# Properties

 Label 8550.2.a.m Level $8550$ Weight $2$ Character orbit 8550.a Self dual yes Analytic conductor $68.272$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [8550,2,Mod(1,8550)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(8550, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("8550.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8550.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$68.2720937282$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{4} + q^{7} - q^{8}+O(q^{10})$$ q - q^2 + q^4 + q^7 - q^8 $$q - q^{2} + q^{4} + q^{7} - q^{8} + 6 q^{11} - 5 q^{13} - q^{14} + q^{16} + 3 q^{17} + q^{19} - 6 q^{22} + 3 q^{23} + 5 q^{26} + q^{28} - 9 q^{29} - 4 q^{31} - q^{32} - 3 q^{34} - 2 q^{37} - q^{38} - 8 q^{43} + 6 q^{44} - 3 q^{46} - 6 q^{49} - 5 q^{52} - 3 q^{53} - q^{56} + 9 q^{58} - 9 q^{59} - 10 q^{61} + 4 q^{62} + q^{64} - 5 q^{67} + 3 q^{68} + 6 q^{71} + 7 q^{73} + 2 q^{74} + q^{76} + 6 q^{77} - 10 q^{79} - 6 q^{83} + 8 q^{86} - 6 q^{88} + 12 q^{89} - 5 q^{91} + 3 q^{92} + 10 q^{97} + 6 q^{98}+O(q^{100})$$ q - q^2 + q^4 + q^7 - q^8 + 6 * q^11 - 5 * q^13 - q^14 + q^16 + 3 * q^17 + q^19 - 6 * q^22 + 3 * q^23 + 5 * q^26 + q^28 - 9 * q^29 - 4 * q^31 - q^32 - 3 * q^34 - 2 * q^37 - q^38 - 8 * q^43 + 6 * q^44 - 3 * q^46 - 6 * q^49 - 5 * q^52 - 3 * q^53 - q^56 + 9 * q^58 - 9 * q^59 - 10 * q^61 + 4 * q^62 + q^64 - 5 * q^67 + 3 * q^68 + 6 * q^71 + 7 * q^73 + 2 * q^74 + q^76 + 6 * q^77 - 10 * q^79 - 6 * q^83 + 8 * q^86 - 6 * q^88 + 12 * q^89 - 5 * q^91 + 3 * q^92 + 10 * q^97 + 6 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 0 1.00000 0 0 1.00000 −1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$3$$ $$-1$$
$$5$$ $$+1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8550.2.a.m 1
3.b odd 2 1 950.2.a.d 1
5.b even 2 1 342.2.a.e 1
12.b even 2 1 7600.2.a.n 1
15.d odd 2 1 38.2.a.a 1
15.e even 4 2 950.2.b.b 2
20.d odd 2 1 2736.2.a.n 1
60.h even 2 1 304.2.a.c 1
95.d odd 2 1 6498.2.a.f 1
105.g even 2 1 1862.2.a.b 1
120.i odd 2 1 1216.2.a.e 1
120.m even 2 1 1216.2.a.m 1
165.d even 2 1 4598.2.a.p 1
195.e odd 2 1 6422.2.a.h 1
285.b even 2 1 722.2.a.e 1
285.n odd 6 2 722.2.c.e 2
285.q even 6 2 722.2.c.c 2
285.bd odd 18 6 722.2.e.f 6
285.bf even 18 6 722.2.e.e 6
1140.p odd 2 1 5776.2.a.m 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.a 1 15.d odd 2 1
304.2.a.c 1 60.h even 2 1
342.2.a.e 1 5.b even 2 1
722.2.a.e 1 285.b even 2 1
722.2.c.c 2 285.q even 6 2
722.2.c.e 2 285.n odd 6 2
722.2.e.e 6 285.bf even 18 6
722.2.e.f 6 285.bd odd 18 6
950.2.a.d 1 3.b odd 2 1
950.2.b.b 2 15.e even 4 2
1216.2.a.e 1 120.i odd 2 1
1216.2.a.m 1 120.m even 2 1
1862.2.a.b 1 105.g even 2 1
2736.2.a.n 1 20.d odd 2 1
4598.2.a.p 1 165.d even 2 1
5776.2.a.m 1 1140.p odd 2 1
6422.2.a.h 1 195.e odd 2 1
6498.2.a.f 1 95.d odd 2 1
7600.2.a.n 1 12.b even 2 1
8550.2.a.m 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8550))$$:

 $$T_{7} - 1$$ T7 - 1 $$T_{11} - 6$$ T11 - 6 $$T_{13} + 5$$ T13 + 5 $$T_{17} - 3$$ T17 - 3 $$T_{23} - 3$$ T23 - 3 $$T_{53} + 3$$ T53 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T - 1$$
$11$ $$T - 6$$
$13$ $$T + 5$$
$17$ $$T - 3$$
$19$ $$T - 1$$
$23$ $$T - 3$$
$29$ $$T + 9$$
$31$ $$T + 4$$
$37$ $$T + 2$$
$41$ $$T$$
$43$ $$T + 8$$
$47$ $$T$$
$53$ $$T + 3$$
$59$ $$T + 9$$
$61$ $$T + 10$$
$67$ $$T + 5$$
$71$ $$T - 6$$
$73$ $$T - 7$$
$79$ $$T + 10$$
$83$ $$T + 6$$
$89$ $$T - 12$$
$97$ $$T - 10$$