Properties

Label 8550.2.a.t.1.1
Level $8550$
Weight $2$
Character 8550.1
Self dual yes
Analytic conductor $68.272$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8550.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(68.2720937282\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8550.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{7} +1.00000 q^{8} +4.00000 q^{11} +2.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{19} +4.00000 q^{22} -8.00000 q^{23} +2.00000 q^{26} -4.00000 q^{28} -6.00000 q^{29} +4.00000 q^{31} +1.00000 q^{32} -2.00000 q^{34} +10.0000 q^{37} -1.00000 q^{38} +2.00000 q^{41} -12.0000 q^{43} +4.00000 q^{44} -8.00000 q^{46} +9.00000 q^{49} +2.00000 q^{52} +6.00000 q^{53} -4.00000 q^{56} -6.00000 q^{58} -10.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +4.00000 q^{67} -2.00000 q^{68} +8.00000 q^{71} -2.00000 q^{73} +10.0000 q^{74} -1.00000 q^{76} -16.0000 q^{77} -12.0000 q^{79} +2.00000 q^{82} -8.00000 q^{83} -12.0000 q^{86} +4.00000 q^{88} -6.00000 q^{89} -8.00000 q^{91} -8.00000 q^{92} -18.0000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −16.0000 −1.82337
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.00000 0.220863
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.0000 −1.29399
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 10.0000 0.821995
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) −16.0000 −1.28932
\(155\) 0 0
\(156\) 0 0
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) −12.0000 −0.954669
\(159\) 0 0
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −12.0000 −0.914991
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −8.00000 −0.592999
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) 0 0
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) −18.0000 −1.29232
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.0000 0.703598
\(203\) 24.0000 1.68447
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 10.0000 0.677285
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 8.00000 0.518563
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 0 0
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −40.0000 −2.48548
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) −2.00000 −0.117041
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) −22.0000 −1.27443
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) 48.0000 2.76667
\(302\) 4.00000 0.230174
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) −16.0000 −0.911685
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 30.0000 1.69570 0.847850 0.530236i \(-0.177897\pi\)
0.847850 + 0.530236i \(0.177897\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 32.0000 1.78329
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 2.00000 0.110432
\(329\) 0 0
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) −8.00000 −0.439057
\(333\) 0 0
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 0 0
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 0 0
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) −8.00000 −0.419314
\(365\) 0 0
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −30.0000 −1.55334 −0.776671 0.629907i \(-0.783093\pi\)
−0.776671 + 0.629907i \(0.783093\pi\)
\(374\) −8.00000 −0.413670
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −18.0000 −0.916176
\(387\) 0 0
\(388\) −18.0000 −0.913812
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 40.0000 1.98273
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) −4.00000 −0.195646
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 40.0000 1.93574
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) −16.0000 −0.768025
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 36.0000 1.67306 0.836531 0.547920i \(-0.184580\pi\)
0.836531 + 0.547920i \(0.184580\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −48.0000 −2.20704
\(474\) 0 0
\(475\) 0 0
\(476\) 8.00000 0.366679
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) −2.00000 −0.0899843
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −32.0000 −1.43540
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 28.0000 1.24970
\(503\) 32.0000 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −32.0000 −1.42257
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −40.0000 −1.75750
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) −6.00000 −0.258678
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) −24.0000 −1.03089
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 14.0000 0.598050
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 48.0000 2.04117
\(554\) −18.0000 −0.764747
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) −30.0000 −1.26547
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) −8.00000 −0.333914
\(575\) 0 0
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 0 0
\(581\) 32.0000 1.32758
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) −10.0000 −0.413096
\(587\) −40.0000 −1.65098 −0.825488 0.564419i \(-0.809100\pi\)
−0.825488 + 0.564419i \(0.809100\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 10.0000 0.410997
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22.0000 −0.901155
\(597\) 0 0
\(598\) −16.0000 −0.654289
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 48.0000 1.95633
\(603\) 0 0
\(604\) 4.00000 0.162758
\(605\) 0 0
\(606\) 0 0
\(607\) −24.0000 −0.974130 −0.487065 0.873366i \(-0.661933\pi\)
−0.487065 + 0.873366i \(0.661933\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) −16.0000 −0.644658
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 24.0000 0.961540
\(624\) 0 0
\(625\) 0 0
\(626\) 30.0000 1.19904
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −12.0000 −0.477334
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) 0 0
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) 0 0
\(641\) 10.0000 0.394976 0.197488 0.980305i \(-0.436722\pi\)
0.197488 + 0.980305i \(0.436722\pi\)
\(642\) 0 0
\(643\) 28.0000 1.10421 0.552106 0.833774i \(-0.313824\pi\)
0.552106 + 0.833774i \(0.313824\pi\)
\(644\) 32.0000 1.26098
\(645\) 0 0
\(646\) 2.00000 0.0786889
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) 0 0
\(658\) 0 0
\(659\) 16.0000 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) −12.0000 −0.466393
\(663\) 0 0
\(664\) −8.00000 −0.310460
\(665\) 0 0
\(666\) 0 0
\(667\) 48.0000 1.85857
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) −34.0000 −1.30963
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 72.0000 2.76311
\(680\) 0 0
\(681\) 0 0
\(682\) 16.0000 0.612672
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) −12.0000 −0.457496
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 0 0
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) −34.0000 −1.28692
\(699\) 0 0
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −40.0000 −1.50435
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −32.0000 −1.19423
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) 64.0000 2.38348
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) −8.00000 −0.296500
\(729\) 0 0
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −30.0000 −1.09838
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) 52.0000 1.89751 0.948753 0.316017i \(-0.102346\pi\)
0.948753 + 0.316017i \(0.102346\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) −40.0000 −1.44810
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −18.0000 −0.647834
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −18.0000 −0.646162
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) −2.00000 −0.0716574
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 16.0000 0.572159
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) −52.0000 −1.85360 −0.926800 0.375555i \(-0.877452\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(788\) −18.0000 −0.641223
\(789\) 0 0
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 18.0000 0.635602
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) 10.0000 0.351799
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 24.0000 0.842235
\(813\) 0 0
\(814\) 40.0000 1.40200
\(815\) 0 0
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) −6.00000 −0.209785
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) −52.0000 −1.81261 −0.906303 0.422628i \(-0.861108\pi\)
−0.906303 + 0.422628i \(0.861108\pi\)
\(824\) −16.0000 −0.557386
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −14.0000 −0.482472
\(843\) 0 0
\(844\) −12.0000 −0.413057
\(845\) 0 0
\(846\) 0 0
\(847\) −20.0000 −0.687208
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) −80.0000 −2.74236
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 40.0000 1.36877
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) −48.0000 −1.62829
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 10.0000 0.338643
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 0 0
\(876\) 0 0
\(877\) −6.00000 −0.202606 −0.101303 0.994856i \(-0.532301\pi\)
−0.101303 + 0.994856i \(0.532301\pi\)
\(878\) −4.00000 −0.134993
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 8.00000 0.266371
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) −32.0000 −1.05905
\(914\) 6.00000 0.198462
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) −48.0000 −1.58510
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −14.0000 −0.461065
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) 0 0
\(926\) 36.0000 1.18303
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 8.00000 0.261768
\(935\) 0 0
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) −16.0000 −0.522419
\(939\) 0 0
\(940\) 0 0
\(941\) 50.0000 1.62995 0.814977 0.579494i \(-0.196750\pi\)
0.814977 + 0.579494i \(0.196750\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) 0 0
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) −40.0000 −1.29983 −0.649913 0.760009i \(-0.725195\pi\)
−0.649913 + 0.760009i \(0.725195\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 0 0
\(952\) 8.00000 0.259281
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 16.0000 0.516937
\(959\) −56.0000 −1.80833
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 20.0000 0.644826
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) −52.0000 −1.67221 −0.836104 0.548572i \(-0.815172\pi\)
−0.836104 + 0.548572i \(0.815172\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) 48.0000 1.53881
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) −28.0000 −0.893516
\(983\) 48.0000 1.53096 0.765481 0.643458i \(-0.222501\pi\)
0.765481 + 0.643458i \(0.222501\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) −2.00000 −0.0636285
\(989\) 96.0000 3.05262
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) −32.0000 −1.01498
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8550.2.a.t.1.1 1
3.2 odd 2 2850.2.a.a.1.1 1
5.4 even 2 1710.2.a.f.1.1 1
15.2 even 4 2850.2.d.k.799.1 2
15.8 even 4 2850.2.d.k.799.2 2
15.14 odd 2 570.2.a.m.1.1 1
60.59 even 2 4560.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.2.a.m.1.1 1 15.14 odd 2
1710.2.a.f.1.1 1 5.4 even 2
2850.2.a.a.1.1 1 3.2 odd 2
2850.2.d.k.799.1 2 15.2 even 4
2850.2.d.k.799.2 2 15.8 even 4
4560.2.a.k.1.1 1 60.59 even 2
8550.2.a.t.1.1 1 1.1 even 1 trivial