Properties

Label 8624.2.a.by
Level $8624$
Weight $2$
Character orbit 8624.a
Self dual yes
Analytic conductor $68.863$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8624,2,Mod(1,8624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8624.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.8629867032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1078)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} + 5 q^{9} + q^{11} + \beta q^{13} - \beta q^{17} + 2 \beta q^{19} - 8 q^{23} - 5 q^{25} + 2 \beta q^{27} + 2 q^{29} + 3 \beta q^{31} + \beta q^{33} + 2 q^{37} + 8 q^{39} - \beta q^{41} + 4 q^{43} + \beta q^{47} - 8 q^{51} + 14 q^{53} + 16 q^{57} - 3 \beta q^{59} + 3 \beta q^{61} - 4 q^{67} - 8 \beta q^{69} + 5 \beta q^{73} - 5 \beta q^{75} + 16 q^{79} + q^{81} - 6 \beta q^{83} + 2 \beta q^{87} + 4 \beta q^{89} + 24 q^{93} + 6 \beta q^{97} + 5 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 10 q^{9} + 2 q^{11} - 16 q^{23} - 10 q^{25} + 4 q^{29} + 4 q^{37} + 16 q^{39} + 8 q^{43} - 16 q^{51} + 28 q^{53} + 32 q^{57} - 8 q^{67} + 32 q^{79} + 2 q^{81} + 48 q^{93} + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −2.82843 0 0 0 0 0 5.00000 0
1.2 0 2.82843 0 0 0 0 0 5.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8624.2.a.by 2
4.b odd 2 1 1078.2.a.r 2
7.b odd 2 1 inner 8624.2.a.by 2
12.b even 2 1 9702.2.a.dn 2
28.d even 2 1 1078.2.a.r 2
28.f even 6 2 1078.2.e.r 4
28.g odd 6 2 1078.2.e.r 4
84.h odd 2 1 9702.2.a.dn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1078.2.a.r 2 4.b odd 2 1
1078.2.a.r 2 28.d even 2 1
1078.2.e.r 4 28.f even 6 2
1078.2.e.r 4 28.g odd 6 2
8624.2.a.by 2 1.a even 1 1 trivial
8624.2.a.by 2 7.b odd 2 1 inner
9702.2.a.dn 2 12.b even 2 1
9702.2.a.dn 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8624))\):

\( T_{3}^{2} - 8 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{13}^{2} - 8 \) Copy content Toggle raw display
\( T_{17}^{2} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 8 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 8 \) Copy content Toggle raw display
$17$ \( T^{2} - 8 \) Copy content Toggle raw display
$19$ \( T^{2} - 32 \) Copy content Toggle raw display
$23$ \( (T + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 72 \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 8 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( (T - 14)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 72 \) Copy content Toggle raw display
$61$ \( T^{2} - 72 \) Copy content Toggle raw display
$67$ \( (T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 200 \) Copy content Toggle raw display
$79$ \( (T - 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 288 \) Copy content Toggle raw display
$89$ \( T^{2} - 128 \) Copy content Toggle raw display
$97$ \( T^{2} - 288 \) Copy content Toggle raw display
show more
show less