Properties

Label 8550.2.a.cj
Level $8550$
Weight $2$
Character orbit 8550.a
Self dual yes
Analytic conductor $68.272$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8550,2,Mod(1,8550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8550.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8550.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,0,0,2,-3,0,0,-2,0,-2,-2,0,3,4,0,-3,0,0,2,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.2720937282\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 950)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + (2 \beta_{2} - \beta_1 + 1) q^{7} - q^{8} + (2 \beta_{2} - 2 \beta_1) q^{11} + ( - \beta_{2} - 2 \beta_1) q^{13} + ( - 2 \beta_{2} + \beta_1 - 1) q^{14} + q^{16} + (\beta_{2} - 2 \beta_1 + 2) q^{17}+ \cdots + (3 \beta_{2} + 2 \beta_1 - 9) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + 2 q^{7} - 3 q^{8} - 2 q^{11} - 2 q^{13} - 2 q^{14} + 3 q^{16} + 4 q^{17} - 3 q^{19} + 2 q^{22} - 14 q^{23} + 2 q^{26} + 2 q^{28} - 14 q^{29} - 4 q^{31} - 3 q^{32} - 4 q^{34} - 17 q^{37}+ \cdots - 25 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.713538
2.19869
−1.91223
−1.00000 0 1.00000 0 0 −4.69527 −1.00000 0 0
1.2 −1.00000 0 1.00000 0 0 2.46980 −1.00000 0 0
1.3 −1.00000 0 1.00000 0 0 4.22547 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8550.2.a.cj 3
3.b odd 2 1 950.2.a.m yes 3
5.b even 2 1 8550.2.a.co 3
12.b even 2 1 7600.2.a.bm 3
15.d odd 2 1 950.2.a.k 3
15.e even 4 2 950.2.b.g 6
60.h even 2 1 7600.2.a.cb 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
950.2.a.k 3 15.d odd 2 1
950.2.a.m yes 3 3.b odd 2 1
950.2.b.g 6 15.e even 4 2
7600.2.a.bm 3 12.b even 2 1
7600.2.a.cb 3 60.h even 2 1
8550.2.a.cj 3 1.a even 1 1 trivial
8550.2.a.co 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8550))\):

\( T_{7}^{3} - 2T_{7}^{2} - 21T_{7} + 49 \) Copy content Toggle raw display
\( T_{11}^{3} + 2T_{11}^{2} - 32T_{11} - 24 \) Copy content Toggle raw display
\( T_{13}^{3} + 2T_{13}^{2} - 23T_{13} + 21 \) Copy content Toggle raw display
\( T_{17}^{3} - 4T_{17}^{2} - 15T_{17} - 7 \) Copy content Toggle raw display
\( T_{23}^{3} + 14T_{23}^{2} + 57T_{23} + 63 \) Copy content Toggle raw display
\( T_{53}^{3} - 10T_{53}^{2} + 11T_{53} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots - 24 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots + 21 \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 14 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$29$ \( T^{3} + 14 T^{2} + \cdots + 25 \) Copy content Toggle raw display
$31$ \( T^{3} + 4 T^{2} + \cdots - 152 \) Copy content Toggle raw display
$37$ \( T^{3} + 17 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$41$ \( T^{3} - 8 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$47$ \( T^{3} + 13 T^{2} + \cdots - 525 \) Copy content Toggle raw display
$53$ \( T^{3} - 10 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots + 175 \) Copy content Toggle raw display
$61$ \( T^{3} - 22 T^{2} + \cdots + 536 \) Copy content Toggle raw display
$67$ \( T^{3} - 131T - 469 \) Copy content Toggle raw display
$71$ \( T^{3} - 2 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$73$ \( T^{3} + 12 T^{2} + \cdots - 243 \) Copy content Toggle raw display
$79$ \( T^{3} - 24 T^{2} + \cdots + 320 \) Copy content Toggle raw display
$83$ \( T^{3} + 12 T^{2} + \cdots - 1544 \) Copy content Toggle raw display
$89$ \( (T - 10)^{3} \) Copy content Toggle raw display
$97$ \( T^{3} - 180T + 648 \) Copy content Toggle raw display
show more
show less