Properties

 Label 8550.2.a.cl Level $8550$ Weight $2$ Character orbit 8550.a Self dual yes Analytic conductor $68.272$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8550.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$68.2720937282$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.568.1 Defining polynomial: $$x^{3} - x^{2} - 6x - 2$$ x^3 - x^2 - 6*x - 2 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 190) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + ( - \beta_1 - 1) q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 + (-b1 - 1) * q^7 + q^8 $$q + q^{2} + q^{4} + ( - \beta_1 - 1) q^{7} + q^{8} + (\beta_{2} + \beta_1) q^{11} + ( - \beta_{2} - 3) q^{13} + ( - \beta_1 - 1) q^{14} + q^{16} + ( - \beta_{2} - 1) q^{17} + q^{19} + (\beta_{2} + \beta_1) q^{22} + ( - 2 \beta_{2} + \beta_1 - 1) q^{23} + ( - \beta_{2} - 3) q^{26} + ( - \beta_1 - 1) q^{28} + (3 \beta_{2} + 2 \beta_1 + 3) q^{29} + (3 \beta_{2} + \beta_1 + 2) q^{31} + q^{32} + ( - \beta_{2} - 1) q^{34} + ( - 2 \beta_1 - 4) q^{37} + q^{38} + ( - \beta_{2} - 3 \beta_1) q^{41} + ( - \beta_{2} - \beta_1 - 6) q^{43} + (\beta_{2} + \beta_1) q^{44} + ( - 2 \beta_{2} + \beta_1 - 1) q^{46} + (2 \beta_{2} - 4) q^{47} + (\beta_{2} + 4 \beta_1 - 2) q^{49} + ( - \beta_{2} - 3) q^{52} + ( - \beta_{2} + 5) q^{53} + ( - \beta_1 - 1) q^{56} + (3 \beta_{2} + 2 \beta_1 + 3) q^{58} + ( - 2 \beta_{2} - \beta_1 - 1) q^{59} + ( - \beta_{2} - \beta_1 - 10) q^{61} + (3 \beta_{2} + \beta_1 + 2) q^{62} + q^{64} + (2 \beta_{2} + 3 \beta_1 - 1) q^{67} + ( - \beta_{2} - 1) q^{68} + ( - \beta_{2} - 5 \beta_1 + 4) q^{71} + ( - 3 \beta_{2} + 2 \beta_1 - 5) q^{73} + ( - 2 \beta_1 - 4) q^{74} + q^{76} + ( - \beta_{2} - 3 \beta_1 - 2) q^{77} + (6 \beta_1 - 2) q^{79} + ( - \beta_{2} - 3 \beta_1) q^{82} + (2 \beta_{2} + 2 \beta_1 - 2) q^{83} + ( - \beta_{2} - \beta_1 - 6) q^{86} + (\beta_{2} + \beta_1) q^{88} + ( - \beta_{2} + \beta_1 + 4) q^{89} + (3 \beta_1 + 1) q^{91} + ( - 2 \beta_{2} + \beta_1 - 1) q^{92} + (2 \beta_{2} - 4) q^{94} + (4 \beta_{2} - 2) q^{97} + (\beta_{2} + 4 \beta_1 - 2) q^{98}+O(q^{100})$$ q + q^2 + q^4 + (-b1 - 1) * q^7 + q^8 + (b2 + b1) * q^11 + (-b2 - 3) * q^13 + (-b1 - 1) * q^14 + q^16 + (-b2 - 1) * q^17 + q^19 + (b2 + b1) * q^22 + (-2*b2 + b1 - 1) * q^23 + (-b2 - 3) * q^26 + (-b1 - 1) * q^28 + (3*b2 + 2*b1 + 3) * q^29 + (3*b2 + b1 + 2) * q^31 + q^32 + (-b2 - 1) * q^34 + (-2*b1 - 4) * q^37 + q^38 + (-b2 - 3*b1) * q^41 + (-b2 - b1 - 6) * q^43 + (b2 + b1) * q^44 + (-2*b2 + b1 - 1) * q^46 + (2*b2 - 4) * q^47 + (b2 + 4*b1 - 2) * q^49 + (-b2 - 3) * q^52 + (-b2 + 5) * q^53 + (-b1 - 1) * q^56 + (3*b2 + 2*b1 + 3) * q^58 + (-2*b2 - b1 - 1) * q^59 + (-b2 - b1 - 10) * q^61 + (3*b2 + b1 + 2) * q^62 + q^64 + (2*b2 + 3*b1 - 1) * q^67 + (-b2 - 1) * q^68 + (-b2 - 5*b1 + 4) * q^71 + (-3*b2 + 2*b1 - 5) * q^73 + (-2*b1 - 4) * q^74 + q^76 + (-b2 - 3*b1 - 2) * q^77 + (6*b1 - 2) * q^79 + (-b2 - 3*b1) * q^82 + (2*b2 + 2*b1 - 2) * q^83 + (-b2 - b1 - 6) * q^86 + (b2 + b1) * q^88 + (-b2 + b1 + 4) * q^89 + (3*b1 + 1) * q^91 + (-2*b2 + b1 - 1) * q^92 + (2*b2 - 4) * q^94 + (4*b2 - 2) * q^97 + (b2 + 4*b1 - 2) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 3 q^{2} + 3 q^{4} - 4 q^{7} + 3 q^{8}+O(q^{10})$$ 3 * q + 3 * q^2 + 3 * q^4 - 4 * q^7 + 3 * q^8 $$3 q + 3 q^{2} + 3 q^{4} - 4 q^{7} + 3 q^{8} - 8 q^{13} - 4 q^{14} + 3 q^{16} - 2 q^{17} + 3 q^{19} - 8 q^{26} - 4 q^{28} + 8 q^{29} + 4 q^{31} + 3 q^{32} - 2 q^{34} - 14 q^{37} + 3 q^{38} - 2 q^{41} - 18 q^{43} - 14 q^{47} - 3 q^{49} - 8 q^{52} + 16 q^{53} - 4 q^{56} + 8 q^{58} - 2 q^{59} - 30 q^{61} + 4 q^{62} + 3 q^{64} - 2 q^{67} - 2 q^{68} + 8 q^{71} - 10 q^{73} - 14 q^{74} + 3 q^{76} - 8 q^{77} - 2 q^{82} - 6 q^{83} - 18 q^{86} + 14 q^{89} + 6 q^{91} - 14 q^{94} - 10 q^{97} - 3 q^{98}+O(q^{100})$$ 3 * q + 3 * q^2 + 3 * q^4 - 4 * q^7 + 3 * q^8 - 8 * q^13 - 4 * q^14 + 3 * q^16 - 2 * q^17 + 3 * q^19 - 8 * q^26 - 4 * q^28 + 8 * q^29 + 4 * q^31 + 3 * q^32 - 2 * q^34 - 14 * q^37 + 3 * q^38 - 2 * q^41 - 18 * q^43 - 14 * q^47 - 3 * q^49 - 8 * q^52 + 16 * q^53 - 4 * q^56 + 8 * q^58 - 2 * q^59 - 30 * q^61 + 4 * q^62 + 3 * q^64 - 2 * q^67 - 2 * q^68 + 8 * q^71 - 10 * q^73 - 14 * q^74 + 3 * q^76 - 8 * q^77 - 2 * q^82 - 6 * q^83 - 18 * q^86 + 14 * q^89 + 6 * q^91 - 14 * q^94 - 10 * q^97 - 3 * q^98

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 6x - 2$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 2\nu - 4$$ v^2 - 2*v - 4
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 2\beta _1 + 4$$ b2 + 2*b1 + 4

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 3.12489 −0.363328 −1.76156
1.00000 0 1.00000 0 0 −4.12489 1.00000 0 0
1.2 1.00000 0 1.00000 0 0 −0.636672 1.00000 0 0
1.3 1.00000 0 1.00000 0 0 0.761557 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8550.2.a.cl 3
3.b odd 2 1 950.2.a.i 3
5.b even 2 1 8550.2.a.ck 3
5.c odd 4 2 1710.2.d.d 6
12.b even 2 1 7600.2.a.cd 3
15.d odd 2 1 950.2.a.n 3
15.e even 4 2 190.2.b.b 6
60.h even 2 1 7600.2.a.bi 3
60.l odd 4 2 1520.2.d.j 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.2.b.b 6 15.e even 4 2
950.2.a.i 3 3.b odd 2 1
950.2.a.n 3 15.d odd 2 1
1520.2.d.j 6 60.l odd 4 2
1710.2.d.d 6 5.c odd 4 2
7600.2.a.bi 3 60.h even 2 1
7600.2.a.cd 3 12.b even 2 1
8550.2.a.ck 3 5.b even 2 1
8550.2.a.cl 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8550))$$:

 $$T_{7}^{3} + 4T_{7}^{2} - T_{7} - 2$$ T7^3 + 4*T7^2 - T7 - 2 $$T_{11}^{3} - 10T_{11} + 8$$ T11^3 - 10*T11 + 8 $$T_{13}^{3} + 8T_{13}^{2} + 13T_{13} - 2$$ T13^3 + 8*T13^2 + 13*T13 - 2 $$T_{17}^{3} + 2T_{17}^{2} - 7T_{17} - 4$$ T17^3 + 2*T17^2 - 7*T17 - 4 $$T_{23}^{3} - 49T_{23} + 122$$ T23^3 - 49*T23 + 122 $$T_{53}^{3} - 16T_{53}^{2} + 77T_{53} - 106$$ T53^3 - 16*T53^2 + 77*T53 - 106

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{3}$$
$3$ $$T^{3}$$
$5$ $$T^{3}$$
$7$ $$T^{3} + 4T^{2} - T - 2$$
$11$ $$T^{3} - 10T + 8$$
$13$ $$T^{3} + 8 T^{2} + 13 T - 2$$
$17$ $$T^{3} + 2 T^{2} - 7 T - 4$$
$19$ $$(T - 1)^{3}$$
$23$ $$T^{3} - 49T + 122$$
$29$ $$T^{3} - 8 T^{2} - 51 T + 410$$
$31$ $$T^{3} - 4 T^{2} - 62 T + 232$$
$37$ $$T^{3} + 14 T^{2} + 40 T + 16$$
$41$ $$T^{3} + 2 T^{2} - 50 T + 100$$
$43$ $$T^{3} + 18 T^{2} + 98 T + 148$$
$47$ $$T^{3} + 14 T^{2} + 32 T - 64$$
$53$ $$T^{3} - 16 T^{2} + 77 T - 106$$
$59$ $$T^{3} + 2 T^{2} - 29 T - 80$$
$61$ $$T^{3} + 30 T^{2} + 290 T + 892$$
$67$ $$T^{3} + 2 T^{2} - 61 T - 64$$
$71$ $$T^{3} - 8 T^{2} - 122 T + 1016$$
$73$ $$T^{3} + 10 T^{2} - 95 T + 164$$
$79$ $$T^{3} - 228T - 880$$
$83$ $$T^{3} + 6 T^{2} - 28 T - 8$$
$89$ $$T^{3} - 14 T^{2} + 46 T + 20$$
$97$ $$T^{3} + 10 T^{2} - 100 T - 488$$