Defining parameters
Level: | \( N \) | \(=\) | \( 858 = 2 \cdot 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 858.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(858))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 176 | 21 | 155 |
Cusp forms | 161 | 21 | 140 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(3\) |
Plus space | \(+\) | \(7\) | |||
Minus space | \(-\) | \(14\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(858))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 2 | 3 | 11 | 13 | |||||||
858.2.a.a | \(1\) | \(6.851\) | \(\Q\) | None | \(-1\) | \(-1\) | \(2\) | \(0\) | \(+\) | \(+\) | \(-\) | \(+\) | \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}-q^{8}+\cdots\) | |
858.2.a.b | \(1\) | \(6.851\) | \(\Q\) | None | \(-1\) | \(1\) | \(-2\) | \(4\) | \(+\) | \(-\) | \(-\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}-2q^{5}-q^{6}+4q^{7}+\cdots\) | |
858.2.a.c | \(1\) | \(6.851\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(-4\) | \(+\) | \(-\) | \(+\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}-4q^{7}-q^{8}+\cdots\) | |
858.2.a.d | \(1\) | \(6.851\) | \(\Q\) | None | \(-1\) | \(1\) | \(3\) | \(-1\) | \(+\) | \(-\) | \(-\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\) | |
858.2.a.e | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(-1\) | \(-3\) | \(1\) | \(-\) | \(+\) | \(+\) | \(-\) | \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}+q^{7}+\cdots\) | |
858.2.a.f | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(-1\) | \(-2\) | \(0\) | \(-\) | \(+\) | \(-\) | \(-\) | \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}+q^{8}+\cdots\) | |
858.2.a.g | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(-3\) | \(-\) | \(+\) | \(-\) | \(+\) | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-3q^{7}+\cdots\) | |
858.2.a.h | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(-1\) | \(2\) | \(4\) | \(-\) | \(+\) | \(+\) | \(+\) | \(q+q^{2}-q^{3}+q^{4}+2q^{5}-q^{6}+4q^{7}+\cdots\) | |
858.2.a.i | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(-1\) | \(4\) | \(0\) | \(-\) | \(+\) | \(-\) | \(-\) | \(q+q^{2}-q^{3}+q^{4}+4q^{5}-q^{6}+q^{8}+\cdots\) | |
858.2.a.j | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(1\) | \(-3\) | \(5\) | \(-\) | \(-\) | \(+\) | \(-\) | \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}+5q^{7}+\cdots\) | |
858.2.a.k | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | \(-\) | \(-\) | \(-\) | \(+\) | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
858.2.a.l | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(1\) | \(2\) | \(4\) | \(-\) | \(-\) | \(-\) | \(+\) | \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+4q^{7}+\cdots\) | |
858.2.a.m | \(1\) | \(6.851\) | \(\Q\) | None | \(1\) | \(1\) | \(4\) | \(-4\) | \(-\) | \(-\) | \(-\) | \(+\) | \(q+q^{2}+q^{3}+q^{4}+4q^{5}+q^{6}-4q^{7}+\cdots\) | |
858.2.a.n | \(2\) | \(6.851\) | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(-2\) | \(-3\) | \(-1\) | \(+\) | \(+\) | \(-\) | \(-\) | \(q-q^{2}-q^{3}+q^{4}+(-1-\beta )q^{5}+q^{6}+\cdots\) | |
858.2.a.o | \(2\) | \(6.851\) | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(-2\) | \(1\) | \(-1\) | \(+\) | \(+\) | \(+\) | \(+\) | \(q-q^{2}-q^{3}+q^{4}+\beta q^{5}+q^{6}-\beta q^{7}+\cdots\) | |
858.2.a.p | \(2\) | \(6.851\) | \(\Q(\sqrt{41}) \) | None | \(-2\) | \(2\) | \(-1\) | \(3\) | \(+\) | \(-\) | \(+\) | \(+\) | \(q-q^{2}+q^{3}+q^{4}-\beta q^{5}-q^{6}+(2-\beta )q^{7}+\cdots\) | |
858.2.a.q | \(2\) | \(6.851\) | \(\Q(\sqrt{41}) \) | None | \(2\) | \(2\) | \(4\) | \(0\) | \(-\) | \(-\) | \(+\) | \(-\) | \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(858))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(858)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(429))\)\(^{\oplus 2}\)