# Properties

 Label 8550.2.a.cq Level $8550$ Weight $2$ Character orbit 8550.a Self dual yes Analytic conductor $68.272$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8550.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$68.2720937282$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 Defining polynomial: $$x^{3} - x^{2} - 3x + 1$$ x^3 - x^2 - 3*x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 570) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} - \beta_{2} q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 - b2 * q^7 + q^8 $$q + q^{2} + q^{4} - \beta_{2} q^{7} + q^{8} + ( - \beta_1 - 3) q^{11} + (\beta_{2} + \beta_1 - 1) q^{13} - \beta_{2} q^{14} + q^{16} + (\beta_{2} + \beta_1 + 1) q^{17} + q^{19} + ( - \beta_1 - 3) q^{22} + ( - \beta_1 - 3) q^{23} + (\beta_{2} + \beta_1 - 1) q^{26} - \beta_{2} q^{28} + (\beta_1 - 3) q^{29} + \beta_{2} q^{31} + q^{32} + (\beta_{2} + \beta_1 + 1) q^{34} + (\beta_{2} + \beta_1 - 1) q^{37} + q^{38} + (\beta_{2} - 2 \beta_1 - 2) q^{41} + ( - 2 \beta_{2} - 3 \beta_1 + 1) q^{43} + ( - \beta_1 - 3) q^{44} + ( - \beta_1 - 3) q^{46} + (\beta_1 + 3) q^{47} + ( - 2 \beta_{2} - 2 \beta_1 + 3) q^{49} + (\beta_{2} + \beta_1 - 1) q^{52} - 6 q^{53} - \beta_{2} q^{56} + (\beta_1 - 3) q^{58} + ( - \beta_{2} + \beta_1 - 3) q^{59} + ( - 2 \beta_1 + 4) q^{61} + \beta_{2} q^{62} + q^{64} + (2 \beta_{2} + 2 \beta_1 - 6) q^{67} + (\beta_{2} + \beta_1 + 1) q^{68} + (2 \beta_{2} + 2 \beta_1 - 6) q^{71} + (2 \beta_{2} + 2 \beta_1 - 2) q^{73} + (\beta_{2} + \beta_1 - 1) q^{74} + q^{76} + (2 \beta_{2} + 2 \beta_1 - 2) q^{77} - \beta_{2} q^{79} + (\beta_{2} - 2 \beta_1 - 2) q^{82} + ( - 3 \beta_{2} + \beta_1 - 1) q^{83} + ( - 2 \beta_{2} - 3 \beta_1 + 1) q^{86} + ( - \beta_1 - 3) q^{88} + (\beta_{2} - 8) q^{89} + (4 \beta_{2} - 8) q^{91} + ( - \beta_1 - 3) q^{92} + (\beta_1 + 3) q^{94} + (\beta_1 - 7) q^{97} + ( - 2 \beta_{2} - 2 \beta_1 + 3) q^{98}+O(q^{100})$$ q + q^2 + q^4 - b2 * q^7 + q^8 + (-b1 - 3) * q^11 + (b2 + b1 - 1) * q^13 - b2 * q^14 + q^16 + (b2 + b1 + 1) * q^17 + q^19 + (-b1 - 3) * q^22 + (-b1 - 3) * q^23 + (b2 + b1 - 1) * q^26 - b2 * q^28 + (b1 - 3) * q^29 + b2 * q^31 + q^32 + (b2 + b1 + 1) * q^34 + (b2 + b1 - 1) * q^37 + q^38 + (b2 - 2*b1 - 2) * q^41 + (-2*b2 - 3*b1 + 1) * q^43 + (-b1 - 3) * q^44 + (-b1 - 3) * q^46 + (b1 + 3) * q^47 + (-2*b2 - 2*b1 + 3) * q^49 + (b2 + b1 - 1) * q^52 - 6 * q^53 - b2 * q^56 + (b1 - 3) * q^58 + (-b2 + b1 - 3) * q^59 + (-2*b1 + 4) * q^61 + b2 * q^62 + q^64 + (2*b2 + 2*b1 - 6) * q^67 + (b2 + b1 + 1) * q^68 + (2*b2 + 2*b1 - 6) * q^71 + (2*b2 + 2*b1 - 2) * q^73 + (b2 + b1 - 1) * q^74 + q^76 + (2*b2 + 2*b1 - 2) * q^77 - b2 * q^79 + (b2 - 2*b1 - 2) * q^82 + (-3*b2 + b1 - 1) * q^83 + (-2*b2 - 3*b1 + 1) * q^86 + (-b1 - 3) * q^88 + (b2 - 8) * q^89 + (4*b2 - 8) * q^91 + (-b1 - 3) * q^92 + (b1 + 3) * q^94 + (b1 - 7) * q^97 + (-2*b2 - 2*b1 + 3) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 3 q^{2} + 3 q^{4} + 3 q^{8}+O(q^{10})$$ 3 * q + 3 * q^2 + 3 * q^4 + 3 * q^8 $$3 q + 3 q^{2} + 3 q^{4} + 3 q^{8} - 8 q^{11} - 4 q^{13} + 3 q^{16} + 2 q^{17} + 3 q^{19} - 8 q^{22} - 8 q^{23} - 4 q^{26} - 10 q^{29} + 3 q^{32} + 2 q^{34} - 4 q^{37} + 3 q^{38} - 4 q^{41} + 6 q^{43} - 8 q^{44} - 8 q^{46} + 8 q^{47} + 11 q^{49} - 4 q^{52} - 18 q^{53} - 10 q^{58} - 10 q^{59} + 14 q^{61} + 3 q^{64} - 20 q^{67} + 2 q^{68} - 20 q^{71} - 8 q^{73} - 4 q^{74} + 3 q^{76} - 8 q^{77} - 4 q^{82} - 4 q^{83} + 6 q^{86} - 8 q^{88} - 24 q^{89} - 24 q^{91} - 8 q^{92} + 8 q^{94} - 22 q^{97} + 11 q^{98}+O(q^{100})$$ 3 * q + 3 * q^2 + 3 * q^4 + 3 * q^8 - 8 * q^11 - 4 * q^13 + 3 * q^16 + 2 * q^17 + 3 * q^19 - 8 * q^22 - 8 * q^23 - 4 * q^26 - 10 * q^29 + 3 * q^32 + 2 * q^34 - 4 * q^37 + 3 * q^38 - 4 * q^41 + 6 * q^43 - 8 * q^44 - 8 * q^46 + 8 * q^47 + 11 * q^49 - 4 * q^52 - 18 * q^53 - 10 * q^58 - 10 * q^59 + 14 * q^61 + 3 * q^64 - 20 * q^67 + 2 * q^68 - 20 * q^71 - 8 * q^73 - 4 * q^74 + 3 * q^76 - 8 * q^77 - 4 * q^82 - 4 * q^83 + 6 * q^86 - 8 * q^88 - 24 * q^89 - 24 * q^91 - 8 * q^92 + 8 * q^94 - 22 * q^97 + 11 * q^98

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3x + 1$$ :

 $$\beta_{1}$$ $$=$$ $$2\nu - 1$$ 2*v - 1 $$\beta_{2}$$ $$=$$ $$2\nu^{2} - 2\nu - 4$$ 2*v^2 - 2*v - 4
 $$\nu$$ $$=$$ $$( \beta _1 + 1 ) / 2$$ (b1 + 1) / 2 $$\nu^{2}$$ $$=$$ $$( \beta_{2} + \beta _1 + 5 ) / 2$$ (b2 + b1 + 5) / 2

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.48119 2.17009 0.311108
1.00000 0 1.00000 0 0 −3.35026 1.00000 0 0
1.2 1.00000 0 1.00000 0 0 −1.07838 1.00000 0 0
1.3 1.00000 0 1.00000 0 0 4.42864 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8550.2.a.cq 3
3.b odd 2 1 2850.2.a.bl 3
5.b even 2 1 8550.2.a.ce 3
5.c odd 4 2 1710.2.d.f 6
15.d odd 2 1 2850.2.a.bm 3
15.e even 4 2 570.2.d.c 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.d.c 6 15.e even 4 2
1710.2.d.f 6 5.c odd 4 2
2850.2.a.bl 3 3.b odd 2 1
2850.2.a.bm 3 15.d odd 2 1
8550.2.a.ce 3 5.b even 2 1
8550.2.a.cq 3 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8550))$$:

 $$T_{7}^{3} - 16T_{7} - 16$$ T7^3 - 16*T7 - 16 $$T_{11}^{3} + 8T_{11}^{2} + 8T_{11} - 16$$ T11^3 + 8*T11^2 + 8*T11 - 16 $$T_{13}^{3} + 4T_{13}^{2} - 16T_{13} - 32$$ T13^3 + 4*T13^2 - 16*T13 - 32 $$T_{17}^{3} - 2T_{17}^{2} - 20T_{17} + 8$$ T17^3 - 2*T17^2 - 20*T17 + 8 $$T_{23}^{3} + 8T_{23}^{2} + 8T_{23} - 16$$ T23^3 + 8*T23^2 + 8*T23 - 16 $$T_{53} + 6$$ T53 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{3}$$
$3$ $$T^{3}$$
$5$ $$T^{3}$$
$7$ $$T^{3} - 16T - 16$$
$11$ $$T^{3} + 8 T^{2} + 8 T - 16$$
$13$ $$T^{3} + 4 T^{2} - 16 T - 32$$
$17$ $$T^{3} - 2 T^{2} - 20 T + 8$$
$19$ $$(T - 1)^{3}$$
$23$ $$T^{3} + 8 T^{2} + 8 T - 16$$
$29$ $$T^{3} + 10 T^{2} + 20 T - 8$$
$31$ $$T^{3} - 16T + 16$$
$37$ $$T^{3} + 4 T^{2} - 16 T - 32$$
$41$ $$T^{3} + 4 T^{2} - 80 T - 400$$
$43$ $$T^{3} - 6 T^{2} - 124 T + 760$$
$47$ $$T^{3} - 8 T^{2} + 8 T + 16$$
$53$ $$(T + 6)^{3}$$
$59$ $$T^{3} + 10 T^{2} - 4 T - 8$$
$61$ $$T^{3} - 14 T^{2} + 12 T + 152$$
$67$ $$T^{3} + 20 T^{2} + 48 T - 320$$
$71$ $$T^{3} + 20 T^{2} + 48 T - 320$$
$73$ $$T^{3} + 8 T^{2} - 64 T - 256$$
$79$ $$T^{3} - 16T - 16$$
$83$ $$T^{3} + 4 T^{2} - 176 T - 160$$
$89$ $$T^{3} + 24 T^{2} + 176 T + 400$$
$97$ $$T^{3} + 22 T^{2} + 148 T + 296$$