Properties

Label 8624.2.h
Level $8624$
Weight $2$
Character orbit 8624.h
Rep. character $\chi_{8624}(1959,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $2688$
Trace bound $0$

Related objects

Downloads

Learn more

Error: no document with id 201660939 found in table mf_hecke_traces.

Defining parameters

Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(2688\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8624, [\chi])\).

Total New Old
Modular forms 1376 0 1376
Cusp forms 1312 0 1312
Eisenstein series 64 0 64

Decomposition of \(S_{2}^{\mathrm{old}}(8624, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8624, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(616, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4312, [\chi])\)\(^{\oplus 2}\)