Properties

Label 8550.2.a.cq
Level $8550$
Weight $2$
Character orbit 8550.a
Self dual yes
Analytic conductor $68.272$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8550.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(68.2720937282\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta_{2} q^{7} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} - \beta_{2} q^{7} + q^{8} + ( - \beta_1 - 3) q^{11} + (\beta_{2} + \beta_1 - 1) q^{13} - \beta_{2} q^{14} + q^{16} + (\beta_{2} + \beta_1 + 1) q^{17} + q^{19} + ( - \beta_1 - 3) q^{22} + ( - \beta_1 - 3) q^{23} + (\beta_{2} + \beta_1 - 1) q^{26} - \beta_{2} q^{28} + (\beta_1 - 3) q^{29} + \beta_{2} q^{31} + q^{32} + (\beta_{2} + \beta_1 + 1) q^{34} + (\beta_{2} + \beta_1 - 1) q^{37} + q^{38} + (\beta_{2} - 2 \beta_1 - 2) q^{41} + ( - 2 \beta_{2} - 3 \beta_1 + 1) q^{43} + ( - \beta_1 - 3) q^{44} + ( - \beta_1 - 3) q^{46} + (\beta_1 + 3) q^{47} + ( - 2 \beta_{2} - 2 \beta_1 + 3) q^{49} + (\beta_{2} + \beta_1 - 1) q^{52} - 6 q^{53} - \beta_{2} q^{56} + (\beta_1 - 3) q^{58} + ( - \beta_{2} + \beta_1 - 3) q^{59} + ( - 2 \beta_1 + 4) q^{61} + \beta_{2} q^{62} + q^{64} + (2 \beta_{2} + 2 \beta_1 - 6) q^{67} + (\beta_{2} + \beta_1 + 1) q^{68} + (2 \beta_{2} + 2 \beta_1 - 6) q^{71} + (2 \beta_{2} + 2 \beta_1 - 2) q^{73} + (\beta_{2} + \beta_1 - 1) q^{74} + q^{76} + (2 \beta_{2} + 2 \beta_1 - 2) q^{77} - \beta_{2} q^{79} + (\beta_{2} - 2 \beta_1 - 2) q^{82} + ( - 3 \beta_{2} + \beta_1 - 1) q^{83} + ( - 2 \beta_{2} - 3 \beta_1 + 1) q^{86} + ( - \beta_1 - 3) q^{88} + (\beta_{2} - 8) q^{89} + (4 \beta_{2} - 8) q^{91} + ( - \beta_1 - 3) q^{92} + (\beta_1 + 3) q^{94} + (\beta_1 - 7) q^{97} + ( - 2 \beta_{2} - 2 \beta_1 + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{8} - 8 q^{11} - 4 q^{13} + 3 q^{16} + 2 q^{17} + 3 q^{19} - 8 q^{22} - 8 q^{23} - 4 q^{26} - 10 q^{29} + 3 q^{32} + 2 q^{34} - 4 q^{37} + 3 q^{38} - 4 q^{41} + 6 q^{43} - 8 q^{44} - 8 q^{46} + 8 q^{47} + 11 q^{49} - 4 q^{52} - 18 q^{53} - 10 q^{58} - 10 q^{59} + 14 q^{61} + 3 q^{64} - 20 q^{67} + 2 q^{68} - 20 q^{71} - 8 q^{73} - 4 q^{74} + 3 q^{76} - 8 q^{77} - 4 q^{82} - 4 q^{83} + 6 q^{86} - 8 q^{88} - 24 q^{89} - 24 q^{91} - 8 q^{92} + 8 q^{94} - 22 q^{97} + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 5 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
1.00000 0 1.00000 0 0 −3.35026 1.00000 0 0
1.2 1.00000 0 1.00000 0 0 −1.07838 1.00000 0 0
1.3 1.00000 0 1.00000 0 0 4.42864 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8550.2.a.cq 3
3.b odd 2 1 2850.2.a.bl 3
5.b even 2 1 8550.2.a.ce 3
5.c odd 4 2 1710.2.d.f 6
15.d odd 2 1 2850.2.a.bm 3
15.e even 4 2 570.2.d.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.d.c 6 15.e even 4 2
1710.2.d.f 6 5.c odd 4 2
2850.2.a.bl 3 3.b odd 2 1
2850.2.a.bm 3 15.d odd 2 1
8550.2.a.ce 3 5.b even 2 1
8550.2.a.cq 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8550))\):

\( T_{7}^{3} - 16T_{7} - 16 \) Copy content Toggle raw display
\( T_{11}^{3} + 8T_{11}^{2} + 8T_{11} - 16 \) Copy content Toggle raw display
\( T_{13}^{3} + 4T_{13}^{2} - 16T_{13} - 32 \) Copy content Toggle raw display
\( T_{17}^{3} - 2T_{17}^{2} - 20T_{17} + 8 \) Copy content Toggle raw display
\( T_{23}^{3} + 8T_{23}^{2} + 8T_{23} - 16 \) Copy content Toggle raw display
\( T_{53} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 16T - 16 \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + 8 T - 16 \) Copy content Toggle raw display
$13$ \( T^{3} + 4 T^{2} - 16 T - 32 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} - 20 T + 8 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + 8 T - 16 \) Copy content Toggle raw display
$29$ \( T^{3} + 10 T^{2} + 20 T - 8 \) Copy content Toggle raw display
$31$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$37$ \( T^{3} + 4 T^{2} - 16 T - 32 \) Copy content Toggle raw display
$41$ \( T^{3} + 4 T^{2} - 80 T - 400 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} - 124 T + 760 \) Copy content Toggle raw display
$47$ \( T^{3} - 8 T^{2} + 8 T + 16 \) Copy content Toggle raw display
$53$ \( (T + 6)^{3} \) Copy content Toggle raw display
$59$ \( T^{3} + 10 T^{2} - 4 T - 8 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + 12 T + 152 \) Copy content Toggle raw display
$67$ \( T^{3} + 20 T^{2} + 48 T - 320 \) Copy content Toggle raw display
$71$ \( T^{3} + 20 T^{2} + 48 T - 320 \) Copy content Toggle raw display
$73$ \( T^{3} + 8 T^{2} - 64 T - 256 \) Copy content Toggle raw display
$79$ \( T^{3} - 16T - 16 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} - 176 T - 160 \) Copy content Toggle raw display
$89$ \( T^{3} + 24 T^{2} + 176 T + 400 \) Copy content Toggle raw display
$97$ \( T^{3} + 22 T^{2} + 148 T + 296 \) Copy content Toggle raw display
show more
show less