# Properties

 Label 864.2.a.l Level $864$ Weight $2$ Character orbit 864.a Self dual yes Analytic conductor $6.899$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [864,2,Mod(1,864)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(864, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("864.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$864 = 2^{5} \cdot 3^{3}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 864.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$6.89907473464$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 2 q^{5} + 3 q^{7}+O(q^{10})$$ q + 2 * q^5 + 3 * q^7 $$q + 2 q^{5} + 3 q^{7} + 6 q^{11} - 3 q^{13} - 2 q^{17} - 3 q^{19} + 6 q^{23} - q^{25} - 8 q^{29} + 6 q^{35} + 7 q^{37} + 8 q^{41} - 12 q^{43} + 6 q^{47} + 2 q^{49} + 4 q^{53} + 12 q^{55} + 6 q^{59} - q^{61} - 6 q^{65} - 3 q^{67} + 12 q^{71} - 15 q^{73} + 18 q^{77} + 9 q^{79} - 12 q^{83} - 4 q^{85} - 10 q^{89} - 9 q^{91} - 6 q^{95} + 9 q^{97}+O(q^{100})$$ q + 2 * q^5 + 3 * q^7 + 6 * q^11 - 3 * q^13 - 2 * q^17 - 3 * q^19 + 6 * q^23 - q^25 - 8 * q^29 + 6 * q^35 + 7 * q^37 + 8 * q^41 - 12 * q^43 + 6 * q^47 + 2 * q^49 + 4 * q^53 + 12 * q^55 + 6 * q^59 - q^61 - 6 * q^65 - 3 * q^67 + 12 * q^71 - 15 * q^73 + 18 * q^77 + 9 * q^79 - 12 * q^83 - 4 * q^85 - 10 * q^89 - 9 * q^91 - 6 * q^95 + 9 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 2.00000 0 3.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 864.2.a.l yes 1
3.b odd 2 1 864.2.a.d yes 1
4.b odd 2 1 864.2.a.i yes 1
8.b even 2 1 1728.2.a.h 1
8.d odd 2 1 1728.2.a.e 1
9.c even 3 2 2592.2.i.c 2
9.d odd 6 2 2592.2.i.r 2
12.b even 2 1 864.2.a.a 1
24.f even 2 1 1728.2.a.u 1
24.h odd 2 1 1728.2.a.x 1
36.f odd 6 2 2592.2.i.g 2
36.h even 6 2 2592.2.i.v 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
864.2.a.a 1 12.b even 2 1
864.2.a.d yes 1 3.b odd 2 1
864.2.a.i yes 1 4.b odd 2 1
864.2.a.l yes 1 1.a even 1 1 trivial
1728.2.a.e 1 8.d odd 2 1
1728.2.a.h 1 8.b even 2 1
1728.2.a.u 1 24.f even 2 1
1728.2.a.x 1 24.h odd 2 1
2592.2.i.c 2 9.c even 3 2
2592.2.i.g 2 36.f odd 6 2
2592.2.i.r 2 9.d odd 6 2
2592.2.i.v 2 36.h even 6 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(864))$$:

 $$T_{5} - 2$$ T5 - 2 $$T_{7} - 3$$ T7 - 3 $$T_{11} - 6$$ T11 - 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 2$$
$7$ $$T - 3$$
$11$ $$T - 6$$
$13$ $$T + 3$$
$17$ $$T + 2$$
$19$ $$T + 3$$
$23$ $$T - 6$$
$29$ $$T + 8$$
$31$ $$T$$
$37$ $$T - 7$$
$41$ $$T - 8$$
$43$ $$T + 12$$
$47$ $$T - 6$$
$53$ $$T - 4$$
$59$ $$T - 6$$
$61$ $$T + 1$$
$67$ $$T + 3$$
$71$ $$T - 12$$
$73$ $$T + 15$$
$79$ $$T - 9$$
$83$ $$T + 12$$
$89$ $$T + 10$$
$97$ $$T - 9$$