Properties

Label 8624.2.a.cx
Level $8624$
Weight $2$
Character orbit 8624.a
Self dual yes
Analytic conductor $68.863$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8624,2,Mod(1,8624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8624.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,14,0,-4,0,0,0,-2,0,0,0,0,0,0,0,-14,0,10,0,0, 0,-24,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.301088.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 13x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2156)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{2} q^{5} + (\beta_{3} + 4) q^{9} - q^{11} + ( - \beta_{2} - \beta_1) q^{13} + ( - \beta_{3} - 1) q^{15} + (\beta_{2} - \beta_1) q^{17} - 2 \beta_1 q^{19} + (\beta_{3} - 3) q^{23}+ \cdots + ( - \beta_{3} - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{9} - 4 q^{11} - 2 q^{15} - 14 q^{23} + 10 q^{25} - 24 q^{29} - 2 q^{37} - 28 q^{39} - 4 q^{43} - 24 q^{51} - 4 q^{53} - 52 q^{57} + 32 q^{65} - 34 q^{67} - 2 q^{71} - 24 q^{79} + 68 q^{81} - 28 q^{85}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 13x^{2} + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 10\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.38000
−1.25522
1.25522
3.38000
0 −3.38000 0 1.60486 0 0 0 8.42443 0
1.2 0 −1.25522 0 −3.52483 0 0 0 −1.42443 0
1.3 0 1.25522 0 3.52483 0 0 0 −1.42443 0
1.4 0 3.38000 0 −1.60486 0 0 0 8.42443 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8624.2.a.cx 4
4.b odd 2 1 2156.2.a.m 4
7.b odd 2 1 inner 8624.2.a.cx 4
28.d even 2 1 2156.2.a.m 4
28.f even 6 2 2156.2.i.n 8
28.g odd 6 2 2156.2.i.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2156.2.a.m 4 4.b odd 2 1
2156.2.a.m 4 28.d even 2 1
2156.2.i.n 8 28.f even 6 2
2156.2.i.n 8 28.g odd 6 2
8624.2.a.cx 4 1.a even 1 1 trivial
8624.2.a.cx 4 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8624))\):

\( T_{3}^{4} - 13T_{3}^{2} + 18 \) Copy content Toggle raw display
\( T_{5}^{4} - 15T_{5}^{2} + 32 \) Copy content Toggle raw display
\( T_{13}^{4} - 30T_{13}^{2} + 128 \) Copy content Toggle raw display
\( T_{17}^{4} - 26T_{17}^{2} + 72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 13T^{2} + 18 \) Copy content Toggle raw display
$5$ \( T^{4} - 15T^{2} + 32 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 30T^{2} + 128 \) Copy content Toggle raw display
$17$ \( T^{4} - 26T^{2} + 72 \) Copy content Toggle raw display
$19$ \( T^{4} - 52T^{2} + 288 \) Copy content Toggle raw display
$23$ \( (T^{2} + 7 T - 12)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 13T^{2} + 18 \) Copy content Toggle raw display
$37$ \( (T^{2} + T - 24)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 154T^{2} + 5832 \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T - 96)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 26T^{2} + 72 \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T - 96)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 69T^{2} + 2 \) Copy content Toggle raw display
$61$ \( T^{4} - 138T^{2} + 8 \) Copy content Toggle raw display
$67$ \( (T^{2} + 17 T + 48)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + T - 24)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 234T^{2} + 5832 \) Copy content Toggle raw display
$79$ \( (T + 6)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 104T^{2} + 1152 \) Copy content Toggle raw display
$89$ \( T^{4} - 215 T^{2} + 10368 \) Copy content Toggle raw display
$97$ \( T^{4} - 71T^{2} + 72 \) Copy content Toggle raw display
show more
show less