
\(526\) 0 0
\(527\) 2.08426 + 11.8205i 0.0907920 + 0.514907i
\(528\) 0 0
\(529\) −6.23317 5.23025i −0.271008 0.227402i
\(530\) 0 0
\(531\) −21.2033 23.5467i −0.920146 1.02184i
\(532\) 0 0
\(533\) 1.27802 + 3.51134i 0.0553573 + 0.152093i
\(534\) 0 0
\(535\) 3.58137 3.00512i 0.154836 0.129923i
\(536\) 0 0
\(537\) −5.50597 + 3.30848i −0.237600 + 0.142771i
\(538\) 0 0
\(539\) 8.28529i 0.356873i
\(540\) 0 0
\(541\) 11.4118i 0.490630i −0.969443 0.245315i \(-0.921109\pi\)
0.969443 0.245315i \(-0.0788914\pi\)
\(542\) 0 0
\(543\) −24.7208 13.7023i −1.06087 0.588022i
\(544\) 0 0
\(545\) −17.7243 + 14.8724i −0.759225 + 0.637065i
\(546\) 0 0
\(547\) −4.84214 13.3037i −0.207035 0.568824i 0.792101 0.610390i \(-0.208987\pi\)
−0.999136 + 0.0415665i \(0.986765\pi\)
\(548\) 0 0
\(549\) −4.07760 10.0912i −0.174028 0.430681i
\(550\) 0 0
\(551\) −10.4598 8.77685i −0.445604 0.373906i
\(552\) 0 0
\(553\) −2.23406 12.6700i −0.0950018 0.538782i
\(554\) 0 0
\(555\) −8.14290 2.80363i −0.345647 0.119008i
\(556\) 0 0
\(557\) −29.6837 + 17.1379i −1.25774 + 0.726155i −0.972634 0.232342i \(-0.925361\pi\)
−0.285103 + 0.958497i \(0.592028\pi\)
\(558\) 0 0
\(559\) −3.84831 + 6.66547i −0.162766 + 0.281919i
\(560\) 0 0
\(561\) 5.11110 + 0.809409i 0.215791 + 0.0341733i
\(562\) 0 0
\(563\) −11.1729 + 30.6973i −0.470882 + 1.29374i 0.446162 + 0.894952i \(0.352790\pi\)
−0.917044 + 0.398786i \(0.869432\pi\)
\(564\) 0 0
\(565\) 2.93297 + 0.517161i 0.123391 + 0.0217571i
\(566\) 0 0
\(567\) −11.5309 + 5.13504i −0.484250 + 0.215651i
\(568\) 0 0
\(569\) 4.57663 25.9553i 0.191862 1.08810i −0.724955 0.688797i \(-0.758139\pi\)
0.916817 0.399308i \(-0.130750\pi\)
\(570\) 0 0
\(571\) 14.3103 39.3171i 0.598865 1.64537i −0.154673 0.987966i \(-0.549432\pi\)
0.753539 0.657404i \(-0.228345\pi\)
\(572\) 0 0
\(573\) −1.86922 + 11.8034i −0.0780880 + 0.493095i
\(574\) 0 0
\(575\) 7.20837 12.4853i 0.300610 0.520672i
\(576\) 0 0
\(577\) −6.39933 11.0840i −0.266408 0.461431i 0.701524 0.712646i \(-0.252503\pi\)
−0.967931 + 0.251215i \(0.919170\pi\)
\(578\) 0 0
\(579\) 15.6079 + 5.37387i 0.648643 + 0.223330i
\(580\) 0 0
\(581\) −1.82120 + 0.321126i −0.0755560 + 0.0133226i
\(582\) 0 0
\(583\) −8.69808 7.29856i −0.360238 0.302275i
\(584\) 0 0
\(585\) 1.80869 + 1.41298i 0.0747800 + 0.0584194i
\(586\) 0 0
\(587\) 4.86117 + 13.3560i 0.200642 + 0.551260i 0.998681 0.0513464i \(-0.0163513\pi\)
−0.798039 + 0.602606i \(0.794129\pi\)
\(588\) 0 0
\(589\) 14.5680 + 17.3615i 0.600264 + 0.715367i
\(590\) 0 0
\(591\) −3.04374 1.68709i −0.125203 0.0693975i
\(592\) 0 0
\(593\) −22.4225 −0.920782 −0.460391 0.887716i \(-0.652291\pi\)
−0.460391 + 0.887716i \(0.652291\pi\)
\(594\) 0 0
\(595\) 2.85778i 0.117158i
\(596\) 0 0
\(597\) −19.0131 31.6417i −0.778156 1.29501i
\(598\) 0 0
\(599\) −3.21966 + 2.70162i −0.131552 + 0.110385i −0.706190 0.708023i \(-0.749587\pi\)
0.574638 + 0.818408i \(0.305143\pi\)
\(600\) 0 0
\(601\) −12.5218 + 4.55756i −0.510775 + 0.185907i −0.584534 0.811369i \(-0.698723\pi\)
0.0737590 + 0.997276i \(0.476500\pi\)
\(602\) 0 0
\(603\) −35.5849 + 7.56537i −1.44913 + 0.308086i
\(604\) 0 0
\(605\) −5.98270 + 7.12991i −0.243231 + 0.289872i
\(606\) 0 0
\(607\) 5.79180 + 32.8469i 0.235082 + 1.33322i 0.842441 + 0.538789i \(0.181118\pi\)
−0.607359 + 0.794428i \(0.707771\pi\)
\(608\) 0 0
\(609\) 9.50128 1.84707i 0.385011 0.0748471i
\(610\) 0 0
\(611\) 7.25156 4.18669i 0.293367 0.169375i
\(612\) 0 0
\(613\) −11.1640 6.44552i −0.450908 0.260332i 0.257305 0.966330i \(-0.417165\pi\)
−0.708214 + 0.705998i \(0.750499\pi\)
\(614\) 0 0
\(615\) −6.71060 + 8.28726i −0.270597 + 0.334174i
\(616\) 0 0
\(617\) 20.7471 + 7.55132i 0.835246 + 0.304005i 0.724010 0.689789i \(-0.242297\pi\)
0.111236 + 0.993794i \(0.464519\pi\)
\(618\) 0 0
\(619\) 0.110454 + 0.0194760i 0.00443952 + 0.000782807i 0.175867 0.984414i \(-0.443727\pi\)
−0.171428 + 0.985197i \(0.554838\pi\)
\(620\) 0 0
\(621\) 19.1577 + 5.85575i 0.768770 + 0.234983i
\(622\) 0 0
\(623\) 1.71619 9.73302i 0.0687579 0.389945i
\(624\) 0 0
\(625\) −7.21791 2.62710i −0.288716 0.105084i
\(626\) 0 0
\(627\) 9.12203 3.50184i 0.364299 0.139850i
\(628\) 0 0
\(629\) −6.96066 4.01874i −0.277540 0.160238i
\(630\) 0 0
\(631\) 7.25883 + 12.5727i 0.288970 + 0.500510i 0.973564 0.228414i \(-0.0733540\pi\)
−0.684595 + 0.728924i \(0.740021\pi\)
\(632\) 0 0
\(633\) 10.5862 + 12.1775i 0.420764 + 0.484013i
\(634\) 0 0
\(635\) 4.74963 0.837488i 0.188483 0.0332347i
\(636\) 0 0
\(637\) −2.20451 + 2.62724i −0.0873460 + 0.104095i
\(638\) 0 0
\(639\) −21.6334 34.6175i −0.855806 1.36945i
\(640\) 0 0
\(641\) −26.9693 + 9.81603i −1.06522 + 0.387710i −0.814389 0.580320i \(-0.802928\pi\)
−0.250835 + 0.968030i \(0.580705\pi\)
\(642\) 0 0
\(643\) 16.9076 + 20.1497i 0.666772 + 0.794628i 0.988341 0.152258i \(-0.0486546\pi\)
−0.321569 + 0.946886i \(0.604210\pi\)
\(644\) 0 0
\(645\) −21.9608 + 0.383792i −0.864706 + 0.0151118i
\(646\) 0 0
\(647\) −31.9679 −1.25679 −0.628394 0.777895i \(-0.716287\pi\)
−0.628394 + 0.777895i \(0.716287\pi\)
\(648\) 0 0
\(649\) −17.3874 −0.682516
\(650\) 0 0
\(651\) −16.0632 + 0.280725i −0.629567 + 0.0110025i
\(652\) 0 0
\(653\) −24.4383 29.1244i −0.956344 1.13973i −0.990109 0.140297i \(-0.955194\pi\)
0.0337653 0.999430i \(-0.489250\pi\)
\(654\) 0 0
\(655\) 8.35469 3.04086i 0.326445 0.118816i
\(656\) 0 0
\(657\) 13.3457 25.1022i 0.520666 0.979330i
\(658\) 0 0
\(659\) 13.8230 16.4736i 0.538469 0.641722i −0.426375 0.904546i \(-0.640210\pi\)
0.964844 + 0.262825i \(0.0846540\pi\)
\(660\) 0 0
\(661\) −40.0325 + 7.05881i −1.55708 + 0.274556i −0.884883 0.465813i \(-0.845762\pi\)
−0.672201 + 0.740369i \(0.734651\pi\)
\(662\) 0 0
\(663\) 1.40535 + 1.61660i 0.0545793 + 0.0627836i
\(664\) 0 0
\(665\) −2.69804 4.67315i −0.104626 0.181217i
\(666\) 0 0
\(667\) −13.3033 7.68064i −0.515104 0.297396i
\(668\) 0 0
\(669\) −39.8036 + 15.2801i −1.53890 + 0.590764i
\(670\) 0 0
\(671\) −5.61218 2.04267i −0.216656 0.0788563i
\(672\) 0 0
\(673\) 7.13129 40.4435i 0.274891 1.55898i −0.464417 0.885616i \(-0.653736\pi\)
0.739308 0.673367i \(-0.235153\pi\)
\(674\) 0 0
\(675\) 2.36681 19.2862i 0.0910985 0.742328i
\(676\) 0 0
\(677\) −17.2637 3.04406i −0.663499 0.116993i −0.168251 0.985744i \(-0.553812\pi\)
−0.495248 + 0.868752i \(0.664923\pi\)
\(678\) 0 0
\(679\) 10.8951 + 3.96547i 0.418114 + 0.152181i
\(680\) 0 0
\(681\) 4.45280 5.49899i 0.170632 0.210722i
\(682\) 0 0
\(683\) 34.2463 + 19.7721i 1.31040 + 0.756558i 0.982162 0.188038i \(-0.0602127\pi\)
0.328235 + 0.944596i \(0.393546\pi\)
\(684\) 0 0
\(685\) 15.3126 8.84073i 0.585064 0.337787i
\(686\) 0 0
\(687\) −21.4562 + 4.17113i −0.818605 + 0.159139i
\(688\) 0 0
\(689\) −0.816164 4.62869i −0.0310934 0.176339i
\(690\) 0 0
\(691\) 13.9569 16.6332i 0.530946 0.632757i −0.432186 0.901784i \(-0.642258\pi\)
0.963133 + 0.269027i \(0.0867022\pi\)
\(692\) 0 0
\(693\) −2.14011 + 6.58752i −0.0812960 + 0.250239i
\(694\) 0 0
\(695\) 0.410715 0.149488i 0.0155793 0.00567040i
\(696\) 0 0
\(697\) −7.62376 + 6.39709i −0.288770 + 0.242307i
\(698\) 0 0
\(699\) −21.9248 36.4872i −0.829271 1.38007i
\(700\) 0 0
\(701\) 24.5820i 0.928448i 0.885718 + 0.464224i \(0.153667\pi\)
−0.885718 + 0.464224i \(0.846333\pi\)
\(702\) 0 0
\(703\) −15.1764 −0.572390
\(704\) 0 0
\(705\) 20.8997 + 11.5843i 0.787127 + 0.436290i
\(706\) 0 0
\(707\) 15.9242 + 18.9777i 0.598889 + 0.713729i
\(708\) 0 0
\(709\) 14.8834 + 40.8919i 0.558959 + 1.53573i 0.821151 + 0.570711i \(0.193332\pi\)
−0.262193 + 0.965016i \(0.584446\pi\)
\(710\) 0 0
\(711\) −3.82882 + 27.2518i −0.143592 + 1.02202i
\(712\) 0 0
\(713\) 19.5318 + 16.3891i 0.731473 + 0.613778i
\(714\) 0 0
\(715\) 1.24031 0.218700i 0.0463850 0.00817892i
\(716\) 0 0
\(717\) 17.7379 + 6.10722i 0.662433 + 0.228078i
\(718\) 0 0
\(719\) −2.30085 3.98520i −0.0858074 0.148623i 0.819928 0.572467i \(-0.194014\pi\)
−0.905735 + 0.423844i \(0.860680\pi\)
\(720\) 0 0
\(721\) −2.72831 + 4.72557i −0.101607 + 0.175989i
\(722\) 0 0
\(723\) −3.57434 + 22.5706i −0.132931 + 0.839410i
\(724\) 0 0
\(725\) −5.09606 + 14.0013i −0.189263 + 0.519996i
\(726\) 0 0
\(727\) 0.922052 5.22921i 0.0341970 0.193941i −0.962923 0.269775i \(-0.913051\pi\)
0.997120 + 0.0758339i \(0.0241619\pi\)
\(728\) 0 0
\(729\) 26.8517 2.82568i 0.994509 0.104655i
\(730\) 0 0
\(731\) −20.1874 3.55958i −0.746658 0.131656i
\(732\) 0 0
\(733\) 17.7690 48.8201i 0.656315 1.80321i 0.0633350 0.997992i \(-0.479826\pi\)
0.592980 0.805217i \(-0.297951\pi\)
\(734\) 0 0
\(735\) −9.66676 1.53086i −0.356564 0.0564664i
\(736\) 0 0
\(737\) −9.98153 + 17.2885i −0.367674 + 0.636831i
\(738\) 0 0
\(739\) −8.21344 + 4.74203i −0.302136 + 0.174439i −0.643402 0.765528i \(-0.722478\pi\)
0.341266 + 0.939967i \(0.389144\pi\)
\(740\) 0 0
\(741\) 3.82432 + 1.31673i 0.140490 + 0.0483712i
\(742\) 0 0
\(743\) −1.45201 8.23477i −0.0532691 0.302104i 0.946520 0.322646i \(-0.104572\pi\)
−0.999789 + 0.0205412i \(0.993461\pi\)
\(744\) 0 0
\(745\) −10.1797 8.54176i −0.372954 0.312946i
\(746\) 0 0
\(747\) 3.91721 + 0.550359i 0.143323 + 0.0201366i
\(748\) 0 0
\(749\) 1.99746 + 5.48797i 0.0729855 + 0.200526i
\(750\) 0 0
\(751\) −36.5089 + 30.6346i −1.33223 + 1.11787i −0.348680 + 0.937242i \(0.613370\pi\)
−0.983551 + 0.180632i \(0.942186\pi\)
\(752\) 0 0
\(753\) −30.8512 17.1002i −1.12428 0.623167i
\(754\) 0 0
\(755\) 10.3342i 0.376101i
\(756\) 0 0
\(757\) 22.8271i 0.829666i −0.909898 0.414833i \(-0.863840\pi\)
0.909898 0.414833i \(-0.136160\pi\)
\(758\) 0 0
\(759\) 9.42236 5.66180i 0.342010 0.205510i
\(760\) 0 0
\(761\) −9.00453 + 7.55570i −0.326414 + 0.273894i −0.791237 0.611510i \(-0.790562\pi\)
0.464823 + 0.885404i \(0.346118\pi\)
\(762\) 0 0
\(763\) −9.88546 27.1601i −0.357878 0.983261i
\(764\) 0 0
\(765\) −1.88873 + 5.81376i −0.0682873 + 0.210197i
\(766\) 0 0
\(767\) −5.51349 4.62637i −0.199081 0.167048i
\(768\) 0 0
\(769\) −3.03895 17.2347i −0.109587 0.621501i −0.989288 0.145974i \(-0.953369\pi\)
0.879701 0.475527i \(-0.157743\pi\)
\(770\) 0 0
\(771\) 3.95792 + 20.3594i 0.142541 + 0.733228i
\(772\) 0 0
\(773\) 20.9933 12.1205i 0.755076 0.435943i −0.0724491 0.997372i \(-0.523081\pi\)
0.827525 + 0.561429i \(0.189748\pi\)
\(774\) 0 0
\(775\) 12.3656 21.4178i 0.444185 0.769351i
\(776\) 0 0
\(777\) 6.77013 8.36077i 0.242877 0.299941i
\(778\) 0 0
\(779\) −6.42713 + 17.6584i −0.230276 + 0.632677i
\(780\) 0 0
\(781\) −22.0597 3.88972i −0.789359 0.139185i
\(782\) 0 0
\(783\) −20.5498 2.52187i −0.734390 0.0901244i
\(784\) 0 0
\(785\) −2.68125 + 15.2061i −0.0956979 + 0.542730i
\(786\) 0 0
\(787\) 2.60184 7.14850i 0.0927457 0.254817i −0.884642 0.466270i \(-0.845597\pi\)
0.977388 + 0.211454i \(0.0678197\pi\)
\(788\) 0 0
\(789\) 15.9812 6.13501i 0.568947 0.218412i
\(790\) 0 0
\(791\) −1.86019 + 3.22194i −0.0661406 + 0.114559i
\(792\) 0 0
\(793\) −1.23610 2.14099i −0.0438952 0.0760287i
\(794\) 0 0
\(795\) 10.1226 8.79984i 0.359012 0.312098i
\(796\) 0 0
\(797\) 13.7809 2.42995i 0.488146 0.0860733i 0.0758424 0.997120i \(-0.475835\pi\)
0.412304 + 0.911047i \(0.364724\pi\)
\(798\) 0 0
\(799\) 17.0837 + 14.3350i 0.604380 + 0.507135i
\(800\) 0 0
\(801\) −9.92401 + 18.6662i −0.350648 + 0.659539i
\(802\) 0 0
\(803\) −5.33557 14.6594i −0.188288 0.517317i
\(804\) 0 0
\(805\) −3.90214 4.65039i −0.137532 0.163905i
\(806\) 0 0
\(807\) 0.163112 + 9.33336i 0.00574181 + 0.328550i
\(808\) 0 0
\(809\) −20.7183 −0.728415 −0.364208 0.931318i \(-0.618660\pi\)
−0.364208 + 0.931318i \(0.618660\pi\)
\(810\) 0 0
\(811\) 43.7615i 1.53668i 0.640045 + 0.768338i \(0.278916\pi\)
−0.640045 + 0.768338i \(0.721084\pi\)
\(812\) 0 0
\(813\) 10.8233 0.189150i 0.379589 0.00663378i
\(814\) 0 0
\(815\) 10.9396 9.17939i 0.383197 0.321540i
\(816\) 0 0
\(817\) −36.3718 + 13.2382i −1.27249 + 0.463148i
\(818\) 0 0
\(819\) −2.43140 + 1.51945i −0.0849600 + 0.0530939i
\(820\) 0 0
\(821\) 12.4887 14.8834i 0.435858 0.519435i −0.502745 0.864435i \(-0.667677\pi\)
0.938603 + 0.345000i \(0.112121\pi\)
\(822\) 0 0
\(823\) −6.24682 35.4275i −0.217750 1.23492i −0.876069 0.482185i \(-0.839843\pi\)
0.658319 0.752739i \(-0.271268\pi\)
\(824\) 0 0
\(825\) −6.99534 8.04688i −0.243547 0.280156i
\(826\) 0 0
\(827\) 35.6157 20.5627i 1.23848 0.715037i 0.269697 0.962945i \(-0.413077\pi\)
0.968783 + 0.247909i \(0.0797433\pi\)
\(828\) 0 0
\(829\) 43.3862 + 25.0490i 1.50687 + 0.869989i 0.999968 + 0.00798294i \(0.00254108\pi\)
0.506897 + 0.862006i \(0.330792\pi\)
\(830\) 0 0
\(831\) −8.81063 22.9510i −0.305637 0.796162i
\(832\) 0 0
\(833\) −8.58341 3.12411i −0.297397 0.108244i
\(834\) 0 0
\(835\) −21.8951 3.86070i −0.757711 0.133605i
\(836\) 0 0
\(837\) 32.8640 + 10.0452i 1.13594 + 0.347214i
\(838\) 0 0
\(839\) −2.93816 + 16.6631i −0.101436 + 0.575275i 0.891148 + 0.453714i \(0.149901\pi\)
−0.992584 + 0.121561i \(0.961210\pi\)
\(840\) 0 0
\(841\) −12.3325 4.48865i −0.425257 0.154781i
\(842\) 0 0
\(843\) 37.5234 + 30.3846i 1.29238 + 1.04650i
\(844\) 0 0
\(845\) −12.1886 7.03706i −0.419299 0.242082i
\(846\) 0 0
\(847\) −5.81341 10.0691i −0.199751 0.345979i
\(848\) 0 0
\(849\) −38.0364 + 7.39437i −1.30541 + 0.253774i
\(850\) 0 0
\(851\) −16.8143 + 2.96481i −0.576385 + 0.101632i
\(852\) 0 0
\(853\) 16.8126 20.0365i 0.575653 0.686037i −0.397128 0.917763i \(-0.629993\pi\)
0.972781 + 0.231726i \(0.0744374\pi\)
\(854\) 0 0
\(855\) 2.40027 + 11.2900i 0.0820876 + 0.386111i
\(856\) 0 0
\(857\) −39.5672 + 14.4013i −1.35159 + 0.491938i −0.913444 0.406965i \(-0.866587\pi\)
−0.438146 + 0.898904i \(0.644365\pi\)
\(858\) 0 0
\(859\) 27.7503 + 33.0715i 0.946827 + 1.12838i 0.991594 + 0.129387i \(0.0413011\pi\)
−0.0447668 + 0.998997i \(0.514254\pi\)
\(860\) 0 0
\(861\) −6.86098 11.4180i −0.233822 0.389126i
\(862\) 0 0
\(863\) 31.5239 1.07308 0.536542 0.843873i \(-0.319730\pi\)
0.536542 + 0.843873i \(0.319730\pi\)
\(864\) 0 0
\(865\) 5.50169 0.187063
\(866\) 0 0
\(867\) 11.5089 20.7636i 0.390861 0.705167i
\(868\) 0 0
\(869\) 9.70666 + 11.5679i 0.329276 + 0.392416i
\(870\) 0 0
\(871\) −7.76516 + 2.82629i −0.263112 + 0.0957651i
\(872\) 0 0
\(873\) −19.5437 15.2679i −0.661453 0.516739i
\(874\) 0 0
\(875\) −8.84571 + 10.5419i −0.299040 + 0.356382i
\(876\) 0 0
\(877\) −22.1917 + 3.91299i −0.749360 + 0.132132i −0.535269 0.844681i \(-0.679790\pi\)
−0.214091 + 0.976814i \(0.568679\pi\)
\(878\) 0 0
\(879\) 0.214665 0.623474i 0.00724045 0.0210293i
\(880\) 0 0
\(881\) 15.0315 + 26.0353i 0.506424 + 0.877153i 0.999972 + 0.00743425i \(0.00236642\pi\)
−0.493548 + 0.869719i \(0.664300\pi\)
\(882\) 0 0
\(883\) −11.7757 6.79869i −0.396283 0.228794i 0.288596 0.957451i \(-0.406812\pi\)
−0.684879 + 0.728657i \(0.740145\pi\)
\(884\) 0 0
\(885\) 3.21263 20.2865i 0.107991 0.681925i
\(886\) 0 0
\(887\) −34.6577 12.6144i −1.16369 0.423549i −0.313277 0.949662i \(-0.601427\pi\)
−0.850415 + 0.526112i \(0.823649\pi\)
\(888\) 0 0
\(889\) −1.04619 + 5.93322i −0.0350880 + 0.198994i
\(890\) 0 0
\(891\) 8.70751 11.9870i 0.291713 0.401579i
\(892\) 0 0
\(893\) 41.4697 + 7.31222i 1.38773 + 0.244694i
\(894\) 0 0
\(895\) −3.91267 1.42409i −0.130786 0.0476022i
\(896\) 0 0
\(897\) 4.49426 + 0.711724i 0.150059 + 0.0237638i
\(898\) 0 0
\(899\) −22.8210 13.1757i −0.761124 0.439435i
\(900\) 0 0
\(901\) 10.8409 6.25901i 0.361163 0.208518i
\(902\) 0 0
\(903\) 8.93224 25.9429i 0.297246 0.863326i
\(904\) 0 0
\(905\) −3.18143 18.0428i −0.105754 0.599763i
\(906\) 0 0
\(907\) 2.75537 3.28372i 0.0914905 0.109034i −0.718357 0.695675i \(-0.755105\pi\)
0.809847 + 0.586641i \(0.199550\pi\)
\(908\) 0 0
\(909\) −19.8530 49.1319i −0.658482 1.62960i
\(910\) 0 0
\(911\) 26.1940 9.53385i 0.867847 0.315871i 0.130552 0.991441i \(-0.458325\pi\)
0.737295 + 0.675571i \(0.236103\pi\)
\(912\) 0 0
\(913\) 1.66279 1.39525i 0.0550303 0.0461759i
\(914\) 0 0
\(915\) 3.42021 6.17053i 0.113069 0.203991i
\(916\) 0 0
\(917\) 11.1065i 0.366767i
\(918\) 0 0
\(919\) −54.1746 −1.78705 −0.893527 0.449009i \(-0.851777\pi\)
−0.893527 + 0.449009i \(0.851777\pi\)
\(920\) 0 0
\(921\) −16.2364 + 9.75627i −0.535007 + 0.321480i
\(922\) 0 0
\(923\) −5.96010 7.10297i −0.196179 0.233797i
\(924\) 0 0
\(925\) 5.66414 + 15.5621i 0.186236 + 0.511678i
\(926\) 0 0
\(927\) 8.67354 7.81035i 0.284876 0.256526i
\(928\) 0 0
\(929\) −26.4712 22.2120i −0.868491 0.728751i 0.0952887 0.995450i \(-0.469623\pi\)
−0.963780 + 0.266699i \(0.914067\pi\)
\(930\) 0 0
\(931\) −16.9854 + 2.99498i −0.556674 + 0.0981566i
\(932\) 0 0
\(933\) 6.03449 + 31.0412i 0.197560 + 1.01624i
\(934\) 0 0
\(935\) 1.67717 + 2.90494i 0.0548493 + 0.0950018i
\(936\) 0 0
\(937\) −13.1443 + 22.7665i −0.429404 + 0.743750i −0.996820 0.0796811i \(-0.974610\pi\)
0.567416 + 0.823431i \(0.307943\pi\)
\(938\) 0 0
\(939\) 4.37758 + 3.54474i 0.142857 + 0.115678i
\(940\) 0 0
\(941\) 13.8588 38.0767i 0.451784 1.24127i −0.479683 0.877442i \(-0.659248\pi\)
0.931467 0.363825i \(-0.118529\pi\)
\(942\) 0 0
\(943\) −3.67106 + 20.8196i −0.119546 + 0.677980i
\(944\) 0 0
\(945\) −7.29049 3.71411i −0.237160 0.120820i
\(946\) 0 0
\(947\) −38.4009 6.77112i −1.24786 0.220032i −0.489580 0.871958i \(-0.662850\pi\)
−0.758282 + 0.651926i \(0.773961\pi\)
\(948\) 0 0
\(949\) 2.20861 6.06810i 0.0716944 0.196979i
\(950\) 0 0
\(951\) 10.5721 + 27.5395i 0.342824 + 0.893031i
\(952\) 0 0
\(953\) 12.7586 22.0985i 0.413291 0.715842i −0.581956 0.813220i \(-0.697712\pi\)
0.995247 + 0.0973785i \(0.0310458\pi\)
\(954\) 0 0
\(955\) −6.70859 + 3.87321i −0.217085 + 0.125334i
\(956\) 0 0
\(957\) −8.57408 + 7.45365i −0.277161 + 0.240942i
\(958\) 0 0
\(959\) 3.83547 + 21.7520i 0.123854 + 0.702410i
\(960\) 0 0
\(961\) 9.75845 + 8.18831i 0.314789 + 0.264139i
\(962\) 0 0
\(963\) −0.436503 12.4847i −0.0140661 0.402312i
\(964\) 0 0
\(965\) 3.65963 + 10.0547i 0.117808 + 0.323674i
\(966\) 0 0
\(967\) 35.3489 29.6612i 1.13674 0.953841i 0.137416 0.990513i \(-0.456120\pi\)
0.999327 + 0.0366729i \(0.0116760\pi\)
\(968\) 0 0
\(969\) 0.188231 + 10.7707i 0.00604685 + 0.346004i
\(970\) 0 0
\(971\) 1.40859i 0.0452039i 0.999745 + 0.0226020i \(0.00719504\pi\)
−0.999745 + 0.0226020i \(0.992805\pi\)
\(972\) 0 0
\(973\) 0.545991i 0.0175037i
\(974\) 0 0
\(975\) −0.0771213 4.41293i −0.00246986 0.141327i
\(976\) 0 0
\(977\) 36.5361 30.6574i 1.16889 0.980817i 0.168904 0.985633i \(-0.445977\pi\)
0.999988 + 0.00481536i \(0.00153278\pi\)
\(978\) 0 0
\(979\) 3.96758 + 10.9008i 0.126805 + 0.348393i
\(980\) 0 0
\(981\) 2.16026 + 61.7869i 0.0689719 + 1.97270i
\(982\) 0 0
\(983\) −13.2755 11.1394i −0.423421 0.355293i 0.406041 0.913855i \(-0.366909\pi\)
−0.829463 + 0.558562i \(0.811353\pi\)
\(984\) 0 0
\(985\) −0.391712 2.22151i −0.0124810 0.0707832i
\(986\) 0 0
\(987\) −22.5277 + 19.5839i −0.717066 + 0.623362i
\(988\) 0 0
\(989\) −37.7108 + 21.7723i −1.19913 + 0.692320i
\(990\) 0 0
\(991\) −16.1511 + 27.9745i −0.513056 + 0.888638i 0.486830 + 0.873497i \(0.338153\pi\)
−0.999885 + 0.0151416i \(0.995180\pi\)
\(992\) 0 0
\(993\) 3.48858 + 9.08749i 0.110707 + 0.288383i
\(994\) 0 0
\(995\) 8.18398 22.4853i 0.259450 0.712832i
\(996\) 0 0
\(997\) 24.1513 + 4.25852i 0.764879 + 0.134869i 0.542459 0.840082i \(-0.317493\pi\)
0.222420 + 0.974951i \(0.428604\pi\)
\(998\) 0 0
\(999\) −19.2986 + 12.5344i −0.610581 + 0.396571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.241.34 204
4.3 odd 2 216.2.t.a.133.34 yes 204
8.3 odd 2 216.2.t.a.133.4 yes 204
8.5 even 2 inner 864.2.bf.a.241.1 204
12.11 even 2 648.2.t.a.397.1 204
24.11 even 2 648.2.t.a.397.31 204
27.13 even 9 inner 864.2.bf.a.337.1 204
108.67 odd 18 216.2.t.a.13.4 204
108.95 even 18 648.2.t.a.253.31 204
216.13 even 18 inner 864.2.bf.a.337.34 204
216.67 odd 18 216.2.t.a.13.34 yes 204
216.203 even 18 648.2.t.a.253.1 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.4 204 108.67 odd 18
216.2.t.a.13.34 yes 204 216.67 odd 18
216.2.t.a.133.4 yes 204 8.3 odd 2
216.2.t.a.133.34 yes 204 4.3 odd 2
648.2.t.a.253.1 204 216.203 even 18
648.2.t.a.253.31 204 108.95 even 18
648.2.t.a.397.1 204 12.11 even 2
648.2.t.a.397.31 204 24.11 even 2
864.2.bf.a.241.1 204 8.5 even 2 inner
864.2.bf.a.241.34 204 1.1 even 1 trivial
864.2.bf.a.337.1 204 27.13 even 9 inner
864.2.bf.a.337.34 204 216.13 even 18 inner