Properties

Label 8550.2.a.cb.1.1
Level $8550$
Weight $2$
Character 8550.1
Self dual yes
Analytic conductor $68.272$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8550,2,Mod(1,8550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.2720937282\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 8550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.58579 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.58579 q^{7} +1.00000 q^{8} -1.41421 q^{11} +0.171573 q^{13} +1.58579 q^{14} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{19} -1.41421 q^{22} -9.24264 q^{23} +0.171573 q^{26} +1.58579 q^{28} +5.82843 q^{29} -2.24264 q^{31} +1.00000 q^{32} -1.00000 q^{34} +8.48528 q^{37} -1.00000 q^{38} -4.24264 q^{41} +10.2426 q^{43} -1.41421 q^{44} -9.24264 q^{46} -4.48528 q^{49} +0.171573 q^{52} +11.4853 q^{53} +1.58579 q^{56} +5.82843 q^{58} +12.8995 q^{59} +5.75736 q^{61} -2.24264 q^{62} +1.00000 q^{64} +13.2426 q^{67} -1.00000 q^{68} +10.5858 q^{71} -5.48528 q^{73} +8.48528 q^{74} -1.00000 q^{76} -2.24264 q^{77} +10.4853 q^{79} -4.24264 q^{82} +2.48528 q^{83} +10.2426 q^{86} -1.41421 q^{88} +7.07107 q^{89} +0.272078 q^{91} -9.24264 q^{92} -11.6569 q^{97} -4.48528 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 6 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} + 6 q^{7} + 2 q^{8} + 6 q^{13} + 6 q^{14} + 2 q^{16} - 2 q^{17} - 2 q^{19} - 10 q^{23} + 6 q^{26} + 6 q^{28} + 6 q^{29} + 4 q^{31} + 2 q^{32} - 2 q^{34} - 2 q^{38} + 12 q^{43} - 10 q^{46} + 8 q^{49} + 6 q^{52} + 6 q^{53} + 6 q^{56} + 6 q^{58} + 6 q^{59} + 20 q^{61} + 4 q^{62} + 2 q^{64} + 18 q^{67} - 2 q^{68} + 24 q^{71} + 6 q^{73} - 2 q^{76} + 4 q^{77} + 4 q^{79} - 12 q^{83} + 12 q^{86} + 26 q^{91} - 10 q^{92} - 12 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.58579 0.599371 0.299685 0.954038i \(-0.403118\pi\)
0.299685 + 0.954038i \(0.403118\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 0 0
\(13\) 0.171573 0.0475858 0.0237929 0.999717i \(-0.492426\pi\)
0.0237929 + 0.999717i \(0.492426\pi\)
\(14\) 1.58579 0.423819
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −1.41421 −0.301511
\(23\) −9.24264 −1.92722 −0.963612 0.267305i \(-0.913867\pi\)
−0.963612 + 0.267305i \(0.913867\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.171573 0.0336482
\(27\) 0 0
\(28\) 1.58579 0.299685
\(29\) 5.82843 1.08231 0.541156 0.840922i \(-0.317987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(30\) 0 0
\(31\) −2.24264 −0.402790 −0.201395 0.979510i \(-0.564548\pi\)
−0.201395 + 0.979510i \(0.564548\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) 8.48528 1.39497 0.697486 0.716599i \(-0.254302\pi\)
0.697486 + 0.716599i \(0.254302\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 0 0
\(41\) −4.24264 −0.662589 −0.331295 0.943527i \(-0.607485\pi\)
−0.331295 + 0.943527i \(0.607485\pi\)
\(42\) 0 0
\(43\) 10.2426 1.56199 0.780994 0.624538i \(-0.214713\pi\)
0.780994 + 0.624538i \(0.214713\pi\)
\(44\) −1.41421 −0.213201
\(45\) 0 0
\(46\) −9.24264 −1.36275
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −4.48528 −0.640754
\(50\) 0 0
\(51\) 0 0
\(52\) 0.171573 0.0237929
\(53\) 11.4853 1.57762 0.788812 0.614634i \(-0.210696\pi\)
0.788812 + 0.614634i \(0.210696\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.58579 0.211910
\(57\) 0 0
\(58\) 5.82843 0.765310
\(59\) 12.8995 1.67937 0.839686 0.543073i \(-0.182739\pi\)
0.839686 + 0.543073i \(0.182739\pi\)
\(60\) 0 0
\(61\) 5.75736 0.737154 0.368577 0.929597i \(-0.379845\pi\)
0.368577 + 0.929597i \(0.379845\pi\)
\(62\) −2.24264 −0.284816
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 13.2426 1.61785 0.808923 0.587915i \(-0.200051\pi\)
0.808923 + 0.587915i \(0.200051\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) 10.5858 1.25630 0.628151 0.778092i \(-0.283812\pi\)
0.628151 + 0.778092i \(0.283812\pi\)
\(72\) 0 0
\(73\) −5.48528 −0.642004 −0.321002 0.947079i \(-0.604020\pi\)
−0.321002 + 0.947079i \(0.604020\pi\)
\(74\) 8.48528 0.986394
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −2.24264 −0.255573
\(78\) 0 0
\(79\) 10.4853 1.17969 0.589843 0.807518i \(-0.299190\pi\)
0.589843 + 0.807518i \(0.299190\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −4.24264 −0.468521
\(83\) 2.48528 0.272795 0.136398 0.990654i \(-0.456448\pi\)
0.136398 + 0.990654i \(0.456448\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.2426 1.10449
\(87\) 0 0
\(88\) −1.41421 −0.150756
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) 0.272078 0.0285215
\(92\) −9.24264 −0.963612
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.6569 −1.18357 −0.591787 0.806094i \(-0.701577\pi\)
−0.591787 + 0.806094i \(0.701577\pi\)
\(98\) −4.48528 −0.453082
\(99\) 0 0
\(100\) 0 0
\(101\) 1.07107 0.106575 0.0532876 0.998579i \(-0.483030\pi\)
0.0532876 + 0.998579i \(0.483030\pi\)
\(102\) 0 0
\(103\) −4.24264 −0.418040 −0.209020 0.977911i \(-0.567027\pi\)
−0.209020 + 0.977911i \(0.567027\pi\)
\(104\) 0.171573 0.0168241
\(105\) 0 0
\(106\) 11.4853 1.11555
\(107\) 5.72792 0.553739 0.276870 0.960908i \(-0.410703\pi\)
0.276870 + 0.960908i \(0.410703\pi\)
\(108\) 0 0
\(109\) 15.9706 1.52970 0.764851 0.644207i \(-0.222812\pi\)
0.764851 + 0.644207i \(0.222812\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.58579 0.149843
\(113\) 1.75736 0.165318 0.0826592 0.996578i \(-0.473659\pi\)
0.0826592 + 0.996578i \(0.473659\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.82843 0.541156
\(117\) 0 0
\(118\) 12.8995 1.18749
\(119\) −1.58579 −0.145369
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 5.75736 0.521247
\(123\) 0 0
\(124\) −2.24264 −0.201395
\(125\) 0 0
\(126\) 0 0
\(127\) 14.4853 1.28536 0.642680 0.766134i \(-0.277822\pi\)
0.642680 + 0.766134i \(0.277822\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −16.9706 −1.48272 −0.741362 0.671105i \(-0.765820\pi\)
−0.741362 + 0.671105i \(0.765820\pi\)
\(132\) 0 0
\(133\) −1.58579 −0.137505
\(134\) 13.2426 1.14399
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) −13.0000 −1.11066 −0.555332 0.831628i \(-0.687409\pi\)
−0.555332 + 0.831628i \(0.687409\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 10.5858 0.888339
\(143\) −0.242641 −0.0202906
\(144\) 0 0
\(145\) 0 0
\(146\) −5.48528 −0.453965
\(147\) 0 0
\(148\) 8.48528 0.697486
\(149\) −6.34315 −0.519651 −0.259825 0.965656i \(-0.583665\pi\)
−0.259825 + 0.965656i \(0.583665\pi\)
\(150\) 0 0
\(151\) 6.48528 0.527765 0.263882 0.964555i \(-0.414997\pi\)
0.263882 + 0.964555i \(0.414997\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) −2.24264 −0.180717
\(155\) 0 0
\(156\) 0 0
\(157\) 0.343146 0.0273860 0.0136930 0.999906i \(-0.495641\pi\)
0.0136930 + 0.999906i \(0.495641\pi\)
\(158\) 10.4853 0.834164
\(159\) 0 0
\(160\) 0 0
\(161\) −14.6569 −1.15512
\(162\) 0 0
\(163\) −1.75736 −0.137647 −0.0688235 0.997629i \(-0.521925\pi\)
−0.0688235 + 0.997629i \(0.521925\pi\)
\(164\) −4.24264 −0.331295
\(165\) 0 0
\(166\) 2.48528 0.192895
\(167\) 9.75736 0.755047 0.377524 0.926000i \(-0.376776\pi\)
0.377524 + 0.926000i \(0.376776\pi\)
\(168\) 0 0
\(169\) −12.9706 −0.997736
\(170\) 0 0
\(171\) 0 0
\(172\) 10.2426 0.780994
\(173\) 16.4853 1.25335 0.626676 0.779280i \(-0.284415\pi\)
0.626676 + 0.779280i \(0.284415\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.41421 −0.106600
\(177\) 0 0
\(178\) 7.07107 0.529999
\(179\) 0.343146 0.0256479 0.0128240 0.999918i \(-0.495918\pi\)
0.0128240 + 0.999918i \(0.495918\pi\)
\(180\) 0 0
\(181\) 8.48528 0.630706 0.315353 0.948974i \(-0.397877\pi\)
0.315353 + 0.948974i \(0.397877\pi\)
\(182\) 0.272078 0.0201678
\(183\) 0 0
\(184\) −9.24264 −0.681377
\(185\) 0 0
\(186\) 0 0
\(187\) 1.41421 0.103418
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.5563 1.34269 0.671345 0.741145i \(-0.265717\pi\)
0.671345 + 0.741145i \(0.265717\pi\)
\(192\) 0 0
\(193\) −11.6569 −0.839079 −0.419539 0.907737i \(-0.637808\pi\)
−0.419539 + 0.907737i \(0.637808\pi\)
\(194\) −11.6569 −0.836913
\(195\) 0 0
\(196\) −4.48528 −0.320377
\(197\) 20.2426 1.44223 0.721114 0.692816i \(-0.243630\pi\)
0.721114 + 0.692816i \(0.243630\pi\)
\(198\) 0 0
\(199\) 0.757359 0.0536878 0.0268439 0.999640i \(-0.491454\pi\)
0.0268439 + 0.999640i \(0.491454\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.07107 0.0753601
\(203\) 9.24264 0.648706
\(204\) 0 0
\(205\) 0 0
\(206\) −4.24264 −0.295599
\(207\) 0 0
\(208\) 0.171573 0.0118964
\(209\) 1.41421 0.0978232
\(210\) 0 0
\(211\) 5.72792 0.394326 0.197163 0.980371i \(-0.436827\pi\)
0.197163 + 0.980371i \(0.436827\pi\)
\(212\) 11.4853 0.788812
\(213\) 0 0
\(214\) 5.72792 0.391553
\(215\) 0 0
\(216\) 0 0
\(217\) −3.55635 −0.241421
\(218\) 15.9706 1.08166
\(219\) 0 0
\(220\) 0 0
\(221\) −0.171573 −0.0115412
\(222\) 0 0
\(223\) −20.8284 −1.39477 −0.697387 0.716694i \(-0.745654\pi\)
−0.697387 + 0.716694i \(0.745654\pi\)
\(224\) 1.58579 0.105955
\(225\) 0 0
\(226\) 1.75736 0.116898
\(227\) 25.2426 1.67541 0.837706 0.546121i \(-0.183896\pi\)
0.837706 + 0.546121i \(0.183896\pi\)
\(228\) 0 0
\(229\) −18.9706 −1.25361 −0.626805 0.779176i \(-0.715638\pi\)
−0.626805 + 0.779176i \(0.715638\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.82843 0.382655
\(233\) −8.97056 −0.587681 −0.293841 0.955854i \(-0.594933\pi\)
−0.293841 + 0.955854i \(0.594933\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.8995 0.839686
\(237\) 0 0
\(238\) −1.58579 −0.102791
\(239\) −12.8995 −0.834399 −0.417199 0.908815i \(-0.636988\pi\)
−0.417199 + 0.908815i \(0.636988\pi\)
\(240\) 0 0
\(241\) −24.9706 −1.60850 −0.804248 0.594294i \(-0.797431\pi\)
−0.804248 + 0.594294i \(0.797431\pi\)
\(242\) −9.00000 −0.578542
\(243\) 0 0
\(244\) 5.75736 0.368577
\(245\) 0 0
\(246\) 0 0
\(247\) −0.171573 −0.0109169
\(248\) −2.24264 −0.142408
\(249\) 0 0
\(250\) 0 0
\(251\) 27.5563 1.73934 0.869671 0.493632i \(-0.164331\pi\)
0.869671 + 0.493632i \(0.164331\pi\)
\(252\) 0 0
\(253\) 13.0711 0.821771
\(254\) 14.4853 0.908887
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 4.72792 0.294920 0.147460 0.989068i \(-0.452890\pi\)
0.147460 + 0.989068i \(0.452890\pi\)
\(258\) 0 0
\(259\) 13.4558 0.836105
\(260\) 0 0
\(261\) 0 0
\(262\) −16.9706 −1.04844
\(263\) −6.97056 −0.429823 −0.214912 0.976633i \(-0.568946\pi\)
−0.214912 + 0.976633i \(0.568946\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.58579 −0.0972308
\(267\) 0 0
\(268\) 13.2426 0.808923
\(269\) −28.6274 −1.74544 −0.872722 0.488217i \(-0.837647\pi\)
−0.872722 + 0.488217i \(0.837647\pi\)
\(270\) 0 0
\(271\) −18.7574 −1.13943 −0.569714 0.821843i \(-0.692946\pi\)
−0.569714 + 0.821843i \(0.692946\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −13.0000 −0.785359
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) 4.24264 0.253095 0.126547 0.991961i \(-0.459610\pi\)
0.126547 + 0.991961i \(0.459610\pi\)
\(282\) 0 0
\(283\) 3.85786 0.229326 0.114663 0.993404i \(-0.463421\pi\)
0.114663 + 0.993404i \(0.463421\pi\)
\(284\) 10.5858 0.628151
\(285\) 0 0
\(286\) −0.242641 −0.0143476
\(287\) −6.72792 −0.397137
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 0 0
\(292\) −5.48528 −0.321002
\(293\) −11.4853 −0.670977 −0.335489 0.942044i \(-0.608901\pi\)
−0.335489 + 0.942044i \(0.608901\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.48528 0.493197
\(297\) 0 0
\(298\) −6.34315 −0.367449
\(299\) −1.58579 −0.0917084
\(300\) 0 0
\(301\) 16.2426 0.936210
\(302\) 6.48528 0.373186
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) −6.34315 −0.362022 −0.181011 0.983481i \(-0.557937\pi\)
−0.181011 + 0.983481i \(0.557937\pi\)
\(308\) −2.24264 −0.127786
\(309\) 0 0
\(310\) 0 0
\(311\) 13.2426 0.750921 0.375461 0.926838i \(-0.377485\pi\)
0.375461 + 0.926838i \(0.377485\pi\)
\(312\) 0 0
\(313\) 25.9706 1.46794 0.733971 0.679180i \(-0.237665\pi\)
0.733971 + 0.679180i \(0.237665\pi\)
\(314\) 0.343146 0.0193648
\(315\) 0 0
\(316\) 10.4853 0.589843
\(317\) −7.48528 −0.420415 −0.210208 0.977657i \(-0.567414\pi\)
−0.210208 + 0.977657i \(0.567414\pi\)
\(318\) 0 0
\(319\) −8.24264 −0.461499
\(320\) 0 0
\(321\) 0 0
\(322\) −14.6569 −0.816795
\(323\) 1.00000 0.0556415
\(324\) 0 0
\(325\) 0 0
\(326\) −1.75736 −0.0973311
\(327\) 0 0
\(328\) −4.24264 −0.234261
\(329\) 0 0
\(330\) 0 0
\(331\) −10.7574 −0.591278 −0.295639 0.955300i \(-0.595533\pi\)
−0.295639 + 0.955300i \(0.595533\pi\)
\(332\) 2.48528 0.136398
\(333\) 0 0
\(334\) 9.75736 0.533899
\(335\) 0 0
\(336\) 0 0
\(337\) 33.8995 1.84662 0.923312 0.384052i \(-0.125472\pi\)
0.923312 + 0.384052i \(0.125472\pi\)
\(338\) −12.9706 −0.705506
\(339\) 0 0
\(340\) 0 0
\(341\) 3.17157 0.171750
\(342\) 0 0
\(343\) −18.2132 −0.983421
\(344\) 10.2426 0.552246
\(345\) 0 0
\(346\) 16.4853 0.886254
\(347\) 22.4853 1.20707 0.603537 0.797335i \(-0.293758\pi\)
0.603537 + 0.797335i \(0.293758\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.41421 −0.0753778
\(353\) 19.4853 1.03710 0.518548 0.855048i \(-0.326473\pi\)
0.518548 + 0.855048i \(0.326473\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.07107 0.374766
\(357\) 0 0
\(358\) 0.343146 0.0181358
\(359\) 31.2426 1.64892 0.824462 0.565918i \(-0.191478\pi\)
0.824462 + 0.565918i \(0.191478\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 8.48528 0.445976
\(363\) 0 0
\(364\) 0.272078 0.0142608
\(365\) 0 0
\(366\) 0 0
\(367\) 25.4558 1.32878 0.664392 0.747384i \(-0.268691\pi\)
0.664392 + 0.747384i \(0.268691\pi\)
\(368\) −9.24264 −0.481806
\(369\) 0 0
\(370\) 0 0
\(371\) 18.2132 0.945582
\(372\) 0 0
\(373\) 9.00000 0.466002 0.233001 0.972476i \(-0.425145\pi\)
0.233001 + 0.972476i \(0.425145\pi\)
\(374\) 1.41421 0.0731272
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00000 0.0515026
\(378\) 0 0
\(379\) 2.75736 0.141636 0.0708180 0.997489i \(-0.477439\pi\)
0.0708180 + 0.997489i \(0.477439\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 18.5563 0.949425
\(383\) −3.75736 −0.191992 −0.0959960 0.995382i \(-0.530604\pi\)
−0.0959960 + 0.995382i \(0.530604\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.6569 −0.593318
\(387\) 0 0
\(388\) −11.6569 −0.591787
\(389\) −37.0711 −1.87958 −0.939789 0.341756i \(-0.888979\pi\)
−0.939789 + 0.341756i \(0.888979\pi\)
\(390\) 0 0
\(391\) 9.24264 0.467420
\(392\) −4.48528 −0.226541
\(393\) 0 0
\(394\) 20.2426 1.01981
\(395\) 0 0
\(396\) 0 0
\(397\) 24.0000 1.20453 0.602263 0.798298i \(-0.294266\pi\)
0.602263 + 0.798298i \(0.294266\pi\)
\(398\) 0.757359 0.0379630
\(399\) 0 0
\(400\) 0 0
\(401\) 22.5858 1.12788 0.563940 0.825816i \(-0.309285\pi\)
0.563940 + 0.825816i \(0.309285\pi\)
\(402\) 0 0
\(403\) −0.384776 −0.0191671
\(404\) 1.07107 0.0532876
\(405\) 0 0
\(406\) 9.24264 0.458705
\(407\) −12.0000 −0.594818
\(408\) 0 0
\(409\) −17.2132 −0.851138 −0.425569 0.904926i \(-0.639926\pi\)
−0.425569 + 0.904926i \(0.639926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.24264 −0.209020
\(413\) 20.4558 1.00657
\(414\) 0 0
\(415\) 0 0
\(416\) 0.171573 0.00841205
\(417\) 0 0
\(418\) 1.41421 0.0691714
\(419\) −16.5858 −0.810269 −0.405134 0.914257i \(-0.632775\pi\)
−0.405134 + 0.914257i \(0.632775\pi\)
\(420\) 0 0
\(421\) 2.51472 0.122560 0.0612799 0.998121i \(-0.480482\pi\)
0.0612799 + 0.998121i \(0.480482\pi\)
\(422\) 5.72792 0.278831
\(423\) 0 0
\(424\) 11.4853 0.557775
\(425\) 0 0
\(426\) 0 0
\(427\) 9.12994 0.441829
\(428\) 5.72792 0.276870
\(429\) 0 0
\(430\) 0 0
\(431\) −30.3848 −1.46358 −0.731792 0.681528i \(-0.761316\pi\)
−0.731792 + 0.681528i \(0.761316\pi\)
\(432\) 0 0
\(433\) 21.5563 1.03593 0.517966 0.855401i \(-0.326689\pi\)
0.517966 + 0.855401i \(0.326689\pi\)
\(434\) −3.55635 −0.170710
\(435\) 0 0
\(436\) 15.9706 0.764851
\(437\) 9.24264 0.442135
\(438\) 0 0
\(439\) −14.2426 −0.679764 −0.339882 0.940468i \(-0.610387\pi\)
−0.339882 + 0.940468i \(0.610387\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.171573 −0.00816089
\(443\) 4.24264 0.201574 0.100787 0.994908i \(-0.467864\pi\)
0.100787 + 0.994908i \(0.467864\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −20.8284 −0.986255
\(447\) 0 0
\(448\) 1.58579 0.0749214
\(449\) 5.31371 0.250769 0.125385 0.992108i \(-0.459983\pi\)
0.125385 + 0.992108i \(0.459983\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 1.75736 0.0826592
\(453\) 0 0
\(454\) 25.2426 1.18470
\(455\) 0 0
\(456\) 0 0
\(457\) −3.00000 −0.140334 −0.0701670 0.997535i \(-0.522353\pi\)
−0.0701670 + 0.997535i \(0.522353\pi\)
\(458\) −18.9706 −0.886436
\(459\) 0 0
\(460\) 0 0
\(461\) −27.5563 −1.28343 −0.641714 0.766944i \(-0.721776\pi\)
−0.641714 + 0.766944i \(0.721776\pi\)
\(462\) 0 0
\(463\) −14.1421 −0.657241 −0.328620 0.944462i \(-0.606584\pi\)
−0.328620 + 0.944462i \(0.606584\pi\)
\(464\) 5.82843 0.270578
\(465\) 0 0
\(466\) −8.97056 −0.415553
\(467\) 24.7279 1.14427 0.572136 0.820159i \(-0.306115\pi\)
0.572136 + 0.820159i \(0.306115\pi\)
\(468\) 0 0
\(469\) 21.0000 0.969690
\(470\) 0 0
\(471\) 0 0
\(472\) 12.8995 0.593747
\(473\) −14.4853 −0.666034
\(474\) 0 0
\(475\) 0 0
\(476\) −1.58579 −0.0726844
\(477\) 0 0
\(478\) −12.8995 −0.590009
\(479\) −31.1127 −1.42158 −0.710788 0.703407i \(-0.751661\pi\)
−0.710788 + 0.703407i \(0.751661\pi\)
\(480\) 0 0
\(481\) 1.45584 0.0663808
\(482\) −24.9706 −1.13738
\(483\) 0 0
\(484\) −9.00000 −0.409091
\(485\) 0 0
\(486\) 0 0
\(487\) −1.79899 −0.0815200 −0.0407600 0.999169i \(-0.512978\pi\)
−0.0407600 + 0.999169i \(0.512978\pi\)
\(488\) 5.75736 0.260623
\(489\) 0 0
\(490\) 0 0
\(491\) 2.44365 0.110280 0.0551402 0.998479i \(-0.482439\pi\)
0.0551402 + 0.998479i \(0.482439\pi\)
\(492\) 0 0
\(493\) −5.82843 −0.262499
\(494\) −0.171573 −0.00771943
\(495\) 0 0
\(496\) −2.24264 −0.100698
\(497\) 16.7868 0.752991
\(498\) 0 0
\(499\) −34.2426 −1.53291 −0.766456 0.642297i \(-0.777981\pi\)
−0.766456 + 0.642297i \(0.777981\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 27.5563 1.22990
\(503\) −39.7279 −1.77138 −0.885690 0.464277i \(-0.846314\pi\)
−0.885690 + 0.464277i \(0.846314\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 13.0711 0.581080
\(507\) 0 0
\(508\) 14.4853 0.642680
\(509\) 4.97056 0.220316 0.110158 0.993914i \(-0.464864\pi\)
0.110158 + 0.993914i \(0.464864\pi\)
\(510\) 0 0
\(511\) −8.69848 −0.384798
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 4.72792 0.208540
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 13.4558 0.591216
\(519\) 0 0
\(520\) 0 0
\(521\) −0.686292 −0.0300670 −0.0150335 0.999887i \(-0.504785\pi\)
−0.0150335 + 0.999887i \(0.504785\pi\)
\(522\) 0 0
\(523\) −27.7279 −1.21246 −0.606229 0.795290i \(-0.707318\pi\)
−0.606229 + 0.795290i \(0.707318\pi\)
\(524\) −16.9706 −0.741362
\(525\) 0 0
\(526\) −6.97056 −0.303931
\(527\) 2.24264 0.0976910
\(528\) 0 0
\(529\) 62.4264 2.71419
\(530\) 0 0
\(531\) 0 0
\(532\) −1.58579 −0.0687526
\(533\) −0.727922 −0.0315298
\(534\) 0 0
\(535\) 0 0
\(536\) 13.2426 0.571995
\(537\) 0 0
\(538\) −28.6274 −1.23422
\(539\) 6.34315 0.273219
\(540\) 0 0
\(541\) 18.2426 0.784312 0.392156 0.919899i \(-0.371729\pi\)
0.392156 + 0.919899i \(0.371729\pi\)
\(542\) −18.7574 −0.805698
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) 5.31371 0.227198 0.113599 0.993527i \(-0.463762\pi\)
0.113599 + 0.993527i \(0.463762\pi\)
\(548\) −13.0000 −0.555332
\(549\) 0 0
\(550\) 0 0
\(551\) −5.82843 −0.248299
\(552\) 0 0
\(553\) 16.6274 0.707070
\(554\) 0 0
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) −16.0000 −0.677942 −0.338971 0.940797i \(-0.610079\pi\)
−0.338971 + 0.940797i \(0.610079\pi\)
\(558\) 0 0
\(559\) 1.75736 0.0743284
\(560\) 0 0
\(561\) 0 0
\(562\) 4.24264 0.178965
\(563\) 28.9706 1.22096 0.610482 0.792030i \(-0.290976\pi\)
0.610482 + 0.792030i \(0.290976\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.85786 0.162158
\(567\) 0 0
\(568\) 10.5858 0.444170
\(569\) −28.2843 −1.18574 −0.592869 0.805299i \(-0.702005\pi\)
−0.592869 + 0.805299i \(0.702005\pi\)
\(570\) 0 0
\(571\) 6.24264 0.261246 0.130623 0.991432i \(-0.458302\pi\)
0.130623 + 0.991432i \(0.458302\pi\)
\(572\) −0.242641 −0.0101453
\(573\) 0 0
\(574\) −6.72792 −0.280818
\(575\) 0 0
\(576\) 0 0
\(577\) 2.31371 0.0963209 0.0481605 0.998840i \(-0.484664\pi\)
0.0481605 + 0.998840i \(0.484664\pi\)
\(578\) −16.0000 −0.665512
\(579\) 0 0
\(580\) 0 0
\(581\) 3.94113 0.163505
\(582\) 0 0
\(583\) −16.2426 −0.672701
\(584\) −5.48528 −0.226983
\(585\) 0 0
\(586\) −11.4853 −0.474453
\(587\) −21.7574 −0.898022 −0.449011 0.893526i \(-0.648224\pi\)
−0.449011 + 0.893526i \(0.648224\pi\)
\(588\) 0 0
\(589\) 2.24264 0.0924064
\(590\) 0 0
\(591\) 0 0
\(592\) 8.48528 0.348743
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.34315 −0.259825
\(597\) 0 0
\(598\) −1.58579 −0.0648476
\(599\) −27.2132 −1.11190 −0.555951 0.831215i \(-0.687646\pi\)
−0.555951 + 0.831215i \(0.687646\pi\)
\(600\) 0 0
\(601\) −11.7574 −0.479593 −0.239796 0.970823i \(-0.577081\pi\)
−0.239796 + 0.970823i \(0.577081\pi\)
\(602\) 16.2426 0.662001
\(603\) 0 0
\(604\) 6.48528 0.263882
\(605\) 0 0
\(606\) 0 0
\(607\) 8.82843 0.358335 0.179167 0.983819i \(-0.442660\pi\)
0.179167 + 0.983819i \(0.442660\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 47.6985 1.92652 0.963262 0.268564i \(-0.0865491\pi\)
0.963262 + 0.268564i \(0.0865491\pi\)
\(614\) −6.34315 −0.255989
\(615\) 0 0
\(616\) −2.24264 −0.0903586
\(617\) −12.4853 −0.502639 −0.251319 0.967904i \(-0.580864\pi\)
−0.251319 + 0.967904i \(0.580864\pi\)
\(618\) 0 0
\(619\) 16.2426 0.652847 0.326423 0.945224i \(-0.394156\pi\)
0.326423 + 0.945224i \(0.394156\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 13.2426 0.530982
\(623\) 11.2132 0.449248
\(624\) 0 0
\(625\) 0 0
\(626\) 25.9706 1.03799
\(627\) 0 0
\(628\) 0.343146 0.0136930
\(629\) −8.48528 −0.338330
\(630\) 0 0
\(631\) −5.02944 −0.200219 −0.100109 0.994976i \(-0.531919\pi\)
−0.100109 + 0.994976i \(0.531919\pi\)
\(632\) 10.4853 0.417082
\(633\) 0 0
\(634\) −7.48528 −0.297279
\(635\) 0 0
\(636\) 0 0
\(637\) −0.769553 −0.0304908
\(638\) −8.24264 −0.326329
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0416 −1.18657 −0.593287 0.804991i \(-0.702170\pi\)
−0.593287 + 0.804991i \(0.702170\pi\)
\(642\) 0 0
\(643\) 2.48528 0.0980099 0.0490050 0.998799i \(-0.484395\pi\)
0.0490050 + 0.998799i \(0.484395\pi\)
\(644\) −14.6569 −0.577561
\(645\) 0 0
\(646\) 1.00000 0.0393445
\(647\) 27.2426 1.07102 0.535509 0.844529i \(-0.320120\pi\)
0.535509 + 0.844529i \(0.320120\pi\)
\(648\) 0 0
\(649\) −18.2426 −0.716086
\(650\) 0 0
\(651\) 0 0
\(652\) −1.75736 −0.0688235
\(653\) −4.97056 −0.194513 −0.0972566 0.995259i \(-0.531007\pi\)
−0.0972566 + 0.995259i \(0.531007\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.24264 −0.165647
\(657\) 0 0
\(658\) 0 0
\(659\) 0.899495 0.0350393 0.0175197 0.999847i \(-0.494423\pi\)
0.0175197 + 0.999847i \(0.494423\pi\)
\(660\) 0 0
\(661\) 32.4558 1.26239 0.631193 0.775626i \(-0.282566\pi\)
0.631193 + 0.775626i \(0.282566\pi\)
\(662\) −10.7574 −0.418097
\(663\) 0 0
\(664\) 2.48528 0.0964476
\(665\) 0 0
\(666\) 0 0
\(667\) −53.8701 −2.08586
\(668\) 9.75736 0.377524
\(669\) 0 0
\(670\) 0 0
\(671\) −8.14214 −0.314324
\(672\) 0 0
\(673\) −12.0000 −0.462566 −0.231283 0.972887i \(-0.574292\pi\)
−0.231283 + 0.972887i \(0.574292\pi\)
\(674\) 33.8995 1.30576
\(675\) 0 0
\(676\) −12.9706 −0.498868
\(677\) −26.9411 −1.03543 −0.517716 0.855553i \(-0.673218\pi\)
−0.517716 + 0.855553i \(0.673218\pi\)
\(678\) 0 0
\(679\) −18.4853 −0.709400
\(680\) 0 0
\(681\) 0 0
\(682\) 3.17157 0.121446
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −18.2132 −0.695383
\(687\) 0 0
\(688\) 10.2426 0.390497
\(689\) 1.97056 0.0750725
\(690\) 0 0
\(691\) 5.51472 0.209790 0.104895 0.994483i \(-0.466549\pi\)
0.104895 + 0.994483i \(0.466549\pi\)
\(692\) 16.4853 0.626676
\(693\) 0 0
\(694\) 22.4853 0.853530
\(695\) 0 0
\(696\) 0 0
\(697\) 4.24264 0.160701
\(698\) 6.00000 0.227103
\(699\) 0 0
\(700\) 0 0
\(701\) 16.9706 0.640969 0.320485 0.947254i \(-0.396154\pi\)
0.320485 + 0.947254i \(0.396154\pi\)
\(702\) 0 0
\(703\) −8.48528 −0.320028
\(704\) −1.41421 −0.0533002
\(705\) 0 0
\(706\) 19.4853 0.733338
\(707\) 1.69848 0.0638781
\(708\) 0 0
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.07107 0.264999
\(713\) 20.7279 0.776267
\(714\) 0 0
\(715\) 0 0
\(716\) 0.343146 0.0128240
\(717\) 0 0
\(718\) 31.2426 1.16596
\(719\) 24.8995 0.928594 0.464297 0.885679i \(-0.346307\pi\)
0.464297 + 0.885679i \(0.346307\pi\)
\(720\) 0 0
\(721\) −6.72792 −0.250561
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) 8.48528 0.315353
\(725\) 0 0
\(726\) 0 0
\(727\) −15.7279 −0.583316 −0.291658 0.956523i \(-0.594207\pi\)
−0.291658 + 0.956523i \(0.594207\pi\)
\(728\) 0.272078 0.0100839
\(729\) 0 0
\(730\) 0 0
\(731\) −10.2426 −0.378838
\(732\) 0 0
\(733\) 12.0000 0.443230 0.221615 0.975134i \(-0.428867\pi\)
0.221615 + 0.975134i \(0.428867\pi\)
\(734\) 25.4558 0.939592
\(735\) 0 0
\(736\) −9.24264 −0.340688
\(737\) −18.7279 −0.689852
\(738\) 0 0
\(739\) 26.7279 0.983203 0.491601 0.870820i \(-0.336412\pi\)
0.491601 + 0.870820i \(0.336412\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 18.2132 0.668628
\(743\) 18.7279 0.687061 0.343530 0.939142i \(-0.388377\pi\)
0.343530 + 0.939142i \(0.388377\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 9.00000 0.329513
\(747\) 0 0
\(748\) 1.41421 0.0517088
\(749\) 9.08326 0.331895
\(750\) 0 0
\(751\) −1.27208 −0.0464188 −0.0232094 0.999731i \(-0.507388\pi\)
−0.0232094 + 0.999731i \(0.507388\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.00000 0.0364179
\(755\) 0 0
\(756\) 0 0
\(757\) 23.6569 0.859823 0.429911 0.902871i \(-0.358545\pi\)
0.429911 + 0.902871i \(0.358545\pi\)
\(758\) 2.75736 0.100152
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0294 −0.363567 −0.181783 0.983339i \(-0.558187\pi\)
−0.181783 + 0.983339i \(0.558187\pi\)
\(762\) 0 0
\(763\) 25.3259 0.916859
\(764\) 18.5563 0.671345
\(765\) 0 0
\(766\) −3.75736 −0.135759
\(767\) 2.21320 0.0799141
\(768\) 0 0
\(769\) 14.4558 0.521291 0.260646 0.965435i \(-0.416065\pi\)
0.260646 + 0.965435i \(0.416065\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.6569 −0.419539
\(773\) 19.9706 0.718291 0.359146 0.933282i \(-0.383068\pi\)
0.359146 + 0.933282i \(0.383068\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −11.6569 −0.418457
\(777\) 0 0
\(778\) −37.0711 −1.32906
\(779\) 4.24264 0.152008
\(780\) 0 0
\(781\) −14.9706 −0.535689
\(782\) 9.24264 0.330516
\(783\) 0 0
\(784\) −4.48528 −0.160189
\(785\) 0 0
\(786\) 0 0
\(787\) 35.1838 1.25417 0.627083 0.778953i \(-0.284249\pi\)
0.627083 + 0.778953i \(0.284249\pi\)
\(788\) 20.2426 0.721114
\(789\) 0 0
\(790\) 0 0
\(791\) 2.78680 0.0990871
\(792\) 0 0
\(793\) 0.987807 0.0350780
\(794\) 24.0000 0.851728
\(795\) 0 0
\(796\) 0.757359 0.0268439
\(797\) 30.5147 1.08089 0.540443 0.841380i \(-0.318257\pi\)
0.540443 + 0.841380i \(0.318257\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 22.5858 0.797532
\(803\) 7.75736 0.273751
\(804\) 0 0
\(805\) 0 0
\(806\) −0.384776 −0.0135532
\(807\) 0 0
\(808\) 1.07107 0.0376800
\(809\) −10.7990 −0.379672 −0.189836 0.981816i \(-0.560796\pi\)
−0.189836 + 0.981816i \(0.560796\pi\)
\(810\) 0 0
\(811\) −6.69848 −0.235216 −0.117608 0.993060i \(-0.537523\pi\)
−0.117608 + 0.993060i \(0.537523\pi\)
\(812\) 9.24264 0.324353
\(813\) 0 0
\(814\) −12.0000 −0.420600
\(815\) 0 0
\(816\) 0 0
\(817\) −10.2426 −0.358345
\(818\) −17.2132 −0.601846
\(819\) 0 0
\(820\) 0 0
\(821\) −17.6569 −0.616228 −0.308114 0.951349i \(-0.599698\pi\)
−0.308114 + 0.951349i \(0.599698\pi\)
\(822\) 0 0
\(823\) 9.72792 0.339094 0.169547 0.985522i \(-0.445770\pi\)
0.169547 + 0.985522i \(0.445770\pi\)
\(824\) −4.24264 −0.147799
\(825\) 0 0
\(826\) 20.4558 0.711750
\(827\) −38.6985 −1.34568 −0.672839 0.739789i \(-0.734925\pi\)
−0.672839 + 0.739789i \(0.734925\pi\)
\(828\) 0 0
\(829\) −40.4558 −1.40509 −0.702545 0.711640i \(-0.747953\pi\)
−0.702545 + 0.711640i \(0.747953\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.171573 0.00594822
\(833\) 4.48528 0.155406
\(834\) 0 0
\(835\) 0 0
\(836\) 1.41421 0.0489116
\(837\) 0 0
\(838\) −16.5858 −0.572946
\(839\) 22.6274 0.781185 0.390593 0.920564i \(-0.372270\pi\)
0.390593 + 0.920564i \(0.372270\pi\)
\(840\) 0 0
\(841\) 4.97056 0.171399
\(842\) 2.51472 0.0866629
\(843\) 0 0
\(844\) 5.72792 0.197163
\(845\) 0 0
\(846\) 0 0
\(847\) −14.2721 −0.490394
\(848\) 11.4853 0.394406
\(849\) 0 0
\(850\) 0 0
\(851\) −78.4264 −2.68842
\(852\) 0 0
\(853\) 39.9411 1.36756 0.683779 0.729689i \(-0.260335\pi\)
0.683779 + 0.729689i \(0.260335\pi\)
\(854\) 9.12994 0.312420
\(855\) 0 0
\(856\) 5.72792 0.195776
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −20.7279 −0.707228 −0.353614 0.935392i \(-0.615047\pi\)
−0.353614 + 0.935392i \(0.615047\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −30.3848 −1.03491
\(863\) 24.7279 0.841748 0.420874 0.907119i \(-0.361723\pi\)
0.420874 + 0.907119i \(0.361723\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 21.5563 0.732515
\(867\) 0 0
\(868\) −3.55635 −0.120710
\(869\) −14.8284 −0.503020
\(870\) 0 0
\(871\) 2.27208 0.0769864
\(872\) 15.9706 0.540831
\(873\) 0 0
\(874\) 9.24264 0.312637
\(875\) 0 0
\(876\) 0 0
\(877\) −47.1421 −1.59188 −0.795938 0.605378i \(-0.793022\pi\)
−0.795938 + 0.605378i \(0.793022\pi\)
\(878\) −14.2426 −0.480666
\(879\) 0 0
\(880\) 0 0
\(881\) −39.5980 −1.33409 −0.667045 0.745018i \(-0.732441\pi\)
−0.667045 + 0.745018i \(0.732441\pi\)
\(882\) 0 0
\(883\) −2.48528 −0.0836364 −0.0418182 0.999125i \(-0.513315\pi\)
−0.0418182 + 0.999125i \(0.513315\pi\)
\(884\) −0.171573 −0.00577062
\(885\) 0 0
\(886\) 4.24264 0.142534
\(887\) 2.78680 0.0935715 0.0467857 0.998905i \(-0.485102\pi\)
0.0467857 + 0.998905i \(0.485102\pi\)
\(888\) 0 0
\(889\) 22.9706 0.770408
\(890\) 0 0
\(891\) 0 0
\(892\) −20.8284 −0.697387
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.58579 0.0529774
\(897\) 0 0
\(898\) 5.31371 0.177321
\(899\) −13.0711 −0.435945
\(900\) 0 0
\(901\) −11.4853 −0.382630
\(902\) 6.00000 0.199778
\(903\) 0 0
\(904\) 1.75736 0.0584489
\(905\) 0 0
\(906\) 0 0
\(907\) −20.6985 −0.687282 −0.343641 0.939101i \(-0.611660\pi\)
−0.343641 + 0.939101i \(0.611660\pi\)
\(908\) 25.2426 0.837706
\(909\) 0 0
\(910\) 0 0
\(911\) 16.2843 0.539522 0.269761 0.962927i \(-0.413055\pi\)
0.269761 + 0.962927i \(0.413055\pi\)
\(912\) 0 0
\(913\) −3.51472 −0.116320
\(914\) −3.00000 −0.0992312
\(915\) 0 0
\(916\) −18.9706 −0.626805
\(917\) −26.9117 −0.888702
\(918\) 0 0
\(919\) 36.2132 1.19456 0.597282 0.802032i \(-0.296247\pi\)
0.597282 + 0.802032i \(0.296247\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −27.5563 −0.907520
\(923\) 1.81623 0.0597821
\(924\) 0 0
\(925\) 0 0
\(926\) −14.1421 −0.464739
\(927\) 0 0
\(928\) 5.82843 0.191327
\(929\) 17.8284 0.584932 0.292466 0.956276i \(-0.405524\pi\)
0.292466 + 0.956276i \(0.405524\pi\)
\(930\) 0 0
\(931\) 4.48528 0.146999
\(932\) −8.97056 −0.293841
\(933\) 0 0
\(934\) 24.7279 0.809122
\(935\) 0 0
\(936\) 0 0
\(937\) 27.0000 0.882052 0.441026 0.897494i \(-0.354615\pi\)
0.441026 + 0.897494i \(0.354615\pi\)
\(938\) 21.0000 0.685674
\(939\) 0 0
\(940\) 0 0
\(941\) −24.8579 −0.810343 −0.405172 0.914241i \(-0.632788\pi\)
−0.405172 + 0.914241i \(0.632788\pi\)
\(942\) 0 0
\(943\) 39.2132 1.27696
\(944\) 12.8995 0.419843
\(945\) 0 0
\(946\) −14.4853 −0.470957
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −0.941125 −0.0305502
\(950\) 0 0
\(951\) 0 0
\(952\) −1.58579 −0.0513956
\(953\) 6.72792 0.217939 0.108969 0.994045i \(-0.465245\pi\)
0.108969 + 0.994045i \(0.465245\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −12.8995 −0.417199
\(957\) 0 0
\(958\) −31.1127 −1.00521
\(959\) −20.6152 −0.665700
\(960\) 0 0
\(961\) −25.9706 −0.837760
\(962\) 1.45584 0.0469383
\(963\) 0 0
\(964\) −24.9706 −0.804248
\(965\) 0 0
\(966\) 0 0
\(967\) −19.1127 −0.614623 −0.307311 0.951609i \(-0.599429\pi\)
−0.307311 + 0.951609i \(0.599429\pi\)
\(968\) −9.00000 −0.289271
\(969\) 0 0
\(970\) 0 0
\(971\) −30.3431 −0.973758 −0.486879 0.873469i \(-0.661865\pi\)
−0.486879 + 0.873469i \(0.661865\pi\)
\(972\) 0 0
\(973\) −19.0294 −0.610056
\(974\) −1.79899 −0.0576434
\(975\) 0 0
\(976\) 5.75736 0.184289
\(977\) 8.24264 0.263705 0.131853 0.991269i \(-0.457907\pi\)
0.131853 + 0.991269i \(0.457907\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) 0 0
\(981\) 0 0
\(982\) 2.44365 0.0779800
\(983\) 0.544156 0.0173559 0.00867794 0.999962i \(-0.497238\pi\)
0.00867794 + 0.999962i \(0.497238\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −5.82843 −0.185615
\(987\) 0 0
\(988\) −0.171573 −0.00545846
\(989\) −94.6690 −3.01030
\(990\) 0 0
\(991\) 22.2426 0.706561 0.353280 0.935517i \(-0.385066\pi\)
0.353280 + 0.935517i \(0.385066\pi\)
\(992\) −2.24264 −0.0712039
\(993\) 0 0
\(994\) 16.7868 0.532445
\(995\) 0 0
\(996\) 0 0
\(997\) 23.2721 0.737034 0.368517 0.929621i \(-0.379866\pi\)
0.368517 + 0.929621i \(0.379866\pi\)
\(998\) −34.2426 −1.08393
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8550.2.a.cb.1.1 2
3.2 odd 2 950.2.a.f.1.2 2
5.2 odd 4 1710.2.d.c.1369.4 4
5.3 odd 4 1710.2.d.c.1369.2 4
5.4 even 2 8550.2.a.bn.1.2 2
12.11 even 2 7600.2.a.v.1.1 2
15.2 even 4 190.2.b.a.39.1 4
15.8 even 4 190.2.b.a.39.4 yes 4
15.14 odd 2 950.2.a.g.1.1 2
60.23 odd 4 1520.2.d.e.609.1 4
60.47 odd 4 1520.2.d.e.609.4 4
60.59 even 2 7600.2.a.bg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
190.2.b.a.39.1 4 15.2 even 4
190.2.b.a.39.4 yes 4 15.8 even 4
950.2.a.f.1.2 2 3.2 odd 2
950.2.a.g.1.1 2 15.14 odd 2
1520.2.d.e.609.1 4 60.23 odd 4
1520.2.d.e.609.4 4 60.47 odd 4
1710.2.d.c.1369.2 4 5.3 odd 4
1710.2.d.c.1369.4 4 5.2 odd 4
7600.2.a.v.1.1 2 12.11 even 2
7600.2.a.bg.1.2 2 60.59 even 2
8550.2.a.bn.1.2 2 5.4 even 2
8550.2.a.cb.1.1 2 1.1 even 1 trivial