Properties

Label 8624.2.a.j.1.1
Level $8624$
Weight $2$
Character 8624.1
Self dual yes
Analytic conductor $68.863$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8624.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} -1.00000 q^{11} -4.00000 q^{13} +1.00000 q^{15} +2.00000 q^{17} +1.00000 q^{23} -4.00000 q^{25} +5.00000 q^{27} +7.00000 q^{31} +1.00000 q^{33} +3.00000 q^{37} +4.00000 q^{39} +8.00000 q^{41} +6.00000 q^{43} +2.00000 q^{45} +8.00000 q^{47} -2.00000 q^{51} -6.00000 q^{53} +1.00000 q^{55} +5.00000 q^{59} -12.0000 q^{61} +4.00000 q^{65} +7.00000 q^{67} -1.00000 q^{69} +3.00000 q^{71} -4.00000 q^{73} +4.00000 q^{75} +10.0000 q^{79} +1.00000 q^{81} -6.00000 q^{83} -2.00000 q^{85} -15.0000 q^{89} -7.00000 q^{93} +7.00000 q^{97} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.00000 0.650945 0.325472 0.945552i \(-0.394477\pi\)
0.325472 + 0.945552i \(0.394477\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.00000 −0.725866
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 0 0
\(117\) 8.00000 0.739600
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −7.00000 −0.598050 −0.299025 0.954245i \(-0.596661\pi\)
−0.299025 + 0.954245i \(0.596661\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −7.00000 −0.562254
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) −1.00000 −0.0778499
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.00000 −0.375823
\(178\) 0 0
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 12.0000 0.887066
\(184\) 0 0
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.0000 −1.23008 −0.615038 0.788497i \(-0.710860\pi\)
−0.615038 + 0.788497i \(0.710860\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 0 0
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −7.00000 −0.493742
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.00000 −0.558744
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −3.00000 −0.205557
\(214\) 0 0
\(215\) −6.00000 −0.409197
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) −15.0000 −0.991228 −0.495614 0.868543i \(-0.665057\pi\)
−0.495614 + 0.868543i \(0.665057\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) 30.0000 1.94054 0.970269 0.242028i \(-0.0778125\pi\)
0.970269 + 0.242028i \(0.0778125\pi\)
\(240\) 0 0
\(241\) 8.00000 0.515325 0.257663 0.966235i \(-0.417048\pi\)
0.257663 + 0.966235i \(0.417048\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) 0 0
\(255\) 2.00000 0.125245
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 15.0000 0.917985
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −7.00000 −0.410347
\(292\) 0 0
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) 0 0
\(295\) −5.00000 −0.291111
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) 12.0000 0.687118
\(306\) 0 0
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.0000 0.730153 0.365076 0.930978i \(-0.381043\pi\)
0.365076 + 0.930978i \(0.381043\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 18.0000 1.00466
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 16.0000 0.887520
\(326\) 0 0
\(327\) −10.0000 −0.553001
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −7.00000 −0.384755 −0.192377 0.981321i \(-0.561620\pi\)
−0.192377 + 0.981321i \(0.561620\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) −7.00000 −0.382451
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) −9.00000 −0.488813
\(340\) 0 0
\(341\) −7.00000 −0.379071
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.00000 0.0538382
\(346\) 0 0
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) −20.0000 −1.06752
\(352\) 0 0
\(353\) 21.0000 1.11772 0.558859 0.829263i \(-0.311239\pi\)
0.558859 + 0.829263i \(0.311239\pi\)
\(354\) 0 0
\(355\) −3.00000 −0.159223
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −17.0000 −0.887393 −0.443696 0.896177i \(-0.646333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(368\) 0 0
\(369\) −16.0000 −0.832927
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −1.00000 −0.0510976 −0.0255488 0.999674i \(-0.508133\pi\)
−0.0255488 + 0.999674i \(0.508133\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) −15.0000 −0.760530 −0.380265 0.924878i \(-0.624167\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) −28.0000 −1.39478
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −3.00000 −0.148704
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) 7.00000 0.345285
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) −16.0000 −0.777947
\(424\) 0 0
\(425\) −8.00000 −0.388057
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) 11.0000 0.528626 0.264313 0.964437i \(-0.414855\pi\)
0.264313 + 0.964437i \(0.414855\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0000 0.522626 0.261313 0.965254i \(-0.415845\pi\)
0.261313 + 0.965254i \(0.415845\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) 0 0
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) 35.0000 1.65175 0.825876 0.563852i \(-0.190681\pi\)
0.825876 + 0.563852i \(0.190681\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 2.00000 0.0939682
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12.0000 −0.561336 −0.280668 0.959805i \(-0.590556\pi\)
−0.280668 + 0.959805i \(0.590556\pi\)
\(458\) 0 0
\(459\) 10.0000 0.466760
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) 0 0
\(465\) 7.00000 0.324617
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −7.00000 −0.322543
\(472\) 0 0
\(473\) −6.00000 −0.275880
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.00000 −0.317854
\(486\) 0 0
\(487\) −23.0000 −1.04223 −0.521115 0.853487i \(-0.674484\pi\)
−0.521115 + 0.853487i \(0.674484\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) −26.0000 −1.15928 −0.579641 0.814872i \(-0.696807\pi\)
−0.579641 + 0.814872i \(0.696807\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) −3.00000 −0.133235
\(508\) 0 0
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) −8.00000 −0.351840
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.0000 0.609850
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) −32.0000 −1.38607
\(534\) 0 0
\(535\) 18.0000 0.778208
\(536\) 0 0
\(537\) −15.0000 −0.647298
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) 7.00000 0.300399
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 24.0000 1.02430
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.00000 0.127343
\(556\) 0 0
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 2.00000 0.0844401
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 17.0000 0.710185
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −33.0000 −1.37381 −0.686904 0.726748i \(-0.741031\pi\)
−0.686904 + 0.726748i \(0.741031\pi\)
\(578\) 0 0
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) 0 0
\(585\) −8.00000 −0.330759
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 0 0
\(593\) −44.0000 −1.80686 −0.903432 0.428732i \(-0.858960\pi\)
−0.903432 + 0.428732i \(0.858960\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −32.0000 −1.29458
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 0 0
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 0 0
\(619\) −25.0000 −1.00483 −0.502417 0.864625i \(-0.667556\pi\)
−0.502417 + 0.864625i \(0.667556\pi\)
\(620\) 0 0
\(621\) 5.00000 0.200643
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 0 0
\(643\) 29.0000 1.14365 0.571824 0.820376i \(-0.306236\pi\)
0.571824 + 0.820376i \(0.306236\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) −7.00000 −0.275198 −0.137599 0.990488i \(-0.543939\pi\)
−0.137599 + 0.990488i \(0.543939\pi\)
\(648\) 0 0
\(649\) −5.00000 −0.196267
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.0000 −1.60445 −0.802227 0.597019i \(-0.796352\pi\)
−0.802227 + 0.597019i \(0.796352\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) 0 0
\(657\) 8.00000 0.312110
\(658\) 0 0
\(659\) −10.0000 −0.389545 −0.194772 0.980848i \(-0.562397\pi\)
−0.194772 + 0.980848i \(0.562397\pi\)
\(660\) 0 0
\(661\) −37.0000 −1.43913 −0.719567 0.694423i \(-0.755660\pi\)
−0.719567 + 0.694423i \(0.755660\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −19.0000 −0.734582
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 0 0
\(675\) −20.0000 −0.769800
\(676\) 0 0
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) 7.00000 0.267456
\(686\) 0 0
\(687\) 15.0000 0.572286
\(688\) 0 0
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 17.0000 0.646710 0.323355 0.946278i \(-0.395189\pi\)
0.323355 + 0.946278i \(0.395189\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) 16.0000 0.606043
\(698\) 0 0
\(699\) −24.0000 −0.907763
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −25.0000 −0.938895 −0.469447 0.882960i \(-0.655547\pi\)
−0.469447 + 0.882960i \(0.655547\pi\)
\(710\) 0 0
\(711\) −20.0000 −0.750059
\(712\) 0 0
\(713\) 7.00000 0.262152
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 0 0
\(717\) −30.0000 −1.12037
\(718\) 0 0
\(719\) 15.0000 0.559406 0.279703 0.960087i \(-0.409764\pi\)
0.279703 + 0.960087i \(0.409764\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −8.00000 −0.297523
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.00000 0.111264 0.0556319 0.998451i \(-0.482283\pi\)
0.0556319 + 0.998451i \(0.482283\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) 36.0000 1.32969 0.664845 0.746981i \(-0.268498\pi\)
0.664845 + 0.746981i \(0.268498\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.00000 −0.257848
\(738\) 0 0
\(739\) −50.0000 −1.83928 −0.919640 0.392763i \(-0.871519\pi\)
−0.919640 + 0.392763i \(0.871519\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.00000 −0.146746 −0.0733729 0.997305i \(-0.523376\pi\)
−0.0733729 + 0.997305i \(0.523376\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 23.0000 0.839282 0.419641 0.907690i \(-0.362156\pi\)
0.419641 + 0.907690i \(0.362156\pi\)
\(752\) 0 0
\(753\) 23.0000 0.838167
\(754\) 0 0
\(755\) 2.00000 0.0727875
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 1.00000 0.0362977
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.00000 0.144620
\(766\) 0 0
\(767\) −20.0000 −0.722158
\(768\) 0 0
\(769\) −20.0000 −0.721218 −0.360609 0.932717i \(-0.617431\pi\)
−0.360609 + 0.932717i \(0.617431\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −28.0000 −1.00579
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −3.00000 −0.107348
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.00000 −0.249841
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 14.0000 0.498413
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) −53.0000 −1.87736 −0.938678 0.344795i \(-0.887949\pi\)
−0.938678 + 0.344795i \(0.887949\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 0 0
\(801\) 30.0000 1.06000
\(802\) 0 0
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 28.0000 0.982003
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) −39.0000 −1.35945 −0.679727 0.733465i \(-0.737902\pi\)
−0.679727 + 0.733465i \(0.737902\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) 0 0
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 35.0000 1.20978
\(838\) 0 0
\(839\) −5.00000 −0.172619 −0.0863096 0.996268i \(-0.527507\pi\)
−0.0863096 + 0.996268i \(0.527507\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 18.0000 0.619953
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 3.00000 0.102839
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.00000 −0.273275 −0.136637 0.990621i \(-0.543630\pi\)
−0.136637 + 0.990621i \(0.543630\pi\)
\(858\) 0 0
\(859\) −15.0000 −0.511793 −0.255897 0.966704i \(-0.582371\pi\)
−0.255897 + 0.966704i \(0.582371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −10.0000 −0.339227
\(870\) 0 0
\(871\) −28.0000 −0.948744
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −12.0000 −0.405211 −0.202606 0.979260i \(-0.564941\pi\)
−0.202606 + 0.979260i \(0.564941\pi\)
\(878\) 0 0
\(879\) 24.0000 0.809500
\(880\) 0 0
\(881\) 43.0000 1.44871 0.724353 0.689429i \(-0.242138\pi\)
0.724353 + 0.689429i \(0.242138\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 5.00000 0.168073
\(886\) 0 0
\(887\) −22.0000 −0.738688 −0.369344 0.929293i \(-0.620418\pi\)
−0.369344 + 0.929293i \(0.620418\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −15.0000 −0.501395
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.00000 0.232688
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 4.00000 0.132672
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 6.00000 0.198571
\(914\) 0 0
\(915\) −12.0000 −0.396708
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −10.0000 −0.329870 −0.164935 0.986304i \(-0.552741\pi\)
−0.164935 + 0.986304i \(0.552741\pi\)
\(920\) 0 0
\(921\) −8.00000 −0.263609
\(922\) 0 0
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) 0 0
\(927\) 32.0000 1.05102
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) 2.00000 0.0654070
\(936\) 0 0
\(937\) −8.00000 −0.261349 −0.130674 0.991425i \(-0.541714\pi\)
−0.130674 + 0.991425i \(0.541714\pi\)
\(938\) 0 0
\(939\) −1.00000 −0.0326338
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.0000 0.877382 0.438691 0.898638i \(-0.355442\pi\)
0.438691 + 0.898638i \(0.355442\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) −13.0000 −0.421554
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 0 0
\(955\) 17.0000 0.550107
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 36.0000 1.16008
\(964\) 0 0
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 47.0000 1.50830 0.754151 0.656701i \(-0.228049\pi\)
0.754151 + 0.656701i \(0.228049\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −16.0000 −0.512410
\(976\) 0 0
\(977\) −27.0000 −0.863807 −0.431903 0.901920i \(-0.642158\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(978\) 0 0
\(979\) 15.0000 0.479402
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) 0 0
\(983\) 39.0000 1.24391 0.621953 0.783054i \(-0.286339\pi\)
0.621953 + 0.783054i \(0.286339\pi\)
\(984\) 0 0
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) 7.00000 0.222138
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) 0 0
\(999\) 15.0000 0.474579
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8624.2.a.j.1.1 1
4.3 odd 2 539.2.a.a.1.1 1
7.6 odd 2 176.2.a.b.1.1 1
12.11 even 2 4851.2.a.t.1.1 1
21.20 even 2 1584.2.a.g.1.1 1
28.3 even 6 539.2.e.h.177.1 2
28.11 odd 6 539.2.e.g.177.1 2
28.19 even 6 539.2.e.h.67.1 2
28.23 odd 6 539.2.e.g.67.1 2
28.27 even 2 11.2.a.a.1.1 1
35.13 even 4 4400.2.b.h.4049.2 2
35.27 even 4 4400.2.b.h.4049.1 2
35.34 odd 2 4400.2.a.i.1.1 1
44.43 even 2 5929.2.a.h.1.1 1
56.13 odd 2 704.2.a.c.1.1 1
56.27 even 2 704.2.a.h.1.1 1
77.76 even 2 1936.2.a.i.1.1 1
84.83 odd 2 99.2.a.d.1.1 1
112.13 odd 4 2816.2.c.f.1409.2 2
112.27 even 4 2816.2.c.j.1409.2 2
112.69 odd 4 2816.2.c.f.1409.1 2
112.83 even 4 2816.2.c.j.1409.1 2
140.27 odd 4 275.2.b.a.199.1 2
140.83 odd 4 275.2.b.a.199.2 2
140.139 even 2 275.2.a.b.1.1 1
168.83 odd 2 6336.2.a.br.1.1 1
168.125 even 2 6336.2.a.bu.1.1 1
252.83 odd 6 891.2.e.b.595.1 2
252.139 even 6 891.2.e.k.298.1 2
252.167 odd 6 891.2.e.b.298.1 2
252.223 even 6 891.2.e.k.595.1 2
308.27 even 10 121.2.c.e.3.1 4
308.83 odd 10 121.2.c.a.3.1 4
308.139 odd 10 121.2.c.a.27.1 4
308.167 odd 10 121.2.c.a.81.1 4
308.195 odd 10 121.2.c.a.9.1 4
308.223 even 10 121.2.c.e.9.1 4
308.251 even 10 121.2.c.e.81.1 4
308.279 even 10 121.2.c.e.27.1 4
308.307 odd 2 121.2.a.d.1.1 1
364.363 even 2 1859.2.a.b.1.1 1
420.83 even 4 2475.2.c.a.199.1 2
420.167 even 4 2475.2.c.a.199.2 2
420.419 odd 2 2475.2.a.a.1.1 1
476.475 even 2 3179.2.a.a.1.1 1
532.531 odd 2 3971.2.a.b.1.1 1
616.307 odd 2 7744.2.a.x.1.1 1
616.461 even 2 7744.2.a.k.1.1 1
644.643 odd 2 5819.2.a.a.1.1 1
812.811 even 2 9251.2.a.d.1.1 1
924.923 even 2 1089.2.a.b.1.1 1
1540.1539 odd 2 3025.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.2.a.a.1.1 1 28.27 even 2
99.2.a.d.1.1 1 84.83 odd 2
121.2.a.d.1.1 1 308.307 odd 2
121.2.c.a.3.1 4 308.83 odd 10
121.2.c.a.9.1 4 308.195 odd 10
121.2.c.a.27.1 4 308.139 odd 10
121.2.c.a.81.1 4 308.167 odd 10
121.2.c.e.3.1 4 308.27 even 10
121.2.c.e.9.1 4 308.223 even 10
121.2.c.e.27.1 4 308.279 even 10
121.2.c.e.81.1 4 308.251 even 10
176.2.a.b.1.1 1 7.6 odd 2
275.2.a.b.1.1 1 140.139 even 2
275.2.b.a.199.1 2 140.27 odd 4
275.2.b.a.199.2 2 140.83 odd 4
539.2.a.a.1.1 1 4.3 odd 2
539.2.e.g.67.1 2 28.23 odd 6
539.2.e.g.177.1 2 28.11 odd 6
539.2.e.h.67.1 2 28.19 even 6
539.2.e.h.177.1 2 28.3 even 6
704.2.a.c.1.1 1 56.13 odd 2
704.2.a.h.1.1 1 56.27 even 2
891.2.e.b.298.1 2 252.167 odd 6
891.2.e.b.595.1 2 252.83 odd 6
891.2.e.k.298.1 2 252.139 even 6
891.2.e.k.595.1 2 252.223 even 6
1089.2.a.b.1.1 1 924.923 even 2
1584.2.a.g.1.1 1 21.20 even 2
1859.2.a.b.1.1 1 364.363 even 2
1936.2.a.i.1.1 1 77.76 even 2
2475.2.a.a.1.1 1 420.419 odd 2
2475.2.c.a.199.1 2 420.83 even 4
2475.2.c.a.199.2 2 420.167 even 4
2816.2.c.f.1409.1 2 112.69 odd 4
2816.2.c.f.1409.2 2 112.13 odd 4
2816.2.c.j.1409.1 2 112.83 even 4
2816.2.c.j.1409.2 2 112.27 even 4
3025.2.a.a.1.1 1 1540.1539 odd 2
3179.2.a.a.1.1 1 476.475 even 2
3971.2.a.b.1.1 1 532.531 odd 2
4400.2.a.i.1.1 1 35.34 odd 2
4400.2.b.h.4049.1 2 35.27 even 4
4400.2.b.h.4049.2 2 35.13 even 4
4851.2.a.t.1.1 1 12.11 even 2
5819.2.a.a.1.1 1 644.643 odd 2
5929.2.a.h.1.1 1 44.43 even 2
6336.2.a.br.1.1 1 168.83 odd 2
6336.2.a.bu.1.1 1 168.125 even 2
7744.2.a.k.1.1 1 616.461 even 2
7744.2.a.x.1.1 1 616.307 odd 2
8624.2.a.j.1.1 1 1.1 even 1 trivial
9251.2.a.d.1.1 1 812.811 even 2