Properties

Label 864.2.bf.a.241.29
Level $864$
Weight $2$
Character 864.241
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 241.29
Character \(\chi\) \(=\) 864.241
Dual form 864.2.bf.a.337.29

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40283 + 1.01591i) q^{3} +(-1.55785 - 1.85658i) q^{5} +(-0.763942 + 0.278052i) q^{7} +(0.935847 + 2.85030i) q^{9} +(2.23007 - 2.65769i) q^{11} +(2.83964 - 0.500705i) q^{13} +(-0.299281 - 4.18710i) q^{15} +(-3.55127 - 6.15099i) q^{17} +(5.16371 + 2.98127i) q^{19} +(-1.35415 - 0.386038i) q^{21} +(6.58997 + 2.39855i) q^{23} +(-0.151733 + 0.860521i) q^{25} +(-1.58282 + 4.94921i) q^{27} +(6.59552 + 1.16297i) q^{29} +(-2.55724 - 0.930757i) q^{31} +(5.82838 - 1.46273i) q^{33} +(1.70634 + 0.985154i) q^{35} +(3.59434 - 2.07519i) q^{37} +(4.49220 + 2.18242i) q^{39} +(-0.742124 - 4.20880i) q^{41} +(1.77034 - 2.10981i) q^{43} +(3.83389 - 6.17782i) q^{45} +(-2.80028 + 1.01922i) q^{47} +(-4.85602 + 4.07468i) q^{49} +(1.26704 - 12.2365i) q^{51} -7.38929i q^{53} -8.40834 q^{55} +(4.21509 + 9.42808i) q^{57} +(4.72368 + 5.62947i) q^{59} +(0.0900385 + 0.247379i) q^{61} +(-1.50746 - 1.91725i) q^{63} +(-5.35335 - 4.49199i) q^{65} +(-2.20513 + 0.388825i) q^{67} +(6.80787 + 10.0596i) q^{69} +(-2.69918 - 4.67512i) q^{71} +(-1.97245 + 3.41639i) q^{73} +(-1.08707 + 1.05302i) q^{75} +(-0.964666 + 2.65040i) q^{77} +(-1.76846 + 10.0295i) q^{79} +(-7.24838 + 5.33489i) q^{81} +(-7.86515 - 1.38684i) q^{83} +(-5.88742 + 16.1756i) q^{85} +(8.07090 + 8.33191i) q^{87} +(2.14833 - 3.72101i) q^{89} +(-2.03010 + 1.17208i) q^{91} +(-2.64179 - 3.90362i) q^{93} +(-2.50935 - 14.2312i) q^{95} +(4.28345 + 3.59424i) q^{97} +(9.66221 + 3.86916i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.40283 + 1.01591i 0.809923 + 0.586537i
\(4\) 0 0
\(5\) −1.55785 1.85658i −0.696694 0.830287i 0.295454 0.955357i \(-0.404529\pi\)
−0.992148 + 0.125070i \(0.960085\pi\)
\(6\) 0 0
\(7\) −0.763942 + 0.278052i −0.288743 + 0.105094i −0.482331 0.875989i \(-0.660210\pi\)
0.193588 + 0.981083i \(0.437988\pi\)
\(8\) 0 0
\(9\) 0.935847 + 2.85030i 0.311949 + 0.950099i
\(10\) 0 0
\(11\) 2.23007 2.65769i 0.672391 0.801324i −0.316716 0.948520i \(-0.602580\pi\)
0.989107 + 0.147196i \(0.0470248\pi\)
\(12\) 0 0
\(13\) 2.83964 0.500705i 0.787574 0.138871i 0.234626 0.972086i \(-0.424614\pi\)
0.552949 + 0.833215i \(0.313502\pi\)
\(14\) 0 0
\(15\) −0.299281 4.18710i −0.0772740 1.08110i
\(16\) 0 0
\(17\) −3.55127 6.15099i −0.861310 1.49183i −0.870665 0.491877i \(-0.836311\pi\)
0.00935441 0.999956i \(-0.497022\pi\)
\(18\) 0 0
\(19\) 5.16371 + 2.98127i 1.18464 + 0.683950i 0.957083 0.289815i \(-0.0935939\pi\)
0.227554 + 0.973765i \(0.426927\pi\)
\(20\) 0 0
\(21\) −1.35415 0.386038i −0.295501 0.0842405i
\(22\) 0 0
\(23\) 6.58997 + 2.39855i 1.37410 + 0.500133i 0.920386 0.391012i \(-0.127875\pi\)
0.453719 + 0.891145i \(0.350097\pi\)
\(24\) 0 0
\(25\) −0.151733 + 0.860521i −0.0303466 + 0.172104i
\(26\) 0 0
\(27\) −1.58282 + 4.94921i −0.304613 + 0.952476i
\(28\) 0 0
\(29\) 6.59552 + 1.16297i 1.22476 + 0.215958i 0.748372 0.663279i \(-0.230836\pi\)
0.476385 + 0.879237i \(0.341947\pi\)
\(30\) 0 0
\(31\) −2.55724 0.930757i −0.459293 0.167169i 0.102003 0.994784i \(-0.467475\pi\)
−0.561296 + 0.827615i \(0.689697\pi\)
\(32\) 0 0
\(33\) 5.82838 1.46273i 1.01459 0.254629i
\(34\) 0 0
\(35\) 1.70634 + 0.985154i 0.288423 + 0.166521i
\(36\) 0 0
\(37\) 3.59434 2.07519i 0.590905 0.341159i −0.174550 0.984648i \(-0.555847\pi\)
0.765455 + 0.643489i \(0.222514\pi\)
\(38\) 0 0
\(39\) 4.49220 + 2.18242i 0.719327 + 0.349467i
\(40\) 0 0
\(41\) −0.742124 4.20880i −0.115900 0.657304i −0.986301 0.164959i \(-0.947251\pi\)
0.870400 0.492345i \(-0.163860\pi\)
\(42\) 0 0
\(43\) 1.77034 2.10981i 0.269975 0.321743i −0.613975 0.789326i \(-0.710430\pi\)
0.883950 + 0.467582i \(0.154875\pi\)
\(44\) 0 0
\(45\) 3.83389 6.17782i 0.571522 0.920935i
\(46\) 0 0
\(47\) −2.80028 + 1.01922i −0.408463 + 0.148668i −0.538076 0.842896i \(-0.680849\pi\)
0.129613 + 0.991565i \(0.458626\pi\)
\(48\) 0 0
\(49\) −4.85602 + 4.07468i −0.693717 + 0.582097i
\(50\) 0 0
\(51\) 1.26704 12.2365i 0.177420 1.71346i
\(52\) 0 0
\(53\) 7.38929i 1.01500i −0.861653 0.507498i \(-0.830570\pi\)
0.861653 0.507498i \(-0.169430\pi\)
\(54\) 0 0
\(55\) −8.40834 −1.13378
\(56\) 0 0
\(57\) 4.21509 + 9.42808i 0.558302 + 1.24878i
\(58\) 0 0
\(59\) 4.72368 + 5.62947i 0.614971 + 0.732894i 0.980197 0.198025i \(-0.0634526\pi\)
−0.365226 + 0.930919i \(0.619008\pi\)
\(60\) 0 0
\(61\) 0.0900385 + 0.247379i 0.0115283 + 0.0316736i 0.945323 0.326135i \(-0.105746\pi\)
−0.933795 + 0.357808i \(0.883524\pi\)
\(62\) 0 0
\(63\) −1.50746 1.91725i −0.189923 0.241550i
\(64\) 0 0
\(65\) −5.35335 4.49199i −0.664001 0.557163i
\(66\) 0 0
\(67\) −2.20513 + 0.388825i −0.269400 + 0.0475025i −0.306716 0.951801i \(-0.599230\pi\)
0.0373162 + 0.999304i \(0.488119\pi\)
\(68\) 0 0
\(69\) 6.80787 + 10.0596i 0.819572 + 1.21103i
\(70\) 0 0
\(71\) −2.69918 4.67512i −0.320334 0.554835i 0.660223 0.751070i \(-0.270462\pi\)
−0.980557 + 0.196235i \(0.937129\pi\)
\(72\) 0 0
\(73\) −1.97245 + 3.41639i −0.230858 + 0.399858i −0.958061 0.286565i \(-0.907487\pi\)
0.727203 + 0.686423i \(0.240820\pi\)
\(74\) 0 0
\(75\) −1.08707 + 1.05302i −0.125524 + 0.121592i
\(76\) 0 0
\(77\) −0.964666 + 2.65040i −0.109934 + 0.302041i
\(78\) 0 0
\(79\) −1.76846 + 10.0295i −0.198968 + 1.12840i 0.707686 + 0.706527i \(0.249739\pi\)
−0.906654 + 0.421875i \(0.861372\pi\)
\(80\) 0 0
\(81\) −7.24838 + 5.33489i −0.805375 + 0.592765i
\(82\) 0 0
\(83\) −7.86515 1.38684i −0.863312 0.152225i −0.275577 0.961279i \(-0.588869\pi\)
−0.587735 + 0.809054i \(0.699980\pi\)
\(84\) 0 0
\(85\) −5.88742 + 16.1756i −0.638581 + 1.75449i
\(86\) 0 0
\(87\) 8.07090 + 8.33191i 0.865292 + 0.893274i
\(88\) 0 0
\(89\) 2.14833 3.72101i 0.227722 0.394426i −0.729410 0.684076i \(-0.760206\pi\)
0.957133 + 0.289650i \(0.0935389\pi\)
\(90\) 0 0
\(91\) −2.03010 + 1.17208i −0.212812 + 0.122867i
\(92\) 0 0
\(93\) −2.64179 3.90362i −0.273941 0.404786i
\(94\) 0 0
\(95\) −2.50935 14.2312i −0.257454 1.46009i
\(96\) 0 0
\(97\) 4.28345 + 3.59424i 0.434918 + 0.364940i 0.833804 0.552061i \(-0.186159\pi\)
−0.398886 + 0.917001i \(0.630603\pi\)
\(98\) 0 0
\(99\) 9.66221 + 3.86916i 0.971089 + 0.388865i
\(100\) 0 0
\(101\) 5.64914 + 15.5209i 0.562110 + 1.54438i 0.816537 + 0.577293i \(0.195891\pi\)
−0.254427 + 0.967092i \(0.581887\pi\)
\(102\) 0 0
\(103\) −14.0312 + 11.7736i −1.38254 + 1.16009i −0.414278 + 0.910151i \(0.635966\pi\)
−0.968262 + 0.249938i \(0.919590\pi\)
\(104\) 0 0
\(105\) 1.39287 + 3.11549i 0.135930 + 0.304040i
\(106\) 0 0
\(107\) 17.0660i 1.64983i −0.565254 0.824917i \(-0.691222\pi\)
0.565254 0.824917i \(-0.308778\pi\)
\(108\) 0 0
\(109\) 18.3759i 1.76009i −0.474890 0.880045i \(-0.657512\pi\)
0.474890 0.880045i \(-0.342488\pi\)
\(110\) 0 0
\(111\) 7.15044 + 0.740394i 0.678690 + 0.0702751i
\(112\) 0 0
\(113\) 6.55711 5.50207i 0.616841 0.517591i −0.279968 0.960009i \(-0.590324\pi\)
0.896809 + 0.442418i \(0.145879\pi\)
\(114\) 0 0
\(115\) −5.81311 15.9714i −0.542076 1.48934i
\(116\) 0 0
\(117\) 4.08463 + 7.62523i 0.377624 + 0.704953i
\(118\) 0 0
\(119\) 4.42326 + 3.71156i 0.405480 + 0.340238i
\(120\) 0 0
\(121\) −0.179992 1.02079i −0.0163629 0.0927987i
\(122\) 0 0
\(123\) 3.23469 6.65815i 0.291662 0.600345i
\(124\) 0 0
\(125\) −8.66046 + 5.00012i −0.774615 + 0.447224i
\(126\) 0 0
\(127\) 2.28240 3.95324i 0.202530 0.350793i −0.746813 0.665034i \(-0.768417\pi\)
0.949343 + 0.314242i \(0.101750\pi\)
\(128\) 0 0
\(129\) 4.62687 1.16119i 0.407373 0.102237i
\(130\) 0 0
\(131\) −4.55139 + 12.5048i −0.397657 + 1.09255i 0.565766 + 0.824566i \(0.308581\pi\)
−0.963422 + 0.267987i \(0.913641\pi\)
\(132\) 0 0
\(133\) −4.77372 0.841736i −0.413934 0.0729878i
\(134\) 0 0
\(135\) 11.6544 4.77153i 1.00305 0.410668i
\(136\) 0 0
\(137\) −0.374428 + 2.12348i −0.0319895 + 0.181422i −0.996616 0.0821992i \(-0.973806\pi\)
0.964626 + 0.263621i \(0.0849167\pi\)
\(138\) 0 0
\(139\) 0.200125 0.549839i 0.0169744 0.0466367i −0.930916 0.365233i \(-0.880989\pi\)
0.947890 + 0.318596i \(0.103211\pi\)
\(140\) 0 0
\(141\) −4.96375 1.41505i −0.418023 0.119169i
\(142\) 0 0
\(143\) 5.00187 8.66350i 0.418278 0.724478i
\(144\) 0 0
\(145\) −8.11572 14.0568i −0.673974 1.16736i
\(146\) 0 0
\(147\) −10.9517 + 0.782791i −0.903278 + 0.0645635i
\(148\) 0 0
\(149\) −21.5708 + 3.80351i −1.76715 + 0.311596i −0.960259 0.279109i \(-0.909961\pi\)
−0.806888 + 0.590705i \(0.798850\pi\)
\(150\) 0 0
\(151\) −5.91767 4.96552i −0.481573 0.404088i 0.369422 0.929262i \(-0.379556\pi\)
−0.850995 + 0.525174i \(0.824000\pi\)
\(152\) 0 0
\(153\) 14.2087 15.8786i 1.14870 1.28371i
\(154\) 0 0
\(155\) 2.25578 + 6.19769i 0.181188 + 0.497811i
\(156\) 0 0
\(157\) −0.882254 1.05143i −0.0704116 0.0839132i 0.729689 0.683779i \(-0.239665\pi\)
−0.800100 + 0.599866i \(0.795220\pi\)
\(158\) 0 0
\(159\) 7.50686 10.3659i 0.595333 0.822068i
\(160\) 0 0
\(161\) −5.70128 −0.449324
\(162\) 0 0
\(163\) 13.5989i 1.06515i 0.846383 + 0.532574i \(0.178775\pi\)
−0.846383 + 0.532574i \(0.821225\pi\)
\(164\) 0 0
\(165\) −11.7954 8.54213i −0.918274 0.665004i
\(166\) 0 0
\(167\) −3.38292 + 2.83861i −0.261778 + 0.219658i −0.764224 0.644950i \(-0.776878\pi\)
0.502446 + 0.864609i \(0.332434\pi\)
\(168\) 0 0
\(169\) −4.40315 + 1.60262i −0.338704 + 0.123278i
\(170\) 0 0
\(171\) −3.66506 + 17.5081i −0.280274 + 1.33888i
\(172\) 0 0
\(173\) 12.4793 14.8722i 0.948781 1.13071i −0.0425201 0.999096i \(-0.513539\pi\)
0.991301 0.131617i \(-0.0420169\pi\)
\(174\) 0 0
\(175\) −0.123355 0.699578i −0.00932472 0.0528831i
\(176\) 0 0
\(177\) 0.907471 + 12.6960i 0.0682097 + 0.954291i
\(178\) 0 0
\(179\) −4.00038 + 2.30962i −0.299002 + 0.172629i −0.641995 0.766709i \(-0.721893\pi\)
0.342992 + 0.939338i \(0.388559\pi\)
\(180\) 0 0
\(181\) 5.55052 + 3.20459i 0.412567 + 0.238195i 0.691892 0.722001i \(-0.256777\pi\)
−0.279325 + 0.960197i \(0.590111\pi\)
\(182\) 0 0
\(183\) −0.125007 + 0.438501i −0.00924075 + 0.0324149i
\(184\) 0 0
\(185\) −9.45221 3.44032i −0.694940 0.252938i
\(186\) 0 0
\(187\) −24.2670 4.27893i −1.77458 0.312906i
\(188\) 0 0
\(189\) −0.166959 4.22102i −0.0121444 0.307034i
\(190\) 0 0
\(191\) 3.51460 19.9323i 0.254307 1.44225i −0.543537 0.839385i \(-0.682915\pi\)
0.797844 0.602864i \(-0.205974\pi\)
\(192\) 0 0
\(193\) 5.28857 + 1.92488i 0.380680 + 0.138556i 0.525270 0.850935i \(-0.323964\pi\)
−0.144590 + 0.989492i \(0.546186\pi\)
\(194\) 0 0
\(195\) −2.94635 11.7400i −0.210993 0.840720i
\(196\) 0 0
\(197\) 3.79439 + 2.19069i 0.270339 + 0.156080i 0.629042 0.777371i \(-0.283447\pi\)
−0.358703 + 0.933452i \(0.616781\pi\)
\(198\) 0 0
\(199\) 6.64564 + 11.5106i 0.471097 + 0.815963i 0.999453 0.0330592i \(-0.0105250\pi\)
−0.528357 + 0.849022i \(0.677192\pi\)
\(200\) 0 0
\(201\) −3.48843 1.69477i −0.246055 0.119540i
\(202\) 0 0
\(203\) −5.36196 + 0.945458i −0.376336 + 0.0663582i
\(204\) 0 0
\(205\) −6.65784 + 7.93450i −0.465004 + 0.554170i
\(206\) 0 0
\(207\) −0.669380 + 21.0281i −0.0465251 + 1.46155i
\(208\) 0 0
\(209\) 19.4387 7.07512i 1.34460 0.489396i
\(210\) 0 0
\(211\) 16.0858 + 19.1703i 1.10739 + 1.31974i 0.942794 + 0.333376i \(0.108188\pi\)
0.164597 + 0.986361i \(0.447368\pi\)
\(212\) 0 0
\(213\) 0.963024 9.30052i 0.0659853 0.637261i
\(214\) 0 0
\(215\) −6.67497 −0.455229
\(216\) 0 0
\(217\) 2.21238 0.150186
\(218\) 0 0
\(219\) −6.23776 + 2.78877i −0.421509 + 0.188447i
\(220\) 0 0
\(221\) −13.1642 15.6884i −0.885518 1.05532i
\(222\) 0 0
\(223\) −1.52221 + 0.554040i −0.101935 + 0.0371013i −0.392484 0.919759i \(-0.628384\pi\)
0.290549 + 0.956860i \(0.406162\pi\)
\(224\) 0 0
\(225\) −2.59474 + 0.372832i −0.172983 + 0.0248555i
\(226\) 0 0
\(227\) −4.47903 + 5.33790i −0.297284 + 0.354289i −0.893923 0.448221i \(-0.852058\pi\)
0.596639 + 0.802510i \(0.296502\pi\)
\(228\) 0 0
\(229\) −24.7618 + 4.36618i −1.63631 + 0.288525i −0.914808 0.403890i \(-0.867658\pi\)
−0.721500 + 0.692415i \(0.756547\pi\)
\(230\) 0 0
\(231\) −4.04583 + 2.73803i −0.266196 + 0.180149i
\(232\) 0 0
\(233\) 7.86096 + 13.6156i 0.514989 + 0.891987i 0.999849 + 0.0173948i \(0.00553722\pi\)
−0.484860 + 0.874592i \(0.661129\pi\)
\(234\) 0 0
\(235\) 6.25469 + 3.61115i 0.408011 + 0.235565i
\(236\) 0 0
\(237\) −12.6699 + 12.2730i −0.822998 + 0.797216i
\(238\) 0 0
\(239\) −14.6050 5.31579i −0.944720 0.343850i −0.176692 0.984266i \(-0.556540\pi\)
−0.768028 + 0.640416i \(0.778762\pi\)
\(240\) 0 0
\(241\) −2.19088 + 12.4251i −0.141127 + 0.800370i 0.829269 + 0.558850i \(0.188757\pi\)
−0.970396 + 0.241520i \(0.922354\pi\)
\(242\) 0 0
\(243\) −15.5880 + 0.120210i −0.999970 + 0.00771147i
\(244\) 0 0
\(245\) 15.1299 + 2.66782i 0.966616 + 0.170441i
\(246\) 0 0
\(247\) 16.1558 + 5.88024i 1.02797 + 0.374151i
\(248\) 0 0
\(249\) −9.62454 9.93579i −0.609930 0.629655i
\(250\) 0 0
\(251\) −4.86765 2.81034i −0.307244 0.177387i 0.338449 0.940985i \(-0.390098\pi\)
−0.645692 + 0.763598i \(0.723431\pi\)
\(252\) 0 0
\(253\) 21.0707 12.1652i 1.32470 0.764818i
\(254\) 0 0
\(255\) −24.6920 + 16.7104i −1.54627 + 1.04645i
\(256\) 0 0
\(257\) 3.35726 + 19.0399i 0.209420 + 1.18768i 0.890331 + 0.455313i \(0.150473\pi\)
−0.680911 + 0.732366i \(0.738416\pi\)
\(258\) 0 0
\(259\) −2.16885 + 2.58474i −0.134766 + 0.160608i
\(260\) 0 0
\(261\) 2.85760 + 19.8876i 0.176881 + 1.23101i
\(262\) 0 0
\(263\) −10.8424 + 3.94631i −0.668571 + 0.243340i −0.653932 0.756553i \(-0.726882\pi\)
−0.0146383 + 0.999893i \(0.504660\pi\)
\(264\) 0 0
\(265\) −13.7188 + 11.5114i −0.842739 + 0.707142i
\(266\) 0 0
\(267\) 6.79395 3.03742i 0.415783 0.185887i
\(268\) 0 0
\(269\) 13.3630i 0.814758i −0.913259 0.407379i \(-0.866443\pi\)
0.913259 0.407379i \(-0.133557\pi\)
\(270\) 0 0
\(271\) −3.26667 −0.198436 −0.0992182 0.995066i \(-0.531634\pi\)
−0.0992182 + 0.995066i \(0.531634\pi\)
\(272\) 0 0
\(273\) −4.03860 0.418178i −0.244427 0.0253093i
\(274\) 0 0
\(275\) 1.94863 + 2.32228i 0.117507 + 0.140039i
\(276\) 0 0
\(277\) 0.102104 + 0.280528i 0.00613482 + 0.0168553i 0.942722 0.333579i \(-0.108256\pi\)
−0.936587 + 0.350434i \(0.886034\pi\)
\(278\) 0 0
\(279\) 0.259753 8.15992i 0.0155510 0.488522i
\(280\) 0 0
\(281\) −13.3262 11.1820i −0.794976 0.667064i 0.151996 0.988381i \(-0.451430\pi\)
−0.946972 + 0.321317i \(0.895874\pi\)
\(282\) 0 0
\(283\) 1.31422 0.231732i 0.0781220 0.0137750i −0.134451 0.990920i \(-0.542927\pi\)
0.212573 + 0.977145i \(0.431816\pi\)
\(284\) 0 0
\(285\) 10.9375 22.5132i 0.647880 1.33357i
\(286\) 0 0
\(287\) 1.73720 + 3.00893i 0.102544 + 0.177611i
\(288\) 0 0
\(289\) −16.7231 + 28.9652i −0.983711 + 1.70384i
\(290\) 0 0
\(291\) 2.35751 + 9.39370i 0.138199 + 0.550668i
\(292\) 0 0
\(293\) −2.77744 + 7.63095i −0.162260 + 0.445805i −0.994003 0.109356i \(-0.965121\pi\)
0.831743 + 0.555161i \(0.187343\pi\)
\(294\) 0 0
\(295\) 3.09274 17.5398i 0.180066 1.02121i
\(296\) 0 0
\(297\) 9.62369 + 15.2437i 0.558423 + 0.884530i
\(298\) 0 0
\(299\) 19.9141 + 3.51140i 1.15166 + 0.203069i
\(300\) 0 0
\(301\) −0.765801 + 2.10402i −0.0441400 + 0.121274i
\(302\) 0 0
\(303\) −7.84307 + 27.5121i −0.450573 + 1.58053i
\(304\) 0 0
\(305\) 0.319011 0.552544i 0.0182665 0.0316386i
\(306\) 0 0
\(307\) 22.1985 12.8163i 1.26693 0.731464i 0.292527 0.956257i \(-0.405504\pi\)
0.974406 + 0.224793i \(0.0721707\pi\)
\(308\) 0 0
\(309\) −31.6444 + 2.26184i −1.80018 + 0.128671i
\(310\) 0 0
\(311\) 3.08781 + 17.5119i 0.175094 + 0.993007i 0.938035 + 0.346539i \(0.112643\pi\)
−0.762942 + 0.646467i \(0.776246\pi\)
\(312\) 0 0
\(313\) −25.2201 21.1622i −1.42553 1.19616i −0.948299 0.317377i \(-0.897198\pi\)
−0.477226 0.878781i \(-0.658358\pi\)
\(314\) 0 0
\(315\) −1.21111 + 5.78552i −0.0682383 + 0.325977i
\(316\) 0 0
\(317\) −2.41535 6.63611i −0.135659 0.372721i 0.853198 0.521587i \(-0.174660\pi\)
−0.988857 + 0.148866i \(0.952438\pi\)
\(318\) 0 0
\(319\) 17.7993 14.9354i 0.996568 0.836220i
\(320\) 0 0
\(321\) 17.3376 23.9407i 0.967688 1.33624i
\(322\) 0 0
\(323\) 42.3492i 2.35637i
\(324\) 0 0
\(325\) 2.51954i 0.139759i
\(326\) 0 0
\(327\) 18.6683 25.7782i 1.03236 1.42554i
\(328\) 0 0
\(329\) 1.85586 1.55725i 0.102317 0.0858539i
\(330\) 0 0
\(331\) −4.15163 11.4065i −0.228194 0.626958i 0.771766 0.635907i \(-0.219374\pi\)
−0.999960 + 0.00894876i \(0.997151\pi\)
\(332\) 0 0
\(333\) 9.27866 + 8.30286i 0.508468 + 0.454994i
\(334\) 0 0
\(335\) 4.15716 + 3.48827i 0.227130 + 0.190585i
\(336\) 0 0
\(337\) −4.48506 25.4361i −0.244317 1.38559i −0.822074 0.569381i \(-0.807183\pi\)
0.577757 0.816209i \(-0.303928\pi\)
\(338\) 0 0
\(339\) 14.7881 1.05701i 0.803180 0.0574088i
\(340\) 0 0
\(341\) −8.17648 + 4.72069i −0.442781 + 0.255640i
\(342\) 0 0
\(343\) 5.42214 9.39142i 0.292768 0.507089i
\(344\) 0 0
\(345\) 8.07074 28.3107i 0.434514 1.52420i
\(346\) 0 0
\(347\) −4.43311 + 12.1799i −0.237982 + 0.653849i 0.761999 + 0.647578i \(0.224218\pi\)
−0.999980 + 0.00627055i \(0.998004\pi\)
\(348\) 0 0
\(349\) 1.00479 + 0.177171i 0.0537849 + 0.00948374i 0.200476 0.979699i \(-0.435751\pi\)
−0.146691 + 0.989182i \(0.546862\pi\)
\(350\) 0 0
\(351\) −2.01653 + 14.8465i −0.107635 + 0.792448i
\(352\) 0 0
\(353\) −2.87234 + 16.2899i −0.152879 + 0.867022i 0.807820 + 0.589430i \(0.200648\pi\)
−0.960699 + 0.277592i \(0.910464\pi\)
\(354\) 0 0
\(355\) −4.47480 + 12.2944i −0.237498 + 0.652520i
\(356\) 0 0
\(357\) 2.43446 + 9.70032i 0.128845 + 0.513395i
\(358\) 0 0
\(359\) −9.03871 + 15.6555i −0.477045 + 0.826266i −0.999654 0.0263063i \(-0.991625\pi\)
0.522609 + 0.852573i \(0.324959\pi\)
\(360\) 0 0
\(361\) 8.27594 + 14.3343i 0.435576 + 0.754439i
\(362\) 0 0
\(363\) 0.784531 1.61484i 0.0411772 0.0847573i
\(364\) 0 0
\(365\) 9.41559 1.66022i 0.492835 0.0869000i
\(366\) 0 0
\(367\) 15.6345 + 13.1189i 0.816112 + 0.684799i 0.952058 0.305917i \(-0.0989630\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(368\) 0 0
\(369\) 11.3018 6.05407i 0.588348 0.315162i
\(370\) 0 0
\(371\) 2.05461 + 5.64499i 0.106670 + 0.293073i
\(372\) 0 0
\(373\) 18.6443 + 22.2194i 0.965366 + 1.15048i 0.988572 + 0.150748i \(0.0481681\pi\)
−0.0232061 + 0.999731i \(0.507387\pi\)
\(374\) 0 0
\(375\) −17.2288 1.78396i −0.889691 0.0921232i
\(376\) 0 0
\(377\) 19.3112 0.994578
\(378\) 0 0
\(379\) 18.7878i 0.965062i −0.875879 0.482531i \(-0.839718\pi\)
0.875879 0.482531i \(-0.160282\pi\)
\(380\) 0 0
\(381\) 7.21795 3.22699i 0.369787 0.165324i
\(382\) 0 0
\(383\) 11.4097 9.57391i 0.583010 0.489204i −0.302924 0.953015i \(-0.597963\pi\)
0.885934 + 0.463811i \(0.153518\pi\)
\(384\) 0 0
\(385\) 6.42348 2.33796i 0.327371 0.119153i
\(386\) 0 0
\(387\) 7.67036 + 3.07154i 0.389906 + 0.156135i
\(388\) 0 0
\(389\) −11.3184 + 13.4888i −0.573866 + 0.683907i −0.972420 0.233238i \(-0.925068\pi\)
0.398553 + 0.917145i \(0.369512\pi\)
\(390\) 0 0
\(391\) −8.64932 49.0527i −0.437415 2.48070i
\(392\) 0 0
\(393\) −19.0886 + 12.9183i −0.962894 + 0.651643i
\(394\) 0 0
\(395\) 21.3755 12.3411i 1.07552 0.620950i
\(396\) 0 0
\(397\) 13.1290 + 7.58002i 0.658924 + 0.380430i 0.791867 0.610694i \(-0.209109\pi\)
−0.132943 + 0.991124i \(0.542443\pi\)
\(398\) 0 0
\(399\) −5.84158 6.03049i −0.292445 0.301902i
\(400\) 0 0
\(401\) 0.563391 + 0.205057i 0.0281344 + 0.0102401i 0.356049 0.934467i \(-0.384124\pi\)
−0.327915 + 0.944707i \(0.606346\pi\)
\(402\) 0 0
\(403\) −7.72766 1.36260i −0.384942 0.0678757i
\(404\) 0 0
\(405\) 21.1966 + 5.14621i 1.05327 + 0.255717i
\(406\) 0 0
\(407\) 2.50040 14.1805i 0.123940 0.702899i
\(408\) 0 0
\(409\) 26.7235 + 9.72655i 1.32139 + 0.480947i 0.903904 0.427736i \(-0.140689\pi\)
0.417487 + 0.908683i \(0.362911\pi\)
\(410\) 0 0
\(411\) −2.68253 + 2.59850i −0.132319 + 0.128174i
\(412\) 0 0
\(413\) −5.17391 2.98716i −0.254591 0.146988i
\(414\) 0 0
\(415\) 9.67799 + 16.7628i 0.475074 + 0.822852i
\(416\) 0 0
\(417\) 0.839329 0.568020i 0.0411021 0.0278160i
\(418\) 0 0
\(419\) −27.5479 + 4.85743i −1.34580 + 0.237301i −0.799691 0.600412i \(-0.795003\pi\)
−0.546110 + 0.837713i \(0.683892\pi\)
\(420\) 0 0
\(421\) 21.0378 25.0719i 1.02532 1.22193i 0.0505502 0.998722i \(-0.483903\pi\)
0.974771 0.223208i \(-0.0716530\pi\)
\(422\) 0 0
\(423\) −5.52571 7.02780i −0.268669 0.341703i
\(424\) 0 0
\(425\) 5.83190 2.12264i 0.282889 0.102963i
\(426\) 0 0
\(427\) −0.137568 0.163948i −0.00665740 0.00793398i
\(428\) 0 0
\(429\) 15.8181 7.07193i 0.763705 0.341436i
\(430\) 0 0
\(431\) 9.98011 0.480725 0.240363 0.970683i \(-0.422734\pi\)
0.240363 + 0.970683i \(0.422734\pi\)
\(432\) 0 0
\(433\) 17.4899 0.840513 0.420257 0.907405i \(-0.361940\pi\)
0.420257 + 0.907405i \(0.361940\pi\)
\(434\) 0 0
\(435\) 2.89555 27.9642i 0.138831 1.34078i
\(436\) 0 0
\(437\) 26.8780 + 32.0319i 1.28575 + 1.53229i
\(438\) 0 0
\(439\) −7.21777 + 2.62705i −0.344485 + 0.125382i −0.508468 0.861081i \(-0.669788\pi\)
0.163983 + 0.986463i \(0.447566\pi\)
\(440\) 0 0
\(441\) −16.1585 10.0278i −0.769454 0.477515i
\(442\) 0 0
\(443\) −3.13735 + 3.73895i −0.149060 + 0.177643i −0.835408 0.549631i \(-0.814768\pi\)
0.686348 + 0.727274i \(0.259213\pi\)
\(444\) 0 0
\(445\) −10.2551 + 1.80826i −0.486140 + 0.0857196i
\(446\) 0 0
\(447\) −34.1241 16.5783i −1.61401 0.784129i
\(448\) 0 0
\(449\) −2.49179 4.31590i −0.117595 0.203680i 0.801219 0.598371i \(-0.204185\pi\)
−0.918814 + 0.394691i \(0.870852\pi\)
\(450\) 0 0
\(451\) −12.8407 7.41357i −0.604644 0.349091i
\(452\) 0 0
\(453\) −3.25694 12.9776i −0.153025 0.609740i
\(454\) 0 0
\(455\) 5.33865 + 1.94311i 0.250280 + 0.0910944i
\(456\) 0 0
\(457\) 3.50014 19.8503i 0.163729 0.928556i −0.786635 0.617418i \(-0.788179\pi\)
0.950365 0.311138i \(-0.100710\pi\)
\(458\) 0 0
\(459\) 36.0635 7.84012i 1.68330 0.365945i
\(460\) 0 0
\(461\) 33.4428 + 5.89687i 1.55759 + 0.274645i 0.885077 0.465444i \(-0.154105\pi\)
0.672510 + 0.740088i \(0.265216\pi\)
\(462\) 0 0
\(463\) 35.9891 + 13.0990i 1.67256 + 0.608760i 0.992260 0.124178i \(-0.0396294\pi\)
0.680295 + 0.732938i \(0.261852\pi\)
\(464\) 0 0
\(465\) −3.13184 + 10.9860i −0.145236 + 0.509462i
\(466\) 0 0
\(467\) 9.53283 + 5.50378i 0.441127 + 0.254685i 0.704075 0.710125i \(-0.251362\pi\)
−0.262949 + 0.964810i \(0.584695\pi\)
\(468\) 0 0
\(469\) 1.57648 0.910182i 0.0727951 0.0420283i
\(470\) 0 0
\(471\) −0.169491 2.37127i −0.00780971 0.109262i
\(472\) 0 0
\(473\) −1.65925 9.41005i −0.0762922 0.432675i
\(474\) 0 0
\(475\) −3.34895 + 3.99113i −0.153660 + 0.183125i
\(476\) 0 0
\(477\) 21.0617 6.91524i 0.964347 0.316627i
\(478\) 0 0
\(479\) −21.5794 + 7.85427i −0.985989 + 0.358871i −0.784166 0.620551i \(-0.786909\pi\)
−0.201823 + 0.979422i \(0.564687\pi\)
\(480\) 0 0
\(481\) 9.16757 7.69250i 0.418005 0.350748i
\(482\) 0 0
\(483\) −7.99791 5.79200i −0.363917 0.263545i
\(484\) 0 0
\(485\) 13.5519i 0.615358i
\(486\) 0 0
\(487\) −8.81274 −0.399343 −0.199672 0.979863i \(-0.563988\pi\)
−0.199672 + 0.979863i \(0.563988\pi\)
\(488\) 0 0
\(489\) −13.8153 + 19.0769i −0.624749 + 0.862688i
\(490\) 0 0
\(491\) −7.55920 9.00870i −0.341142 0.406557i 0.568010 0.823022i \(-0.307713\pi\)
−0.909152 + 0.416465i \(0.863269\pi\)
\(492\) 0 0
\(493\) −16.2691 44.6990i −0.732723 2.01314i
\(494\) 0 0
\(495\) −7.86892 23.9663i −0.353682 1.07720i
\(496\) 0 0
\(497\) 3.36195 + 2.82101i 0.150804 + 0.126540i
\(498\) 0 0
\(499\) 17.3768 3.06399i 0.777891 0.137163i 0.229414 0.973329i \(-0.426319\pi\)
0.548477 + 0.836166i \(0.315208\pi\)
\(500\) 0 0
\(501\) −7.62943 + 0.545327i −0.340858 + 0.0243634i
\(502\) 0 0
\(503\) 10.0037 + 17.3268i 0.446041 + 0.772565i 0.998124 0.0612236i \(-0.0195003\pi\)
−0.552083 + 0.833789i \(0.686167\pi\)
\(504\) 0 0
\(505\) 20.0152 34.6673i 0.890664 1.54268i
\(506\) 0 0
\(507\) −7.80498 2.22502i −0.346631 0.0988166i
\(508\) 0 0
\(509\) −3.57485 + 9.82182i −0.158452 + 0.435345i −0.993360 0.115045i \(-0.963299\pi\)
0.834908 + 0.550390i \(0.185521\pi\)
\(510\) 0 0
\(511\) 0.556906 3.15837i 0.0246361 0.139718i
\(512\) 0 0
\(513\) −22.9281 + 20.8375i −1.01230 + 0.919998i
\(514\) 0 0
\(515\) 43.7173 + 7.70853i 1.92641 + 0.339679i
\(516\) 0 0
\(517\) −3.53605 + 9.71521i −0.155515 + 0.427274i
\(518\) 0 0
\(519\) 32.6151 8.18530i 1.43164 0.359295i
\(520\) 0 0
\(521\) −10.0111 + 17.3397i −0.438593 + 0.759665i −0.997581 0.0695105i \(-0.977856\pi\)
0.558988 + 0.829175i \(0.311190\pi\)
\(522\) 0 0
\(523\) 17.8863 10.3267i 0.782114 0.451554i −0.0550649 0.998483i \(-0.517537\pi\)
0.837179 + 0.546929i \(0.184203\pi\)
\(524\) 0 0
\(525\) 0.537664 1.10670i 0.0234656 0.0483005i
\(526\) 0 0
\(527\) 3.35636 + 19.0349i 0.146206 + 0.829173i
\(528\) 0 0
\(529\) 20.0556 + 16.8287i 0.871985 + 0.731682i
\(530\) 0 0
\(531\) −11.6250 + 18.7322i −0.504482 + 0.812909i
\(532\) 0 0
\(533\) −4.21473 11.5799i −0.182560 0.501580i
\(534\) 0 0
\(535\) −31.6844 + 26.5864i −1.36984 + 1.14943i
\(536\) 0 0
\(537\) −7.95820 0.824033i −0.343422 0.0355597i
\(538\) 0 0
\(539\) 21.9926i 0.947289i
\(540\) 0 0
\(541\) 31.7185i 1.36368i 0.731499 + 0.681842i \(0.238821\pi\)
−0.731499 + 0.681842i \(0.761179\pi\)
\(542\) 0 0
\(543\) 4.53083 + 10.1343i 0.194437 + 0.434905i
\(544\) 0 0
\(545\) −34.1163 + 28.6270i −1.46138 + 1.22624i
\(546\) 0 0
\(547\) 2.69951 + 7.41685i 0.115423 + 0.317122i 0.983930 0.178555i \(-0.0571423\pi\)
−0.868507 + 0.495677i \(0.834920\pi\)
\(548\) 0 0
\(549\) −0.620841 + 0.488145i −0.0264968 + 0.0208335i
\(550\) 0 0
\(551\) 30.5902 + 25.6683i 1.30319 + 1.09350i
\(552\) 0 0
\(553\) −1.43771 8.15365i −0.0611376 0.346728i
\(554\) 0 0
\(555\) −9.76475 14.4288i −0.414491 0.612468i
\(556\) 0 0
\(557\) 11.9380 6.89241i 0.505829 0.292041i −0.225288 0.974292i \(-0.572332\pi\)
0.731118 + 0.682251i \(0.238999\pi\)
\(558\) 0 0
\(559\) 3.97074 6.87753i 0.167944 0.290888i
\(560\) 0 0
\(561\) −29.6954 30.6557i −1.25374 1.29429i
\(562\) 0 0
\(563\) −4.49431 + 12.3480i −0.189413 + 0.520407i −0.997655 0.0684431i \(-0.978197\pi\)
0.808242 + 0.588850i \(0.200419\pi\)
\(564\) 0 0
\(565\) −20.4301 3.60237i −0.859499 0.151553i
\(566\) 0 0
\(567\) 4.05396 6.09097i 0.170251 0.255797i
\(568\) 0 0
\(569\) −6.12718 + 34.7490i −0.256865 + 1.45675i 0.534376 + 0.845247i \(0.320547\pi\)
−0.791241 + 0.611505i \(0.790564\pi\)
\(570\) 0 0
\(571\) −13.0508 + 35.8568i −0.546159 + 1.50056i 0.292697 + 0.956205i \(0.405447\pi\)
−0.838856 + 0.544354i \(0.816775\pi\)
\(572\) 0 0
\(573\) 25.1798 24.3910i 1.05190 1.01895i
\(574\) 0 0
\(575\) −3.06392 + 5.30687i −0.127774 + 0.221312i
\(576\) 0 0
\(577\) −13.9536 24.1683i −0.580895 1.00614i −0.995374 0.0960807i \(-0.969369\pi\)
0.414478 0.910059i \(-0.363964\pi\)
\(578\) 0 0
\(579\) 5.46344 + 8.07300i 0.227053 + 0.335503i
\(580\) 0 0
\(581\) 6.39413 1.12746i 0.265273 0.0467748i
\(582\) 0 0
\(583\) −19.6384 16.4786i −0.813341 0.682474i
\(584\) 0 0
\(585\) 7.79359 19.4624i 0.322225 0.804673i
\(586\) 0 0
\(587\) 3.04495 + 8.36592i 0.125678 + 0.345299i 0.986535 0.163549i \(-0.0522941\pi\)
−0.860857 + 0.508847i \(0.830072\pi\)
\(588\) 0 0
\(589\) −10.4300 12.4300i −0.429760 0.512168i
\(590\) 0 0
\(591\) 3.09733 + 6.92793i 0.127407 + 0.284977i
\(592\) 0 0
\(593\) −13.6477 −0.560446 −0.280223 0.959935i \(-0.590408\pi\)
−0.280223 + 0.959935i \(0.590408\pi\)
\(594\) 0 0
\(595\) 13.9942i 0.573706i
\(596\) 0 0
\(597\) −2.37105 + 22.8987i −0.0970407 + 0.937183i
\(598\) 0 0
\(599\) −23.2233 + 19.4867i −0.948878 + 0.796203i −0.979108 0.203340i \(-0.934820\pi\)
0.0302302 + 0.999543i \(0.490376\pi\)
\(600\) 0 0
\(601\) 2.85426 1.03887i 0.116428 0.0423762i −0.283149 0.959076i \(-0.591379\pi\)
0.399577 + 0.916700i \(0.369157\pi\)
\(602\) 0 0
\(603\) −3.17193 5.92141i −0.129171 0.241138i
\(604\) 0 0
\(605\) −1.61477 + 1.92441i −0.0656497 + 0.0782382i
\(606\) 0 0
\(607\) 4.34423 + 24.6374i 0.176327 + 0.999999i 0.936601 + 0.350397i \(0.113953\pi\)
−0.760274 + 0.649602i \(0.774935\pi\)
\(608\) 0 0
\(609\) −8.48241 4.12096i −0.343724 0.166990i
\(610\) 0 0
\(611\) −7.44146 + 4.29633i −0.301049 + 0.173811i
\(612\) 0 0
\(613\) −11.1629 6.44490i −0.450865 0.260307i 0.257331 0.966323i \(-0.417157\pi\)
−0.708195 + 0.706017i \(0.750490\pi\)
\(614\) 0 0
\(615\) −17.4006 + 4.36696i −0.701658 + 0.176093i
\(616\) 0 0
\(617\) 23.2620 + 8.46669i 0.936495 + 0.340856i 0.764781 0.644291i \(-0.222847\pi\)
0.171714 + 0.985147i \(0.445070\pi\)
\(618\) 0 0
\(619\) 7.07392 + 1.24732i 0.284325 + 0.0501341i 0.313992 0.949426i \(-0.398334\pi\)
−0.0296670 + 0.999560i \(0.509445\pi\)
\(620\) 0 0
\(621\) −22.3017 + 28.8187i −0.894935 + 1.15645i
\(622\) 0 0
\(623\) −0.606562 + 3.43998i −0.0243014 + 0.137820i
\(624\) 0 0
\(625\) 26.8803 + 9.78364i 1.07521 + 0.391346i
\(626\) 0 0
\(627\) 34.4569 + 9.82286i 1.37607 + 0.392287i
\(628\) 0 0
\(629\) −25.5289 14.7391i −1.01791 0.587688i
\(630\) 0 0
\(631\) −19.7806 34.2610i −0.787453 1.36391i −0.927523 0.373767i \(-0.878066\pi\)
0.140070 0.990142i \(-0.455267\pi\)
\(632\) 0 0
\(633\) 3.09025 + 43.2343i 0.122827 + 1.71841i
\(634\) 0 0
\(635\) −10.8951 + 1.92111i −0.432361 + 0.0762368i
\(636\) 0 0
\(637\) −11.7491 + 14.0021i −0.465517 + 0.554782i
\(638\) 0 0
\(639\) 10.7995 12.0687i 0.427220 0.477430i
\(640\) 0 0
\(641\) 20.4795 7.45392i 0.808891 0.294412i 0.0957255 0.995408i \(-0.469483\pi\)
0.713166 + 0.700995i \(0.247261\pi\)
\(642\) 0 0
\(643\) −24.0829 28.7008i −0.949735 1.13185i −0.991155 0.132709i \(-0.957633\pi\)
0.0414197 0.999142i \(-0.486812\pi\)
\(644\) 0 0
\(645\) −9.36383 6.78118i −0.368700 0.267009i
\(646\) 0 0
\(647\) 13.9531 0.548554 0.274277 0.961651i \(-0.411561\pi\)
0.274277 + 0.961651i \(0.411561\pi\)
\(648\) 0 0
\(649\) 25.4955 1.00079
\(650\) 0 0
\(651\) 3.10358 + 2.24758i 0.121639 + 0.0880896i
\(652\) 0 0
\(653\) −16.3129 19.4409i −0.638372 0.760782i 0.345740 0.938330i \(-0.387628\pi\)
−0.984112 + 0.177548i \(0.943183\pi\)
\(654\) 0 0
\(655\) 30.3066 11.0307i 1.18418 0.431006i
\(656\) 0 0
\(657\) −11.5836 2.42486i −0.451921 0.0946027i
\(658\) 0 0
\(659\) 23.0007 27.4112i 0.895981 1.06779i −0.101355 0.994850i \(-0.532318\pi\)
0.997336 0.0729384i \(-0.0232376\pi\)
\(660\) 0 0
\(661\) 29.1329 5.13692i 1.13314 0.199803i 0.424536 0.905411i \(-0.360437\pi\)
0.708603 + 0.705608i \(0.249326\pi\)
\(662\) 0 0
\(663\) −2.52898 35.3818i −0.0982174 1.37412i
\(664\) 0 0
\(665\) 5.87402 + 10.1741i 0.227785 + 0.394535i
\(666\) 0 0
\(667\) 40.6749 + 23.4836i 1.57494 + 0.909290i
\(668\) 0 0
\(669\) −2.69826 0.769211i −0.104321 0.0297394i
\(670\) 0 0
\(671\) 0.858249 + 0.312377i 0.0331323 + 0.0120592i
\(672\) 0 0
\(673\) 3.21781 18.2491i 0.124038 0.703452i −0.857837 0.513922i \(-0.828192\pi\)
0.981875 0.189531i \(-0.0606967\pi\)
\(674\) 0 0
\(675\) −4.01874 2.11301i −0.154681 0.0813297i
\(676\) 0 0
\(677\) −31.1495 5.49250i −1.19717 0.211094i −0.460698 0.887557i \(-0.652401\pi\)
−0.736477 + 0.676463i \(0.763512\pi\)
\(678\) 0 0
\(679\) −4.27169 1.55477i −0.163932 0.0596665i
\(680\) 0 0
\(681\) −11.7061 + 2.93785i −0.448580 + 0.112579i
\(682\) 0 0
\(683\) −29.5187 17.0426i −1.12950 0.652117i −0.185691 0.982608i \(-0.559452\pi\)
−0.943809 + 0.330491i \(0.892786\pi\)
\(684\) 0 0
\(685\) 4.52572 2.61293i 0.172919 0.0998348i
\(686\) 0 0
\(687\) −39.1722 19.0308i −1.49451 0.726072i
\(688\) 0 0
\(689\) −3.69985 20.9829i −0.140953 0.799385i
\(690\) 0 0
\(691\) −5.27112 + 6.28188i −0.200523 + 0.238974i −0.856930 0.515433i \(-0.827631\pi\)
0.656407 + 0.754407i \(0.272075\pi\)
\(692\) 0 0
\(693\) −8.45720 0.269216i −0.321262 0.0102267i
\(694\) 0 0
\(695\) −1.33259 + 0.485021i −0.0505478 + 0.0183979i
\(696\) 0 0
\(697\) −23.2528 + 19.5114i −0.880761 + 0.739046i
\(698\) 0 0
\(699\) −2.80466 + 27.0864i −0.106082 + 1.02450i
\(700\) 0 0
\(701\) 1.97965i 0.0747704i 0.999301 + 0.0373852i \(0.0119029\pi\)
−0.999301 + 0.0373852i \(0.988097\pi\)
\(702\) 0 0
\(703\) 24.7468 0.933344
\(704\) 0 0
\(705\) 5.10564 + 11.4200i 0.192290 + 0.430103i
\(706\) 0 0
\(707\) −8.63122 10.2863i −0.324611 0.386856i
\(708\) 0 0
\(709\) 5.97488 + 16.4158i 0.224391 + 0.616510i 0.999890 0.0148394i \(-0.00472370\pi\)
−0.775499 + 0.631349i \(0.782501\pi\)
\(710\) 0 0
\(711\) −30.2419 + 4.34540i −1.13416 + 0.162965i
\(712\) 0 0
\(713\) −14.6196 12.2673i −0.547510 0.459415i
\(714\) 0 0
\(715\) −23.8767 + 4.21010i −0.892936 + 0.157449i
\(716\) 0 0
\(717\) −15.0879 22.2945i −0.563470 0.832605i
\(718\) 0 0
\(719\) −17.2073 29.8038i −0.641722 1.11150i −0.985048 0.172279i \(-0.944887\pi\)
0.343326 0.939216i \(-0.388446\pi\)
\(720\) 0 0
\(721\) 7.44538 12.8958i 0.277280 0.480264i
\(722\) 0 0
\(723\) −15.6962 + 15.2045i −0.583748 + 0.565462i
\(724\) 0 0
\(725\) −2.00152 + 5.49913i −0.0743345 + 0.204232i
\(726\) 0 0
\(727\) −4.21802 + 23.9216i −0.156438 + 0.887203i 0.801022 + 0.598635i \(0.204290\pi\)
−0.957460 + 0.288567i \(0.906821\pi\)
\(728\) 0 0
\(729\) −21.9894 15.6674i −0.814422 0.580274i
\(730\) 0 0
\(731\) −19.2644 3.39683i −0.712519 0.125636i
\(732\) 0 0
\(733\) 7.76866 21.3442i 0.286942 0.788366i −0.709548 0.704657i \(-0.751101\pi\)
0.996490 0.0837095i \(-0.0266768\pi\)
\(734\) 0 0
\(735\) 18.5144 + 19.1132i 0.682915 + 0.705000i
\(736\) 0 0
\(737\) −3.88422 + 6.72767i −0.143077 + 0.247817i
\(738\) 0 0
\(739\) −0.214406 + 0.123787i −0.00788706 + 0.00455360i −0.503938 0.863740i \(-0.668116\pi\)
0.496051 + 0.868293i \(0.334783\pi\)
\(740\) 0 0
\(741\) 16.6900 + 24.6618i 0.613123 + 0.905975i
\(742\) 0 0
\(743\) −0.843956 4.78631i −0.0309618 0.175593i 0.965406 0.260753i \(-0.0839709\pi\)
−0.996367 + 0.0851603i \(0.972860\pi\)
\(744\) 0 0
\(745\) 40.6657 + 34.1225i 1.48987 + 1.25015i
\(746\) 0 0
\(747\) −3.40768 23.7159i −0.124681 0.867719i
\(748\) 0 0
\(749\) 4.74524 + 13.0374i 0.173387 + 0.476378i
\(750\) 0 0
\(751\) −23.6852 + 19.8743i −0.864287 + 0.725223i −0.962887 0.269905i \(-0.913008\pi\)
0.0986005 + 0.995127i \(0.468563\pi\)
\(752\) 0 0
\(753\) −3.97342 8.88753i −0.144799 0.323879i
\(754\) 0 0
\(755\) 18.7222i 0.681370i
\(756\) 0 0
\(757\) 15.9221i 0.578697i −0.957224 0.289349i \(-0.906561\pi\)
0.957224 0.289349i \(-0.0934387\pi\)
\(758\) 0 0
\(759\) 41.9173 + 4.34033i 1.52150 + 0.157544i
\(760\) 0 0
\(761\) 12.1040 10.1564i 0.438768 0.368170i −0.396480 0.918043i \(-0.629768\pi\)
0.835248 + 0.549873i \(0.185324\pi\)
\(762\) 0 0
\(763\) 5.10946 + 14.0381i 0.184975 + 0.508214i
\(764\) 0 0
\(765\) −51.6149 1.64304i −1.86614 0.0594043i
\(766\) 0 0
\(767\) 16.2323 + 13.6205i 0.586113 + 0.491807i
\(768\) 0 0
\(769\) −7.98567 45.2890i −0.287970 1.63316i −0.694478 0.719514i \(-0.744365\pi\)
0.406507 0.913648i \(-0.366747\pi\)
\(770\) 0 0
\(771\) −14.6332 + 30.1204i −0.527004 + 1.08476i
\(772\) 0 0
\(773\) 35.6666 20.5921i 1.28284 0.740647i 0.305472 0.952201i \(-0.401186\pi\)
0.977366 + 0.211554i \(0.0678526\pi\)
\(774\) 0 0
\(775\) 1.18895 2.05933i 0.0427085 0.0739733i
\(776\) 0 0
\(777\) −5.66839 + 1.42258i −0.203352 + 0.0510347i
\(778\) 0 0
\(779\) 8.71544 23.9455i 0.312263 0.857936i
\(780\) 0 0
\(781\) −18.4444 3.25225i −0.659993 0.116375i
\(782\) 0 0
\(783\) −16.1953 + 30.8019i −0.578772 + 1.10077i
\(784\) 0 0
\(785\) −0.577638 + 3.27595i −0.0206168 + 0.116924i
\(786\) 0 0
\(787\) −6.23669 + 17.1352i −0.222314 + 0.610803i −0.999837 0.0180518i \(-0.994254\pi\)
0.777523 + 0.628854i \(0.216476\pi\)
\(788\) 0 0
\(789\) −19.2191 5.47892i −0.684218 0.195055i
\(790\) 0 0
\(791\) −3.47939 + 6.02648i −0.123713 + 0.214277i
\(792\) 0 0
\(793\) 0.379541 + 0.657384i 0.0134779 + 0.0233444i
\(794\) 0 0
\(795\) −30.9397 + 2.21147i −1.09732 + 0.0784328i
\(796\) 0 0
\(797\) −40.7976 + 7.19372i −1.44512 + 0.254814i −0.840550 0.541734i \(-0.817768\pi\)
−0.604575 + 0.796548i \(0.706657\pi\)
\(798\) 0 0
\(799\) 16.2138 + 13.6050i 0.573602 + 0.481309i
\(800\) 0 0
\(801\) 12.6165 + 2.64107i 0.445782 + 0.0933176i
\(802\) 0 0
\(803\) 4.68101 + 12.8610i 0.165189 + 0.453853i
\(804\) 0 0
\(805\) 8.88176 + 10.5849i 0.313041 + 0.373068i
\(806\) 0 0
\(807\) 13.5757 18.7460i 0.477886 0.659891i
\(808\) 0 0
\(809\) −19.2719 −0.677564 −0.338782 0.940865i \(-0.610015\pi\)
−0.338782 + 0.940865i \(0.610015\pi\)
\(810\) 0 0
\(811\) 15.7750i 0.553935i −0.960879 0.276968i \(-0.910671\pi\)
0.960879 0.276968i \(-0.0893295\pi\)
\(812\) 0 0
\(813\) −4.58258 3.31865i −0.160718 0.116390i
\(814\) 0 0
\(815\) 25.2474 21.1851i 0.884380 0.742083i
\(816\) 0 0
\(817\) 15.4315 5.61659i 0.539878 0.196500i
\(818\) 0 0
\(819\) −5.24063 4.68950i −0.183122 0.163864i
\(820\) 0 0
\(821\) −6.66717 + 7.94562i −0.232686 + 0.277304i −0.869735 0.493519i \(-0.835710\pi\)
0.637049 + 0.770823i \(0.280155\pi\)
\(822\) 0 0
\(823\) −9.20557 52.2074i −0.320886 1.81983i −0.537135 0.843496i \(-0.680493\pi\)
0.216249 0.976338i \(-0.430618\pi\)
\(824\) 0 0
\(825\) 0.374352 + 5.23739i 0.0130333 + 0.182343i
\(826\) 0 0
\(827\) −23.9359 + 13.8194i −0.832332 + 0.480547i −0.854650 0.519204i \(-0.826229\pi\)
0.0223184 + 0.999751i \(0.492895\pi\)
\(828\) 0 0
\(829\) 34.2649 + 19.7829i 1.19007 + 0.687088i 0.958323 0.285688i \(-0.0922221\pi\)
0.231748 + 0.972776i \(0.425555\pi\)
\(830\) 0 0
\(831\) −0.141757 + 0.497260i −0.00491751 + 0.0172498i
\(832\) 0 0
\(833\) 42.3084 + 15.3990i 1.46590 + 0.533543i
\(834\) 0 0
\(835\) 10.5402 + 1.85852i 0.364759 + 0.0643168i
\(836\) 0 0
\(837\) 8.65415 11.1831i 0.299131 0.386544i
\(838\) 0 0
\(839\) −4.95699 + 28.1125i −0.171134 + 0.970551i 0.771378 + 0.636378i \(0.219568\pi\)
−0.942512 + 0.334173i \(0.891543\pi\)
\(840\) 0 0
\(841\) 14.8973 + 5.42218i 0.513700 + 0.186972i
\(842\) 0 0
\(843\) −7.33444 29.2247i −0.252611 1.00655i
\(844\) 0 0
\(845\) 9.83486 + 5.67816i 0.338329 + 0.195335i
\(846\) 0 0
\(847\) 0.421335 + 0.729774i 0.0144773 + 0.0250753i
\(848\) 0 0
\(849\) 2.07904 + 1.01005i 0.0713524 + 0.0346647i
\(850\) 0 0
\(851\) 28.6640 5.05424i 0.982591 0.173257i
\(852\) 0 0
\(853\) −4.41611 + 5.26292i −0.151205 + 0.180199i −0.836330 0.548227i \(-0.815303\pi\)
0.685125 + 0.728425i \(0.259748\pi\)
\(854\) 0 0
\(855\) 38.2148 20.4706i 1.30692 0.700081i
\(856\) 0 0
\(857\) −26.6254 + 9.69084i −0.909505 + 0.331033i −0.754055 0.656811i \(-0.771905\pi\)
−0.155450 + 0.987844i \(0.549683\pi\)
\(858\) 0 0
\(859\) 14.7282 + 17.5524i 0.502520 + 0.598879i 0.956355 0.292206i \(-0.0943892\pi\)
−0.453836 + 0.891085i \(0.649945\pi\)
\(860\) 0 0
\(861\) −0.619806 + 5.98585i −0.0211229 + 0.203997i
\(862\) 0 0
\(863\) −24.0297 −0.817980 −0.408990 0.912539i \(-0.634119\pi\)
−0.408990 + 0.912539i \(0.634119\pi\)
\(864\) 0 0
\(865\) −47.0523 −1.59983
\(866\) 0 0
\(867\) −52.8857 + 23.6440i −1.79609 + 0.802994i
\(868\) 0 0
\(869\) 22.7114 + 27.0664i 0.770432 + 0.918165i
\(870\) 0 0
\(871\) −6.06710 + 2.20824i −0.205576 + 0.0748235i
\(872\) 0 0
\(873\) −6.23599 + 15.5727i −0.211056 + 0.527058i
\(874\) 0 0
\(875\) 5.22579 6.22786i 0.176664 0.210540i
\(876\) 0 0
\(877\) 0.500115 0.0881838i 0.0168877 0.00297776i −0.165198 0.986260i \(-0.552826\pi\)
0.182086 + 0.983283i \(0.441715\pi\)
\(878\) 0 0
\(879\) −11.6486 + 7.88327i −0.392899 + 0.265896i
\(880\) 0 0
\(881\) −11.2219 19.4369i −0.378076 0.654847i 0.612706 0.790311i \(-0.290081\pi\)
−0.990782 + 0.135464i \(0.956747\pi\)
\(882\) 0 0
\(883\) −45.9402 26.5236i −1.54601 0.892589i −0.998440 0.0558294i \(-0.982220\pi\)
−0.547570 0.836760i \(-0.684447\pi\)
\(884\) 0 0
\(885\) 22.1574 21.4633i 0.744814 0.721482i
\(886\) 0 0
\(887\) 26.2975 + 9.57151i 0.882984 + 0.321380i 0.743413 0.668832i \(-0.233206\pi\)
0.139571 + 0.990212i \(0.455428\pi\)
\(888\) 0 0
\(889\) −0.644417 + 3.65467i −0.0216130 + 0.122574i
\(890\) 0 0
\(891\) −1.98590 + 31.1611i −0.0665301 + 1.04394i
\(892\) 0 0
\(893\) −17.4984 3.08544i −0.585562 0.103250i
\(894\) 0 0
\(895\) 10.5200 + 3.82896i 0.351644 + 0.127988i
\(896\) 0 0
\(897\) 24.3688 + 25.1569i 0.813650 + 0.839963i
\(898\) 0 0
\(899\) −15.7839 9.11281i −0.526421 0.303929i
\(900\) 0 0
\(901\) −45.4514 + 26.2414i −1.51421 + 0.874227i
\(902\) 0 0
\(903\) −3.21179 + 2.17359i −0.106882 + 0.0723326i
\(904\) 0 0
\(905\) −2.69732 15.2973i −0.0896620 0.508498i
\(906\) 0 0
\(907\) 17.3874 20.7215i 0.577338 0.688045i −0.395781 0.918345i \(-0.629526\pi\)
0.973120 + 0.230300i \(0.0739707\pi\)
\(908\) 0 0
\(909\) −38.9524 + 30.6269i −1.29197 + 1.01583i
\(910\) 0 0
\(911\) −9.03367 + 3.28799i −0.299299 + 0.108936i −0.487305 0.873232i \(-0.662020\pi\)
0.188006 + 0.982168i \(0.439798\pi\)
\(912\) 0 0
\(913\) −21.2256 + 17.8104i −0.702465 + 0.589438i
\(914\) 0 0
\(915\) 1.00885 0.451036i 0.0333517 0.0149108i
\(916\) 0 0
\(917\) 10.8185i 0.357258i
\(918\) 0 0
\(919\) −0.257674 −0.00849989 −0.00424994 0.999991i \(-0.501353\pi\)
−0.00424994 + 0.999991i \(0.501353\pi\)
\(920\) 0 0
\(921\) 44.1608 + 4.57264i 1.45515 + 0.150674i
\(922\) 0 0
\(923\) −10.0056 11.9242i −0.329337 0.392489i
\(924\) 0 0
\(925\) 1.24037 + 3.40788i 0.0407830 + 0.112050i
\(926\) 0 0
\(927\) −46.6894 28.9749i −1.53348 0.951660i
\(928\) 0 0
\(929\) −27.9758 23.4745i −0.917856 0.770173i 0.0557411 0.998445i \(-0.482248\pi\)
−0.973597 + 0.228273i \(0.926692\pi\)
\(930\) 0 0
\(931\) −37.2228 + 6.56338i −1.21993 + 0.215106i
\(932\) 0 0
\(933\) −13.4588 + 27.7031i −0.440622 + 0.906957i
\(934\) 0 0
\(935\) 29.8603 + 51.7196i 0.976536 + 1.69141i
\(936\) 0 0
\(937\) −4.21635 + 7.30293i −0.137742 + 0.238576i −0.926642 0.375946i \(-0.877318\pi\)
0.788899 + 0.614522i \(0.210651\pi\)
\(938\) 0 0
\(939\) −13.8806 55.3083i −0.452975 1.80492i
\(940\) 0 0
\(941\) −6.23285 + 17.1246i −0.203185 + 0.558246i −0.998873 0.0474602i \(-0.984887\pi\)
0.795688 + 0.605707i \(0.207109\pi\)
\(942\) 0 0
\(943\) 5.20444 29.5159i 0.169480 0.961169i
\(944\) 0 0
\(945\) −7.57655 + 6.88570i −0.246465 + 0.223992i
\(946\) 0 0
\(947\) −30.4479 5.36879i −0.989424 0.174462i −0.344564 0.938763i \(-0.611973\pi\)
−0.644860 + 0.764301i \(0.723084\pi\)
\(948\) 0 0
\(949\) −3.89045 + 10.6889i −0.126289 + 0.346977i
\(950\) 0 0
\(951\) 3.35339 11.7631i 0.108741 0.381444i
\(952\) 0 0
\(953\) 17.3439 30.0406i 0.561825 0.973109i −0.435512 0.900183i \(-0.643433\pi\)
0.997337 0.0729266i \(-0.0232339\pi\)
\(954\) 0 0
\(955\) −42.4811 + 24.5265i −1.37466 + 0.793658i
\(956\) 0 0
\(957\) 40.1423 2.86925i 1.29762 0.0927495i
\(958\) 0 0
\(959\) −0.304398 1.72633i −0.00982954 0.0557461i
\(960\) 0 0
\(961\) −18.0742 15.1661i −0.583040 0.489229i
\(962\) 0 0
\(963\) 48.6432 15.9712i 1.56750 0.514664i
\(964\) 0 0
\(965\) −4.66513 12.8173i −0.150176 0.412605i
\(966\) 0 0
\(967\) −23.6086 + 19.8100i −0.759202 + 0.637046i −0.937919 0.346854i \(-0.887250\pi\)
0.178717 + 0.983901i \(0.442805\pi\)
\(968\) 0 0
\(969\) 43.0231 59.4086i 1.38210 1.90848i
\(970\) 0 0
\(971\) 43.2999i 1.38956i 0.719223 + 0.694779i \(0.244498\pi\)
−0.719223 + 0.694779i \(0.755502\pi\)
\(972\) 0 0
\(973\) 0.475690i 0.0152499i
\(974\) 0 0
\(975\) −2.55963 + 3.53449i −0.0819739 + 0.113194i
\(976\) 0 0
\(977\) 4.11710 3.45466i 0.131718 0.110524i −0.574549 0.818470i \(-0.694822\pi\)
0.706267 + 0.707946i \(0.250378\pi\)
\(978\) 0 0
\(979\) −5.09839 14.0077i −0.162945 0.447688i
\(980\) 0 0
\(981\) 52.3767 17.1970i 1.67226 0.549059i
\(982\) 0 0
\(983\) −0.806129 0.676422i −0.0257115 0.0215745i 0.629841 0.776724i \(-0.283120\pi\)
−0.655553 + 0.755149i \(0.727564\pi\)
\(984\) 0 0
\(985\) −1.84392 10.4574i −0.0587521 0.333200i
\(986\) 0 0
\(987\) 4.18547 0.299164i 0.133225 0.00952250i
\(988\) 0 0
\(989\) 16.7270 9.65734i 0.531888 0.307086i
\(990\) 0 0
\(991\) −10.7235 + 18.5737i −0.340644 + 0.590013i −0.984553 0.175090i \(-0.943978\pi\)
0.643908 + 0.765103i \(0.277312\pi\)
\(992\) 0 0
\(993\) 5.76398 20.2190i 0.182914 0.641632i
\(994\) 0 0
\(995\) 11.0174 30.2700i 0.349274 0.959622i
\(996\) 0 0
\(997\) −9.02724 1.59175i −0.285896 0.0504111i 0.0288614 0.999583i \(-0.490812\pi\)
−0.314757 + 0.949172i \(0.601923\pi\)
\(998\) 0 0
\(999\) 4.58138 + 21.0738i 0.144949 + 0.666745i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.241.29 204
4.3 odd 2 216.2.t.a.133.20 yes 204
8.3 odd 2 216.2.t.a.133.19 yes 204
8.5 even 2 inner 864.2.bf.a.241.6 204
12.11 even 2 648.2.t.a.397.15 204
24.11 even 2 648.2.t.a.397.16 204
27.13 even 9 inner 864.2.bf.a.337.6 204
108.67 odd 18 216.2.t.a.13.19 204
108.95 even 18 648.2.t.a.253.16 204
216.13 even 18 inner 864.2.bf.a.337.29 204
216.67 odd 18 216.2.t.a.13.20 yes 204
216.203 even 18 648.2.t.a.253.15 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.19 204 108.67 odd 18
216.2.t.a.13.20 yes 204 216.67 odd 18
216.2.t.a.133.19 yes 204 8.3 odd 2
216.2.t.a.133.20 yes 204 4.3 odd 2
648.2.t.a.253.15 204 216.203 even 18
648.2.t.a.253.16 204 108.95 even 18
648.2.t.a.397.15 204 12.11 even 2
648.2.t.a.397.16 204 24.11 even 2
864.2.bf.a.241.6 204 8.5 even 2 inner
864.2.bf.a.241.29 204 1.1 even 1 trivial
864.2.bf.a.337.6 204 27.13 even 9 inner
864.2.bf.a.337.29 204 216.13 even 18 inner