Properties

Label 8624.2.a.ct.1.4
Level $8624$
Weight $2$
Character 8624.1
Self dual yes
Analytic conductor $68.863$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8624,2,Mod(1,8624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8624.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,2,0,-4,0,0,0,14,0,0,0,0,0,0,0,10,0,-6,0,0,0, 0,0,0,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.9248.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.662153\) of defining polynomial
Character \(\chi\) \(=\) 8624.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35829 q^{3} +2.35829 q^{5} +2.56155 q^{9} -1.00000 q^{11} +6.04090 q^{13} +5.56155 q^{15} -7.36520 q^{17} -1.32431 q^{19} +8.68466 q^{23} +0.561553 q^{25} -1.03399 q^{27} +8.24621 q^{29} +5.75058 q^{31} -2.35829 q^{33} -9.80776 q^{37} +14.2462 q^{39} +2.06798 q^{41} +4.00000 q^{43} +6.04090 q^{45} +7.36520 q^{47} -17.3693 q^{51} -10.0000 q^{53} -2.35829 q^{55} -3.12311 q^{57} -0.290319 q^{59} +10.7575 q^{61} +14.2462 q^{65} -4.68466 q^{67} +20.4810 q^{69} +13.5616 q^{71} +10.0138 q^{73} +1.32431 q^{75} -3.12311 q^{79} -10.1231 q^{81} -3.39228 q^{83} -17.3693 q^{85} +19.4470 q^{87} -1.61463 q^{89} +13.5616 q^{93} -3.12311 q^{95} -6.33122 q^{97} -2.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{9} - 4 q^{11} + 14 q^{15} + 10 q^{23} - 6 q^{25} + 2 q^{37} + 24 q^{39} + 16 q^{43} - 20 q^{51} - 40 q^{53} + 4 q^{57} + 24 q^{65} + 6 q^{67} + 46 q^{71} + 4 q^{79} - 24 q^{81} - 20 q^{85} + 46 q^{93}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35829 1.36156 0.680781 0.732487i \(-0.261641\pi\)
0.680781 + 0.732487i \(0.261641\pi\)
\(4\) 0 0
\(5\) 2.35829 1.05466 0.527331 0.849660i \(-0.323193\pi\)
0.527331 + 0.849660i \(0.323193\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.56155 0.853851
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 6.04090 1.67544 0.837722 0.546098i \(-0.183887\pi\)
0.837722 + 0.546098i \(0.183887\pi\)
\(14\) 0 0
\(15\) 5.56155 1.43599
\(16\) 0 0
\(17\) −7.36520 −1.78632 −0.893162 0.449735i \(-0.851518\pi\)
−0.893162 + 0.449735i \(0.851518\pi\)
\(18\) 0 0
\(19\) −1.32431 −0.303817 −0.151908 0.988395i \(-0.548542\pi\)
−0.151908 + 0.988395i \(0.548542\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.68466 1.81088 0.905438 0.424478i \(-0.139542\pi\)
0.905438 + 0.424478i \(0.139542\pi\)
\(24\) 0 0
\(25\) 0.561553 0.112311
\(26\) 0 0
\(27\) −1.03399 −0.198991
\(28\) 0 0
\(29\) 8.24621 1.53128 0.765641 0.643268i \(-0.222422\pi\)
0.765641 + 0.643268i \(0.222422\pi\)
\(30\) 0 0
\(31\) 5.75058 1.03283 0.516417 0.856337i \(-0.327265\pi\)
0.516417 + 0.856337i \(0.327265\pi\)
\(32\) 0 0
\(33\) −2.35829 −0.410526
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.80776 −1.61239 −0.806193 0.591652i \(-0.798476\pi\)
−0.806193 + 0.591652i \(0.798476\pi\)
\(38\) 0 0
\(39\) 14.2462 2.28122
\(40\) 0 0
\(41\) 2.06798 0.322963 0.161482 0.986876i \(-0.448373\pi\)
0.161482 + 0.986876i \(0.448373\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 6.04090 0.900524
\(46\) 0 0
\(47\) 7.36520 1.07433 0.537163 0.843479i \(-0.319496\pi\)
0.537163 + 0.843479i \(0.319496\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −17.3693 −2.43219
\(52\) 0 0
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) −2.35829 −0.317992
\(56\) 0 0
\(57\) −3.12311 −0.413665
\(58\) 0 0
\(59\) −0.290319 −0.0377964 −0.0188982 0.999821i \(-0.506016\pi\)
−0.0188982 + 0.999821i \(0.506016\pi\)
\(60\) 0 0
\(61\) 10.7575 1.37735 0.688677 0.725068i \(-0.258192\pi\)
0.688677 + 0.725068i \(0.258192\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.2462 1.76703
\(66\) 0 0
\(67\) −4.68466 −0.572322 −0.286161 0.958182i \(-0.592379\pi\)
−0.286161 + 0.958182i \(0.592379\pi\)
\(68\) 0 0
\(69\) 20.4810 2.46562
\(70\) 0 0
\(71\) 13.5616 1.60946 0.804730 0.593641i \(-0.202310\pi\)
0.804730 + 0.593641i \(0.202310\pi\)
\(72\) 0 0
\(73\) 10.0138 1.17203 0.586014 0.810301i \(-0.300696\pi\)
0.586014 + 0.810301i \(0.300696\pi\)
\(74\) 0 0
\(75\) 1.32431 0.152918
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.12311 −0.351377 −0.175688 0.984446i \(-0.556215\pi\)
−0.175688 + 0.984446i \(0.556215\pi\)
\(80\) 0 0
\(81\) −10.1231 −1.12479
\(82\) 0 0
\(83\) −3.39228 −0.372351 −0.186176 0.982516i \(-0.559609\pi\)
−0.186176 + 0.982516i \(0.559609\pi\)
\(84\) 0 0
\(85\) −17.3693 −1.88397
\(86\) 0 0
\(87\) 19.4470 2.08494
\(88\) 0 0
\(89\) −1.61463 −0.171150 −0.0855750 0.996332i \(-0.527273\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 13.5616 1.40627
\(94\) 0 0
\(95\) −3.12311 −0.320424
\(96\) 0 0
\(97\) −6.33122 −0.642838 −0.321419 0.946937i \(-0.604160\pi\)
−0.321419 + 0.946937i \(0.604160\pi\)
\(98\) 0 0
\(99\) −2.56155 −0.257446
\(100\) 0 0
\(101\) 12.8255 1.27618 0.638090 0.769961i \(-0.279725\pi\)
0.638090 + 0.769961i \(0.279725\pi\)
\(102\) 0 0
\(103\) −7.36520 −0.725715 −0.362857 0.931845i \(-0.618199\pi\)
−0.362857 + 0.931845i \(0.618199\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.3693 1.29246 0.646230 0.763142i \(-0.276345\pi\)
0.646230 + 0.763142i \(0.276345\pi\)
\(108\) 0 0
\(109\) −2.87689 −0.275557 −0.137778 0.990463i \(-0.543996\pi\)
−0.137778 + 0.990463i \(0.543996\pi\)
\(110\) 0 0
\(111\) −23.1296 −2.19536
\(112\) 0 0
\(113\) −14.6847 −1.38142 −0.690708 0.723134i \(-0.742701\pi\)
−0.690708 + 0.723134i \(0.742701\pi\)
\(114\) 0 0
\(115\) 20.4810 1.90986
\(116\) 0 0
\(117\) 15.4741 1.43058
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 4.87689 0.439735
\(124\) 0 0
\(125\) −10.4672 −0.936212
\(126\) 0 0
\(127\) −9.36932 −0.831392 −0.415696 0.909504i \(-0.636462\pi\)
−0.415696 + 0.909504i \(0.636462\pi\)
\(128\) 0 0
\(129\) 9.43318 0.830545
\(130\) 0 0
\(131\) 17.5420 1.53266 0.766328 0.642450i \(-0.222082\pi\)
0.766328 + 0.642450i \(0.222082\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.43845 −0.209868
\(136\) 0 0
\(137\) 3.56155 0.304284 0.152142 0.988359i \(-0.451383\pi\)
0.152142 + 0.988359i \(0.451383\pi\)
\(138\) 0 0
\(139\) −3.97292 −0.336979 −0.168489 0.985703i \(-0.553889\pi\)
−0.168489 + 0.985703i \(0.553889\pi\)
\(140\) 0 0
\(141\) 17.3693 1.46276
\(142\) 0 0
\(143\) −6.04090 −0.505165
\(144\) 0 0
\(145\) 19.4470 1.61498
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.2462 1.00325 0.501624 0.865086i \(-0.332736\pi\)
0.501624 + 0.865086i \(0.332736\pi\)
\(150\) 0 0
\(151\) 4.87689 0.396876 0.198438 0.980113i \(-0.436413\pi\)
0.198438 + 0.980113i \(0.436413\pi\)
\(152\) 0 0
\(153\) −18.8664 −1.52525
\(154\) 0 0
\(155\) 13.5616 1.08929
\(156\) 0 0
\(157\) 7.07488 0.564637 0.282319 0.959321i \(-0.408896\pi\)
0.282319 + 0.959321i \(0.408896\pi\)
\(158\) 0 0
\(159\) −23.5829 −1.87025
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) −5.56155 −0.432966
\(166\) 0 0
\(167\) 0.580639 0.0449312 0.0224656 0.999748i \(-0.492848\pi\)
0.0224656 + 0.999748i \(0.492848\pi\)
\(168\) 0 0
\(169\) 23.4924 1.80711
\(170\) 0 0
\(171\) −3.39228 −0.259414
\(172\) 0 0
\(173\) 6.04090 0.459281 0.229640 0.973276i \(-0.426245\pi\)
0.229640 + 0.973276i \(0.426245\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.684658 −0.0514621
\(178\) 0 0
\(179\) −3.31534 −0.247800 −0.123900 0.992295i \(-0.539540\pi\)
−0.123900 + 0.992295i \(0.539540\pi\)
\(180\) 0 0
\(181\) −9.72350 −0.722742 −0.361371 0.932422i \(-0.617691\pi\)
−0.361371 + 0.932422i \(0.617691\pi\)
\(182\) 0 0
\(183\) 25.3693 1.87535
\(184\) 0 0
\(185\) −23.1296 −1.70052
\(186\) 0 0
\(187\) 7.36520 0.538597
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0540 −1.30634 −0.653170 0.757211i \(-0.726561\pi\)
−0.653170 + 0.757211i \(0.726561\pi\)
\(192\) 0 0
\(193\) 0.246211 0.0177227 0.00886134 0.999961i \(-0.497179\pi\)
0.00886134 + 0.999961i \(0.497179\pi\)
\(194\) 0 0
\(195\) 33.5968 2.40591
\(196\) 0 0
\(197\) −16.2462 −1.15749 −0.578747 0.815507i \(-0.696458\pi\)
−0.578747 + 0.815507i \(0.696458\pi\)
\(198\) 0 0
\(199\) 20.9343 1.48400 0.741998 0.670402i \(-0.233879\pi\)
0.741998 + 0.670402i \(0.233879\pi\)
\(200\) 0 0
\(201\) −11.0478 −0.779252
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.87689 0.340617
\(206\) 0 0
\(207\) 22.2462 1.54622
\(208\) 0 0
\(209\) 1.32431 0.0916042
\(210\) 0 0
\(211\) 15.1231 1.04112 0.520559 0.853826i \(-0.325724\pi\)
0.520559 + 0.853826i \(0.325724\pi\)
\(212\) 0 0
\(213\) 31.9821 2.19138
\(214\) 0 0
\(215\) 9.43318 0.643337
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 23.6155 1.59579
\(220\) 0 0
\(221\) −44.4924 −2.99288
\(222\) 0 0
\(223\) −3.10196 −0.207723 −0.103861 0.994592i \(-0.533120\pi\)
−0.103861 + 0.994592i \(0.533120\pi\)
\(224\) 0 0
\(225\) 1.43845 0.0958965
\(226\) 0 0
\(227\) −27.5559 −1.82895 −0.914474 0.404646i \(-0.867395\pi\)
−0.914474 + 0.404646i \(0.867395\pi\)
\(228\) 0 0
\(229\) −7.65552 −0.505891 −0.252946 0.967481i \(-0.581399\pi\)
−0.252946 + 0.967481i \(0.581399\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.4924 −1.47353 −0.736764 0.676150i \(-0.763647\pi\)
−0.736764 + 0.676150i \(0.763647\pi\)
\(234\) 0 0
\(235\) 17.3693 1.13305
\(236\) 0 0
\(237\) −7.36520 −0.478421
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −9.43318 −0.607644 −0.303822 0.952729i \(-0.598263\pi\)
−0.303822 + 0.952729i \(0.598263\pi\)
\(242\) 0 0
\(243\) −20.7713 −1.33248
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −0.870958 −0.0549744 −0.0274872 0.999622i \(-0.508751\pi\)
−0.0274872 + 0.999622i \(0.508751\pi\)
\(252\) 0 0
\(253\) −8.68466 −0.546000
\(254\) 0 0
\(255\) −40.9620 −2.56514
\(256\) 0 0
\(257\) −18.8664 −1.17685 −0.588425 0.808551i \(-0.700252\pi\)
−0.588425 + 0.808551i \(0.700252\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 21.1231 1.30749
\(262\) 0 0
\(263\) −11.1231 −0.685880 −0.342940 0.939357i \(-0.611423\pi\)
−0.342940 + 0.939357i \(0.611423\pi\)
\(264\) 0 0
\(265\) −23.5829 −1.44869
\(266\) 0 0
\(267\) −3.80776 −0.233031
\(268\) 0 0
\(269\) −0.743668 −0.0453423 −0.0226711 0.999743i \(-0.507217\pi\)
−0.0226711 + 0.999743i \(0.507217\pi\)
\(270\) 0 0
\(271\) 9.43318 0.573025 0.286512 0.958077i \(-0.407504\pi\)
0.286512 + 0.958077i \(0.407504\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.561553 −0.0338629
\(276\) 0 0
\(277\) −27.3693 −1.64446 −0.822231 0.569153i \(-0.807271\pi\)
−0.822231 + 0.569153i \(0.807271\pi\)
\(278\) 0 0
\(279\) 14.7304 0.881886
\(280\) 0 0
\(281\) 10.8769 0.648861 0.324431 0.945910i \(-0.394827\pi\)
0.324431 + 0.945910i \(0.394827\pi\)
\(282\) 0 0
\(283\) −3.39228 −0.201650 −0.100825 0.994904i \(-0.532148\pi\)
−0.100825 + 0.994904i \(0.532148\pi\)
\(284\) 0 0
\(285\) −7.36520 −0.436277
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 37.2462 2.19095
\(290\) 0 0
\(291\) −14.9309 −0.875263
\(292\) 0 0
\(293\) −13.4061 −0.783193 −0.391596 0.920137i \(-0.628077\pi\)
−0.391596 + 0.920137i \(0.628077\pi\)
\(294\) 0 0
\(295\) −0.684658 −0.0398624
\(296\) 0 0
\(297\) 1.03399 0.0599980
\(298\) 0 0
\(299\) 52.4631 3.03402
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 30.2462 1.73760
\(304\) 0 0
\(305\) 25.3693 1.45264
\(306\) 0 0
\(307\) 29.0432 1.65758 0.828792 0.559557i \(-0.189029\pi\)
0.828792 + 0.559557i \(0.189029\pi\)
\(308\) 0 0
\(309\) −17.3693 −0.988106
\(310\) 0 0
\(311\) 0.580639 0.0329250 0.0164625 0.999864i \(-0.494760\pi\)
0.0164625 + 0.999864i \(0.494760\pi\)
\(312\) 0 0
\(313\) −1.03399 −0.0584444 −0.0292222 0.999573i \(-0.509303\pi\)
−0.0292222 + 0.999573i \(0.509303\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.43845 −0.249288 −0.124644 0.992202i \(-0.539779\pi\)
−0.124644 + 0.992202i \(0.539779\pi\)
\(318\) 0 0
\(319\) −8.24621 −0.461699
\(320\) 0 0
\(321\) 31.5288 1.75977
\(322\) 0 0
\(323\) 9.75379 0.542715
\(324\) 0 0
\(325\) 3.39228 0.188170
\(326\) 0 0
\(327\) −6.78456 −0.375187
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −17.1771 −0.944138 −0.472069 0.881562i \(-0.656493\pi\)
−0.472069 + 0.881562i \(0.656493\pi\)
\(332\) 0 0
\(333\) −25.1231 −1.37674
\(334\) 0 0
\(335\) −11.0478 −0.603606
\(336\) 0 0
\(337\) −0.246211 −0.0134120 −0.00670599 0.999978i \(-0.502135\pi\)
−0.00670599 + 0.999978i \(0.502135\pi\)
\(338\) 0 0
\(339\) −34.6307 −1.88088
\(340\) 0 0
\(341\) −5.75058 −0.311411
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 48.3002 2.60039
\(346\) 0 0
\(347\) 2.63068 0.141222 0.0706112 0.997504i \(-0.477505\pi\)
0.0706112 + 0.997504i \(0.477505\pi\)
\(348\) 0 0
\(349\) −0.163030 −0.00872678 −0.00436339 0.999990i \(-0.501389\pi\)
−0.00436339 + 0.999990i \(0.501389\pi\)
\(350\) 0 0
\(351\) −6.24621 −0.333398
\(352\) 0 0
\(353\) −26.6849 −1.42029 −0.710147 0.704053i \(-0.751372\pi\)
−0.710147 + 0.704053i \(0.751372\pi\)
\(354\) 0 0
\(355\) 31.9821 1.69744
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.4924 1.50377 0.751886 0.659293i \(-0.229144\pi\)
0.751886 + 0.659293i \(0.229144\pi\)
\(360\) 0 0
\(361\) −17.2462 −0.907695
\(362\) 0 0
\(363\) 2.35829 0.123778
\(364\) 0 0
\(365\) 23.6155 1.23609
\(366\) 0 0
\(367\) 11.6284 0.607000 0.303500 0.952831i \(-0.401845\pi\)
0.303500 + 0.952831i \(0.401845\pi\)
\(368\) 0 0
\(369\) 5.29723 0.275763
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.8769 0.563184 0.281592 0.959534i \(-0.409137\pi\)
0.281592 + 0.959534i \(0.409137\pi\)
\(374\) 0 0
\(375\) −24.6847 −1.27471
\(376\) 0 0
\(377\) 49.8145 2.56558
\(378\) 0 0
\(379\) 12.6847 0.651567 0.325784 0.945444i \(-0.394372\pi\)
0.325784 + 0.945444i \(0.394372\pi\)
\(380\) 0 0
\(381\) −22.0956 −1.13199
\(382\) 0 0
\(383\) −18.4130 −0.940861 −0.470430 0.882437i \(-0.655901\pi\)
−0.470430 + 0.882437i \(0.655901\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.2462 0.520844
\(388\) 0 0
\(389\) 31.1771 1.58074 0.790370 0.612629i \(-0.209888\pi\)
0.790370 + 0.612629i \(0.209888\pi\)
\(390\) 0 0
\(391\) −63.9643 −3.23481
\(392\) 0 0
\(393\) 41.3693 2.08681
\(394\) 0 0
\(395\) −7.36520 −0.370584
\(396\) 0 0
\(397\) 12.8255 0.643691 0.321846 0.946792i \(-0.395697\pi\)
0.321846 + 0.946792i \(0.395697\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.4924 −1.12322 −0.561609 0.827403i \(-0.689817\pi\)
−0.561609 + 0.827403i \(0.689817\pi\)
\(402\) 0 0
\(403\) 34.7386 1.73045
\(404\) 0 0
\(405\) −23.8733 −1.18627
\(406\) 0 0
\(407\) 9.80776 0.486153
\(408\) 0 0
\(409\) −7.36520 −0.364186 −0.182093 0.983281i \(-0.558287\pi\)
−0.182093 + 0.983281i \(0.558287\pi\)
\(410\) 0 0
\(411\) 8.39919 0.414302
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) −9.36932 −0.458817
\(418\) 0 0
\(419\) 37.5697 1.83540 0.917700 0.397275i \(-0.130044\pi\)
0.917700 + 0.397275i \(0.130044\pi\)
\(420\) 0 0
\(421\) 24.7386 1.20569 0.602844 0.797859i \(-0.294034\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(422\) 0 0
\(423\) 18.8664 0.917314
\(424\) 0 0
\(425\) −4.13595 −0.200623
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −14.2462 −0.687814
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −29.3335 −1.40968 −0.704840 0.709367i \(-0.748981\pi\)
−0.704840 + 0.709367i \(0.748981\pi\)
\(434\) 0 0
\(435\) 45.8617 2.19890
\(436\) 0 0
\(437\) −11.5012 −0.550175
\(438\) 0 0
\(439\) 16.7984 0.801743 0.400871 0.916134i \(-0.368707\pi\)
0.400871 + 0.916134i \(0.368707\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.80776 −0.370958 −0.185479 0.982648i \(-0.559384\pi\)
−0.185479 + 0.982648i \(0.559384\pi\)
\(444\) 0 0
\(445\) −3.80776 −0.180505
\(446\) 0 0
\(447\) 28.8802 1.36599
\(448\) 0 0
\(449\) −19.1771 −0.905022 −0.452511 0.891759i \(-0.649472\pi\)
−0.452511 + 0.891759i \(0.649472\pi\)
\(450\) 0 0
\(451\) −2.06798 −0.0973771
\(452\) 0 0
\(453\) 11.5012 0.540371
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.8769 −0.883024 −0.441512 0.897255i \(-0.645558\pi\)
−0.441512 + 0.897255i \(0.645558\pi\)
\(458\) 0 0
\(459\) 7.61553 0.355462
\(460\) 0 0
\(461\) −34.9211 −1.62644 −0.813218 0.581959i \(-0.802286\pi\)
−0.813218 + 0.581959i \(0.802286\pi\)
\(462\) 0 0
\(463\) −4.19224 −0.194830 −0.0974149 0.995244i \(-0.531057\pi\)
−0.0974149 + 0.995244i \(0.531057\pi\)
\(464\) 0 0
\(465\) 31.9821 1.48314
\(466\) 0 0
\(467\) −26.5219 −1.22729 −0.613643 0.789584i \(-0.710297\pi\)
−0.613643 + 0.789584i \(0.710297\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.6847 0.768788
\(472\) 0 0
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) −0.743668 −0.0341218
\(476\) 0 0
\(477\) −25.6155 −1.17285
\(478\) 0 0
\(479\) −22.6762 −1.03610 −0.518052 0.855349i \(-0.673343\pi\)
−0.518052 + 0.855349i \(0.673343\pi\)
\(480\) 0 0
\(481\) −59.2477 −2.70146
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.9309 −0.677976
\(486\) 0 0
\(487\) −35.8078 −1.62260 −0.811302 0.584627i \(-0.801241\pi\)
−0.811302 + 0.584627i \(0.801241\pi\)
\(488\) 0 0
\(489\) 28.2995 1.27975
\(490\) 0 0
\(491\) −33.8617 −1.52816 −0.764079 0.645122i \(-0.776806\pi\)
−0.764079 + 0.645122i \(0.776806\pi\)
\(492\) 0 0
\(493\) −60.7350 −2.73537
\(494\) 0 0
\(495\) −6.04090 −0.271518
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.492423 0.0220439 0.0110219 0.999939i \(-0.496492\pi\)
0.0110219 + 0.999939i \(0.496492\pi\)
\(500\) 0 0
\(501\) 1.36932 0.0611766
\(502\) 0 0
\(503\) −29.4608 −1.31359 −0.656796 0.754068i \(-0.728089\pi\)
−0.656796 + 0.754068i \(0.728089\pi\)
\(504\) 0 0
\(505\) 30.2462 1.34594
\(506\) 0 0
\(507\) 55.4021 2.46049
\(508\) 0 0
\(509\) 15.6014 0.691518 0.345759 0.938323i \(-0.387621\pi\)
0.345759 + 0.938323i \(0.387621\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.36932 0.0604568
\(514\) 0 0
\(515\) −17.3693 −0.765384
\(516\) 0 0
\(517\) −7.36520 −0.323921
\(518\) 0 0
\(519\) 14.2462 0.625339
\(520\) 0 0
\(521\) 6.33122 0.277376 0.138688 0.990336i \(-0.455712\pi\)
0.138688 + 0.990336i \(0.455712\pi\)
\(522\) 0 0
\(523\) 7.20217 0.314929 0.157465 0.987525i \(-0.449668\pi\)
0.157465 + 0.987525i \(0.449668\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −42.3542 −1.84498
\(528\) 0 0
\(529\) 52.4233 2.27927
\(530\) 0 0
\(531\) −0.743668 −0.0322725
\(532\) 0 0
\(533\) 12.4924 0.541107
\(534\) 0 0
\(535\) 31.5288 1.36311
\(536\) 0 0
\(537\) −7.81855 −0.337395
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 31.3693 1.34867 0.674336 0.738425i \(-0.264430\pi\)
0.674336 + 0.738425i \(0.264430\pi\)
\(542\) 0 0
\(543\) −22.9309 −0.984058
\(544\) 0 0
\(545\) −6.78456 −0.290619
\(546\) 0 0
\(547\) 18.2462 0.780152 0.390076 0.920783i \(-0.372449\pi\)
0.390076 + 0.920783i \(0.372449\pi\)
\(548\) 0 0
\(549\) 27.5559 1.17606
\(550\) 0 0
\(551\) −10.9205 −0.465230
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −54.5464 −2.31537
\(556\) 0 0
\(557\) −5.50758 −0.233364 −0.116682 0.993169i \(-0.537226\pi\)
−0.116682 + 0.993169i \(0.537226\pi\)
\(558\) 0 0
\(559\) 24.1636 1.02201
\(560\) 0 0
\(561\) 17.3693 0.733333
\(562\) 0 0
\(563\) −14.3128 −0.603212 −0.301606 0.953433i \(-0.597523\pi\)
−0.301606 + 0.953433i \(0.597523\pi\)
\(564\) 0 0
\(565\) −34.6307 −1.45693
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.00000 −0.0838444 −0.0419222 0.999121i \(-0.513348\pi\)
−0.0419222 + 0.999121i \(0.513348\pi\)
\(570\) 0 0
\(571\) 26.2462 1.09837 0.549185 0.835701i \(-0.314938\pi\)
0.549185 + 0.835701i \(0.314938\pi\)
\(572\) 0 0
\(573\) −42.5766 −1.77866
\(574\) 0 0
\(575\) 4.87689 0.203381
\(576\) 0 0
\(577\) −36.1181 −1.50362 −0.751808 0.659382i \(-0.770818\pi\)
−0.751808 + 0.659382i \(0.770818\pi\)
\(578\) 0 0
\(579\) 0.580639 0.0241305
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 10.0000 0.414158
\(584\) 0 0
\(585\) 36.4924 1.50878
\(586\) 0 0
\(587\) −34.9211 −1.44135 −0.720673 0.693275i \(-0.756167\pi\)
−0.720673 + 0.693275i \(0.756167\pi\)
\(588\) 0 0
\(589\) −7.61553 −0.313792
\(590\) 0 0
\(591\) −38.3134 −1.57600
\(592\) 0 0
\(593\) 12.9885 0.533373 0.266687 0.963783i \(-0.414071\pi\)
0.266687 + 0.963783i \(0.414071\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 49.3693 2.02055
\(598\) 0 0
\(599\) 24.9848 1.02085 0.510427 0.859921i \(-0.329488\pi\)
0.510427 + 0.859921i \(0.329488\pi\)
\(600\) 0 0
\(601\) 16.2177 0.661535 0.330768 0.943712i \(-0.392692\pi\)
0.330768 + 0.943712i \(0.392692\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) 0 0
\(605\) 2.35829 0.0958783
\(606\) 0 0
\(607\) −3.22925 −0.131071 −0.0655357 0.997850i \(-0.520876\pi\)
−0.0655357 + 0.997850i \(0.520876\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44.4924 1.79997
\(612\) 0 0
\(613\) 5.12311 0.206920 0.103460 0.994634i \(-0.467009\pi\)
0.103460 + 0.994634i \(0.467009\pi\)
\(614\) 0 0
\(615\) 11.5012 0.463771
\(616\) 0 0
\(617\) 4.24621 0.170946 0.0854730 0.996340i \(-0.472760\pi\)
0.0854730 + 0.996340i \(0.472760\pi\)
\(618\) 0 0
\(619\) −45.3882 −1.82431 −0.912154 0.409849i \(-0.865582\pi\)
−0.912154 + 0.409849i \(0.865582\pi\)
\(620\) 0 0
\(621\) −8.97983 −0.360348
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.4924 −1.09970
\(626\) 0 0
\(627\) 3.12311 0.124725
\(628\) 0 0
\(629\) 72.2362 2.88024
\(630\) 0 0
\(631\) −2.43845 −0.0970730 −0.0485365 0.998821i \(-0.515456\pi\)
−0.0485365 + 0.998821i \(0.515456\pi\)
\(632\) 0 0
\(633\) 35.6647 1.41755
\(634\) 0 0
\(635\) −22.0956 −0.876837
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 34.7386 1.37424
\(640\) 0 0
\(641\) 11.9460 0.471840 0.235920 0.971773i \(-0.424190\pi\)
0.235920 + 0.971773i \(0.424190\pi\)
\(642\) 0 0
\(643\) 23.2926 0.918571 0.459286 0.888289i \(-0.348105\pi\)
0.459286 + 0.888289i \(0.348105\pi\)
\(644\) 0 0
\(645\) 22.2462 0.875944
\(646\) 0 0
\(647\) 16.3450 0.642590 0.321295 0.946979i \(-0.395882\pi\)
0.321295 + 0.946979i \(0.395882\pi\)
\(648\) 0 0
\(649\) 0.290319 0.0113960
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.9309 −0.506024 −0.253012 0.967463i \(-0.581421\pi\)
−0.253012 + 0.967463i \(0.581421\pi\)
\(654\) 0 0
\(655\) 41.3693 1.61643
\(656\) 0 0
\(657\) 25.6509 1.00074
\(658\) 0 0
\(659\) 29.3693 1.14407 0.572033 0.820231i \(-0.306155\pi\)
0.572033 + 0.820231i \(0.306155\pi\)
\(660\) 0 0
\(661\) −43.9009 −1.70755 −0.853773 0.520645i \(-0.825692\pi\)
−0.853773 + 0.520645i \(0.825692\pi\)
\(662\) 0 0
\(663\) −104.926 −4.07500
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 71.6155 2.77296
\(668\) 0 0
\(669\) −7.31534 −0.282827
\(670\) 0 0
\(671\) −10.7575 −0.415288
\(672\) 0 0
\(673\) 12.6307 0.486877 0.243439 0.969916i \(-0.421725\pi\)
0.243439 + 0.969916i \(0.421725\pi\)
\(674\) 0 0
\(675\) −0.580639 −0.0223488
\(676\) 0 0
\(677\) −25.4879 −0.979579 −0.489790 0.871841i \(-0.662926\pi\)
−0.489790 + 0.871841i \(0.662926\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −64.9848 −2.49022
\(682\) 0 0
\(683\) −7.50758 −0.287269 −0.143635 0.989631i \(-0.545879\pi\)
−0.143635 + 0.989631i \(0.545879\pi\)
\(684\) 0 0
\(685\) 8.39919 0.320917
\(686\) 0 0
\(687\) −18.0540 −0.688802
\(688\) 0 0
\(689\) −60.4090 −2.30140
\(690\) 0 0
\(691\) −28.5899 −1.08761 −0.543805 0.839212i \(-0.683017\pi\)
−0.543805 + 0.839212i \(0.683017\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.36932 −0.355398
\(696\) 0 0
\(697\) −15.2311 −0.576917
\(698\) 0 0
\(699\) −53.0438 −2.00630
\(700\) 0 0
\(701\) −25.1231 −0.948887 −0.474443 0.880286i \(-0.657351\pi\)
−0.474443 + 0.880286i \(0.657351\pi\)
\(702\) 0 0
\(703\) 12.9885 0.489870
\(704\) 0 0
\(705\) 40.9620 1.54272
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.5616 0.884873 0.442436 0.896800i \(-0.354114\pi\)
0.442436 + 0.896800i \(0.354114\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 49.9418 1.87033
\(714\) 0 0
\(715\) −14.2462 −0.532778
\(716\) 0 0
\(717\) 56.5991 2.11373
\(718\) 0 0
\(719\) −17.2517 −0.643381 −0.321690 0.946845i \(-0.604251\pi\)
−0.321690 + 0.946845i \(0.604251\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −22.2462 −0.827345
\(724\) 0 0
\(725\) 4.63068 0.171979
\(726\) 0 0
\(727\) −41.4153 −1.53601 −0.768004 0.640444i \(-0.778750\pi\)
−0.768004 + 0.640444i \(0.778750\pi\)
\(728\) 0 0
\(729\) −18.6155 −0.689464
\(730\) 0 0
\(731\) −29.4608 −1.08965
\(732\) 0 0
\(733\) −1.90495 −0.0703608 −0.0351804 0.999381i \(-0.511201\pi\)
−0.0351804 + 0.999381i \(0.511201\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.68466 0.172562
\(738\) 0 0
\(739\) −21.3693 −0.786083 −0.393042 0.919521i \(-0.628577\pi\)
−0.393042 + 0.919521i \(0.628577\pi\)
\(740\) 0 0
\(741\) −18.8664 −0.693073
\(742\) 0 0
\(743\) −34.7386 −1.27444 −0.637218 0.770683i \(-0.719915\pi\)
−0.637218 + 0.770683i \(0.719915\pi\)
\(744\) 0 0
\(745\) 28.8802 1.05809
\(746\) 0 0
\(747\) −8.68951 −0.317933
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 30.5464 1.11465 0.557327 0.830293i \(-0.311827\pi\)
0.557327 + 0.830293i \(0.311827\pi\)
\(752\) 0 0
\(753\) −2.05398 −0.0748510
\(754\) 0 0
\(755\) 11.5012 0.418570
\(756\) 0 0
\(757\) −2.49242 −0.0905886 −0.0452943 0.998974i \(-0.514423\pi\)
−0.0452943 + 0.998974i \(0.514423\pi\)
\(758\) 0 0
\(759\) −20.4810 −0.743413
\(760\) 0 0
\(761\) −20.0276 −0.726001 −0.363001 0.931789i \(-0.618248\pi\)
−0.363001 + 0.931789i \(0.618248\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −44.4924 −1.60863
\(766\) 0 0
\(767\) −1.75379 −0.0633256
\(768\) 0 0
\(769\) 5.29723 0.191023 0.0955115 0.995428i \(-0.469551\pi\)
0.0955115 + 0.995428i \(0.469551\pi\)
\(770\) 0 0
\(771\) −44.4924 −1.60236
\(772\) 0 0
\(773\) −3.39228 −0.122012 −0.0610060 0.998137i \(-0.519431\pi\)
−0.0610060 + 0.998137i \(0.519431\pi\)
\(774\) 0 0
\(775\) 3.22925 0.115998
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.73863 −0.0981217
\(780\) 0 0
\(781\) −13.5616 −0.485271
\(782\) 0 0
\(783\) −8.52648 −0.304712
\(784\) 0 0
\(785\) 16.6847 0.595501
\(786\) 0 0
\(787\) −10.7575 −0.383463 −0.191731 0.981447i \(-0.561410\pi\)
−0.191731 + 0.981447i \(0.561410\pi\)
\(788\) 0 0
\(789\) −26.2316 −0.933868
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 64.9848 2.30768
\(794\) 0 0
\(795\) −55.6155 −1.97248
\(796\) 0 0
\(797\) 43.9009 1.55505 0.777525 0.628852i \(-0.216475\pi\)
0.777525 + 0.628852i \(0.216475\pi\)
\(798\) 0 0
\(799\) −54.2462 −1.91909
\(800\) 0 0
\(801\) −4.13595 −0.146137
\(802\) 0 0
\(803\) −10.0138 −0.353380
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.75379 −0.0617363
\(808\) 0 0
\(809\) −51.4773 −1.80984 −0.904922 0.425577i \(-0.860071\pi\)
−0.904922 + 0.425577i \(0.860071\pi\)
\(810\) 0 0
\(811\) −9.59621 −0.336968 −0.168484 0.985704i \(-0.553887\pi\)
−0.168484 + 0.985704i \(0.553887\pi\)
\(812\) 0 0
\(813\) 22.2462 0.780209
\(814\) 0 0
\(815\) 28.2995 0.991289
\(816\) 0 0
\(817\) −5.29723 −0.185327
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.26137 −0.253423 −0.126712 0.991940i \(-0.540442\pi\)
−0.126712 + 0.991940i \(0.540442\pi\)
\(822\) 0 0
\(823\) −49.6695 −1.73137 −0.865685 0.500589i \(-0.833117\pi\)
−0.865685 + 0.500589i \(0.833117\pi\)
\(824\) 0 0
\(825\) −1.32431 −0.0461064
\(826\) 0 0
\(827\) 24.4924 0.851685 0.425842 0.904797i \(-0.359978\pi\)
0.425842 + 0.904797i \(0.359978\pi\)
\(828\) 0 0
\(829\) −36.5357 −1.26894 −0.634469 0.772949i \(-0.718781\pi\)
−0.634469 + 0.772949i \(0.718781\pi\)
\(830\) 0 0
\(831\) −64.5449 −2.23904
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.36932 0.0473872
\(836\) 0 0
\(837\) −5.94602 −0.205525
\(838\) 0 0
\(839\) −11.9545 −0.412715 −0.206358 0.978477i \(-0.566161\pi\)
−0.206358 + 0.978477i \(0.566161\pi\)
\(840\) 0 0
\(841\) 39.0000 1.34483
\(842\) 0 0
\(843\) 25.6509 0.883465
\(844\) 0 0
\(845\) 55.4021 1.90589
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −8.00000 −0.274559
\(850\) 0 0
\(851\) −85.1771 −2.91983
\(852\) 0 0
\(853\) −1.32431 −0.0453434 −0.0226717 0.999743i \(-0.507217\pi\)
−0.0226717 + 0.999743i \(0.507217\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) 14.7304 0.503181 0.251591 0.967834i \(-0.419046\pi\)
0.251591 + 0.967834i \(0.419046\pi\)
\(858\) 0 0
\(859\) −48.0368 −1.63900 −0.819498 0.573082i \(-0.805748\pi\)
−0.819498 + 0.573082i \(0.805748\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42.7386 1.45484 0.727420 0.686192i \(-0.240719\pi\)
0.727420 + 0.686192i \(0.240719\pi\)
\(864\) 0 0
\(865\) 14.2462 0.484386
\(866\) 0 0
\(867\) 87.8375 2.98312
\(868\) 0 0
\(869\) 3.12311 0.105944
\(870\) 0 0
\(871\) −28.2995 −0.958893
\(872\) 0 0
\(873\) −16.2177 −0.548887
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 46.4924 1.56994 0.784969 0.619535i \(-0.212679\pi\)
0.784969 + 0.619535i \(0.212679\pi\)
\(878\) 0 0
\(879\) −31.6155 −1.06637
\(880\) 0 0
\(881\) −15.1838 −0.511554 −0.255777 0.966736i \(-0.582331\pi\)
−0.255777 + 0.966736i \(0.582331\pi\)
\(882\) 0 0
\(883\) 0.492423 0.0165713 0.00828567 0.999966i \(-0.497363\pi\)
0.00828567 + 0.999966i \(0.497363\pi\)
\(884\) 0 0
\(885\) −1.61463 −0.0542751
\(886\) 0 0
\(887\) 8.85254 0.297239 0.148620 0.988894i \(-0.452517\pi\)
0.148620 + 0.988894i \(0.452517\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 10.1231 0.339137
\(892\) 0 0
\(893\) −9.75379 −0.326398
\(894\) 0 0
\(895\) −7.81855 −0.261345
\(896\) 0 0
\(897\) 123.723 4.13101
\(898\) 0 0
\(899\) 47.4205 1.58156
\(900\) 0 0
\(901\) 73.6520 2.45370
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.9309 −0.762248
\(906\) 0 0
\(907\) −51.2311 −1.70110 −0.850550 0.525895i \(-0.823731\pi\)
−0.850550 + 0.525895i \(0.823731\pi\)
\(908\) 0 0
\(909\) 32.8531 1.08967
\(910\) 0 0
\(911\) 32.9848 1.09284 0.546418 0.837512i \(-0.315991\pi\)
0.546418 + 0.837512i \(0.315991\pi\)
\(912\) 0 0
\(913\) 3.39228 0.112268
\(914\) 0 0
\(915\) 59.8283 1.97786
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −24.9848 −0.824174 −0.412087 0.911145i \(-0.635200\pi\)
−0.412087 + 0.911145i \(0.635200\pi\)
\(920\) 0 0
\(921\) 68.4924 2.25690
\(922\) 0 0
\(923\) 81.9239 2.69656
\(924\) 0 0
\(925\) −5.50758 −0.181088
\(926\) 0 0
\(927\) −18.8664 −0.619652
\(928\) 0 0
\(929\) 35.0841 1.15107 0.575536 0.817776i \(-0.304793\pi\)
0.575536 + 0.817776i \(0.304793\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.36932 0.0448294
\(934\) 0 0
\(935\) 17.3693 0.568037
\(936\) 0 0
\(937\) 15.0565 0.491873 0.245937 0.969286i \(-0.420904\pi\)
0.245937 + 0.969286i \(0.420904\pi\)
\(938\) 0 0
\(939\) −2.43845 −0.0795757
\(940\) 0 0
\(941\) 29.6238 0.965710 0.482855 0.875700i \(-0.339600\pi\)
0.482855 + 0.875700i \(0.339600\pi\)
\(942\) 0 0
\(943\) 17.9597 0.584847
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.9309 0.875136 0.437568 0.899185i \(-0.355840\pi\)
0.437568 + 0.899185i \(0.355840\pi\)
\(948\) 0 0
\(949\) 60.4924 1.96367
\(950\) 0 0
\(951\) −10.4672 −0.339421
\(952\) 0 0
\(953\) −58.1080 −1.88230 −0.941151 0.337988i \(-0.890254\pi\)
−0.941151 + 0.337988i \(0.890254\pi\)
\(954\) 0 0
\(955\) −42.5766 −1.37775
\(956\) 0 0
\(957\) −19.4470 −0.628632
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.06913 0.0667461
\(962\) 0 0
\(963\) 34.2462 1.10357
\(964\) 0 0
\(965\) 0.580639 0.0186914
\(966\) 0 0
\(967\) 4.87689 0.156830 0.0784152 0.996921i \(-0.475014\pi\)
0.0784152 + 0.996921i \(0.475014\pi\)
\(968\) 0 0
\(969\) 23.0023 0.738941
\(970\) 0 0
\(971\) 50.1048 1.60794 0.803970 0.594670i \(-0.202717\pi\)
0.803970 + 0.594670i \(0.202717\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.00000 0.256205
\(976\) 0 0
\(977\) 22.6847 0.725747 0.362873 0.931839i \(-0.381796\pi\)
0.362873 + 0.931839i \(0.381796\pi\)
\(978\) 0 0
\(979\) 1.61463 0.0516037
\(980\) 0 0
\(981\) −7.36932 −0.235284
\(982\) 0 0
\(983\) 50.8485 1.62181 0.810907 0.585174i \(-0.198974\pi\)
0.810907 + 0.585174i \(0.198974\pi\)
\(984\) 0 0
\(985\) −38.3134 −1.22076
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 34.7386 1.10462
\(990\) 0 0
\(991\) 61.4773 1.95289 0.976445 0.215767i \(-0.0692252\pi\)
0.976445 + 0.215767i \(0.0692252\pi\)
\(992\) 0 0
\(993\) −40.5086 −1.28550
\(994\) 0 0
\(995\) 49.3693 1.56511
\(996\) 0 0
\(997\) 19.2840 0.610729 0.305365 0.952235i \(-0.401222\pi\)
0.305365 + 0.952235i \(0.401222\pi\)
\(998\) 0 0
\(999\) 10.1411 0.320850
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8624.2.a.ct.1.4 4
4.3 odd 2 4312.2.a.ba.1.1 4
7.6 odd 2 inner 8624.2.a.ct.1.1 4
28.27 even 2 4312.2.a.ba.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4312.2.a.ba.1.1 4 4.3 odd 2
4312.2.a.ba.1.4 yes 4 28.27 even 2
8624.2.a.ct.1.1 4 7.6 odd 2 inner
8624.2.a.ct.1.4 4 1.1 even 1 trivial