Learn more

Refine search


Results (1-50 of 76 matches)

Next   Download to        
Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 19
8550.2.a.a 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{7}-q^{8}-4q^{11}+4q^{14}+\cdots\)
8550.2.a.b 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{7}-q^{8}-2q^{13}+4q^{14}+\cdots\)
8550.2.a.c 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-4\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{7}-q^{8}+q^{11}+4q^{14}+\cdots\)
8550.2.a.d 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}-3q^{11}-2q^{13}+\cdots\)
8550.2.a.e 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}-2q^{13}+2q^{14}+\cdots\)
8550.2.a.f 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}+3q^{11}-6q^{13}+\cdots\)
8550.2.a.g 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}+6q^{11}+2q^{14}+\cdots\)
8550.2.a.h 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{8}-q^{11}-4q^{13}+q^{16}+\cdots\)
8550.2.a.i 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{8}+2q^{11}+4q^{13}+\cdots\)
8550.2.a.j 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{8}+4q^{11}-4q^{13}+\cdots\)
8550.2.a.k 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{8}+4q^{11}+2q^{13}+\cdots\)
8550.2.a.l 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+3q^{13}-q^{14}+\cdots\)
8550.2.a.m 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+6q^{11}-5q^{13}+\cdots\)
8550.2.a.n 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{7}-q^{8}-4q^{11}+6q^{13}+\cdots\)
8550.2.a.o 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{7}-q^{8}+2q^{11}-2q^{14}+\cdots\)
8550.2.a.p 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{7}-q^{8}+2q^{11}+4q^{13}+\cdots\)
8550.2.a.q 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(4\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{7}-q^{8}-6q^{11}-4q^{14}+\cdots\)
8550.2.a.r 8550.a 1.a $1$ $68.272$ \(\Q\) None \(-1\) \(0\) \(0\) \(4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{7}-q^{8}+4q^{11}+6q^{13}+\cdots\)
8550.2.a.s 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(-4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-4q^{7}+q^{8}+6q^{13}-4q^{14}+\cdots\)
8550.2.a.t 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(-4\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-4q^{7}+q^{8}+4q^{11}+2q^{13}+\cdots\)
8550.2.a.u 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{7}+q^{8}-2q^{11}+q^{13}+\cdots\)
8550.2.a.v 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{7}+q^{8}-6q^{11}+4q^{13}+\cdots\)
8550.2.a.w 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{7}+q^{8}+4q^{11}-6q^{13}+\cdots\)
8550.2.a.x 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{8}-4q^{11}-2q^{13}+\cdots\)
8550.2.a.y 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{8}-2q^{11}+4q^{13}+\cdots\)
8550.2.a.z 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{8}-q^{11}+4q^{13}+q^{16}+\cdots\)
8550.2.a.ba 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{8}+4q^{11}-2q^{13}+\cdots\)
8550.2.a.bb 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{8}+4q^{11}-2q^{13}+\cdots\)
8550.2.a.bc 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{8}+4q^{11}+4q^{13}+\cdots\)
8550.2.a.bd 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+q^{13}+q^{14}+\cdots\)
8550.2.a.be 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}-3q^{11}+2q^{13}+\cdots\)
8550.2.a.bf 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}-2q^{11}-4q^{13}+\cdots\)
8550.2.a.bg 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}-2q^{11}+4q^{13}+\cdots\)
8550.2.a.bh 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}-6q^{13}+2q^{14}+\cdots\)
8550.2.a.bi 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}+3q^{11}+6q^{13}+\cdots\)
8550.2.a.bj 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{7}+q^{8}+4q^{13}+4q^{14}+\cdots\)
8550.2.a.bk 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{7}+q^{8}+q^{11}+4q^{14}+\cdots\)
8550.2.a.bl 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{7}+q^{8}+6q^{11}+4q^{14}+\cdots\)
8550.2.a.bm 8550.a 1.a $1$ $68.272$ \(\Q\) None \(1\) \(0\) \(0\) \(5\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+5q^{7}+q^{8}+4q^{11}+q^{13}+\cdots\)
8550.2.a.bn 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{2}) \) None \(-2\) \(0\) \(0\) \(-6\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-3+\beta )q^{7}-q^{8}-\beta q^{11}+\cdots\)
8550.2.a.bo 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{3}) \) None \(-2\) \(0\) \(0\) \(-4\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{7}-q^{8}+\beta q^{11}+(-2+\cdots)q^{13}+\cdots\)
8550.2.a.bp 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{17}) \) None \(-2\) \(0\) \(0\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta )q^{7}-q^{8}+2q^{11}+\cdots\)
8550.2.a.bq 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{10}) \) None \(-2\) \(0\) \(0\) \(0\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta q^{7}-q^{8}+(-1-\beta )q^{11}+\cdots\)
8550.2.a.br 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{17}) \) None \(-2\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta q^{7}-q^{8}-4q^{11}+(2+\cdots)q^{13}+\cdots\)
8550.2.a.bs 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{3}) \) None \(-2\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1+\beta )q^{7}-q^{8}+(-2+\cdots)q^{11}+\cdots\)
8550.2.a.bt 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{3}) \) None \(-2\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1+\beta )q^{7}-q^{8}-3\beta q^{11}+\cdots\)
8550.2.a.bu 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{6}) \) None \(-2\) \(0\) \(0\) \(4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(2+\beta )q^{7}-q^{8}+(-1+\cdots)q^{11}+\cdots\)
8550.2.a.bv 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{6}) \) None \(2\) \(0\) \(0\) \(-4\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-2+\beta )q^{7}+q^{8}+(-1+\cdots)q^{11}+\cdots\)
8550.2.a.bw 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{3}) \) None \(2\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{7}+q^{8}+\beta q^{11}+(-2+\cdots)q^{13}+\cdots\)
8550.2.a.bx 8550.a 1.a $2$ $68.272$ \(\Q(\sqrt{17}) \) None \(2\) \(0\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1-\beta )q^{7}+q^{8}-2q^{11}+\cdots\)
Next   Download to