Properties

Label 855.3.g.a.379.1
Level 855855
Weight 33
Character 855.379
Analytic conductor 23.29723.297
Analytic rank 00
Dimension 22
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,3,Mod(379,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: N N == 855=32519 855 = 3^{2} \cdot 5 \cdot 19
Weight: k k == 3 3
Character orbit: [χ][\chi] == 855.g (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.297062602823.2970626028
Analytic rank: 00
Dimension: 22
Coefficient field: Q(19)\Q(\sqrt{-19})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+5 x^{2} - x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 379.1
Root 0.500000+2.17945i0.500000 + 2.17945i of defining polynomial
Character χ\chi == 855.379
Dual form 855.3.g.a.379.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4.00000q4+(4.500002.17945i)q513.0767iq7+3.00000q11+16.0000q1630.5123iq1719.0000q19+(18.0000+8.71780i)q20+34.8712iq23+(15.500019.6150i)q25+52.3068iq28+(28.500058.8451i)q3513.0767iq4312.0000q44+56.6657iq47122.000q49+(13.50006.53835i)q55103.000q6164.0000q64+122.049iq68143.844iq73+76.0000q7639.2301iq77+(72.000034.8712i)q80139.485iq83+(66.5000137.305i)q85139.485iq92+(85.5000+41.4095i)q95+O(q100)q-4.00000 q^{4} +(4.50000 - 2.17945i) q^{5} -13.0767i q^{7} +3.00000 q^{11} +16.0000 q^{16} -30.5123i q^{17} -19.0000 q^{19} +(-18.0000 + 8.71780i) q^{20} +34.8712i q^{23} +(15.5000 - 19.6150i) q^{25} +52.3068i q^{28} +(-28.5000 - 58.8451i) q^{35} -13.0767i q^{43} -12.0000 q^{44} +56.6657i q^{47} -122.000 q^{49} +(13.5000 - 6.53835i) q^{55} -103.000 q^{61} -64.0000 q^{64} +122.049i q^{68} -143.844i q^{73} +76.0000 q^{76} -39.2301i q^{77} +(72.0000 - 34.8712i) q^{80} -139.485i q^{83} +(-66.5000 - 137.305i) q^{85} -139.485i q^{92} +(-85.5000 + 41.4095i) q^{95} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+9q5+6q11+32q1638q1936q20+31q2557q3524q44244q49+27q55206q61128q64+152q76+144q80133q85171q95+O(q100) 2 q - 8 q^{4} + 9 q^{5} + 6 q^{11} + 32 q^{16} - 38 q^{19} - 36 q^{20} + 31 q^{25} - 57 q^{35} - 24 q^{44} - 244 q^{49} + 27 q^{55} - 206 q^{61} - 128 q^{64} + 152 q^{76} + 144 q^{80} - 133 q^{85} - 171 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/855Z)×\left(\mathbb{Z}/855\mathbb{Z}\right)^\times.

nn 172172 191191 496496
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
33 0 0
44 −4.00000 −1.00000
55 4.50000 2.17945i 0.900000 0.435890i
66 0 0
77 13.0767i 1.86810i −0.357143 0.934050i 0.616249π-0.616249\pi
0.357143 0.934050i 0.383751π-0.383751\pi
88 0 0
99 0 0
1010 0 0
1111 3.00000 0.272727 0.136364 0.990659i 0.456458π-0.456458\pi
0.136364 + 0.990659i 0.456458π0.456458\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 16.0000 1.00000
1717 30.5123i 1.79484i −0.441176 0.897420i 0.645439π-0.645439\pi
0.441176 0.897420i 0.354561π-0.354561\pi
1818 0 0
1919 −19.0000 −1.00000
2020 −18.0000 + 8.71780i −0.900000 + 0.435890i
2121 0 0
2222 0 0
2323 34.8712i 1.51614i 0.652174 + 0.758069i 0.273857π0.273857\pi
−0.652174 + 0.758069i 0.726143π0.726143\pi
2424 0 0
2525 15.5000 19.6150i 0.620000 0.784602i
2626 0 0
2727 0 0
2828 52.3068i 1.86810i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 0 0
3434 0 0
3535 −28.5000 58.8451i −0.814286 1.68129i
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 13.0767i 0.304109i −0.988372 0.152055i 0.951411π-0.951411\pi
0.988372 0.152055i 0.0485890π-0.0485890\pi
4444 −12.0000 −0.272727
4545 0 0
4646 0 0
4747 56.6657i 1.20565i 0.797872 + 0.602826i 0.205959π0.205959\pi
−0.797872 + 0.602826i 0.794041π0.794041\pi
4848 0 0
4949 −122.000 −2.48980
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 0 0
5555 13.5000 6.53835i 0.245455 0.118879i
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 −103.000 −1.68852 −0.844262 0.535930i 0.819961π-0.819961\pi
−0.844262 + 0.535930i 0.819961π0.819961\pi
6262 0 0
6363 0 0
6464 −64.0000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 122.049i 1.79484i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 143.844i 1.97046i −0.171233 0.985231i 0.554775π-0.554775\pi
0.171233 0.985231i 0.445225π-0.445225\pi
7474 0 0
7575 0 0
7676 76.0000 1.00000
7777 39.2301i 0.509482i
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 72.0000 34.8712i 0.900000 0.435890i
8181 0 0
8282 0 0
8383 139.485i 1.68054i −0.542169 0.840270i 0.682397π-0.682397\pi
0.542169 0.840270i 0.317603π-0.317603\pi
8484 0 0
8585 −66.5000 137.305i −0.782353 1.61536i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 139.485i 1.51614i
9393 0 0
9494 0 0
9595 −85.5000 + 41.4095i −0.900000 + 0.435890i
9696 0 0
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 0 0
9999 0 0
100100 −62.0000 + 78.4602i −0.620000 + 0.784602i
101101 −102.000 −1.00990 −0.504950 0.863148i 0.668489π-0.668489\pi
−0.504950 + 0.863148i 0.668489π0.668489\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 209.227i 1.86810i
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 76.0000 + 156.920i 0.660870 + 1.36452i
116116 0 0
117117 0 0
118118 0 0
119119 −399.000 −3.35294
120120 0 0
121121 −112.000 −0.925620
122122 0 0
123123 0 0
124124 0 0
125125 27.0000 122.049i 0.216000 0.976393i
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 213.000 1.62595 0.812977 0.582296i 0.197845π-0.197845\pi
0.812977 + 0.582296i 0.197845π0.197845\pi
132132 0 0
133133 248.457i 1.86810i
134134 0 0
135135 0 0
136136 0 0
137137 100.255i 0.731786i 0.930657 + 0.365893i 0.119236π0.119236\pi
−0.930657 + 0.365893i 0.880764π0.880764\pi
138138 0 0
139139 197.000 1.41727 0.708633 0.705577i 0.249312π-0.249312\pi
0.708633 + 0.705577i 0.249312π0.249312\pi
140140 114.000 + 235.381i 0.814286 + 1.68129i
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −177.000 −1.18792 −0.593960 0.804495i 0.702436π-0.702436\pi
−0.593960 + 0.804495i 0.702436π0.702436\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 313.841i 1.99899i 0.0318471 + 0.999493i 0.489861π0.489861\pi
−0.0318471 + 0.999493i 0.510139π0.510139\pi
158158 0 0
159159 0 0
160160 0 0
161161 456.000 2.83230
162162 0 0
163163 209.227i 1.28360i −0.766871 0.641801i 0.778187π-0.778187\pi
0.766871 0.641801i 0.221813π-0.221813\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −169.000 −1.00000
170170 0 0
171171 0 0
172172 52.3068i 0.304109i
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 −256.500 202.689i −1.46571 1.15822i
176176 48.0000 0.272727
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 91.5369i 0.489502i
188188 226.663i 1.20565i
189189 0 0
190190 0 0
191191 93.0000 0.486911 0.243455 0.969912i 0.421719π-0.421719\pi
0.243455 + 0.969912i 0.421719π0.421719\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 488.000 2.48980
197197 383.583i 1.94712i 0.228426 + 0.973561i 0.426642π0.426642\pi
−0.228426 + 0.973561i 0.573358π0.573358\pi
198198 0 0
199199 227.000 1.14070 0.570352 0.821401i 0.306807π-0.306807\pi
0.570352 + 0.821401i 0.306807π0.306807\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −57.0000 −0.272727
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 −28.5000 58.8451i −0.132558 0.273698i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 −54.0000 + 26.1534i −0.245455 + 0.118879i
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 17.0000 0.0742358 0.0371179 0.999311i 0.488182π-0.488182\pi
0.0371179 + 0.999311i 0.488182π0.488182\pi
230230 0 0
231231 0 0
232232 0 0
233233 30.5123i 0.130954i −0.997854 0.0654770i 0.979143π-0.979143\pi
0.997854 0.0654770i 0.0208569π-0.0208569\pi
234234 0 0
235235 123.500 + 254.996i 0.525532 + 1.08509i
236236 0 0
237237 0 0
238238 0 0
239239 453.000 1.89540 0.947699 0.319166i 0.103403π-0.103403\pi
0.947699 + 0.319166i 0.103403π0.103403\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 0 0
244244 412.000 1.68852
245245 −549.000 + 265.893i −2.24082 + 1.08528i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −27.0000 −0.107570 −0.0537849 0.998553i 0.517129π-0.517129\pi
−0.0537849 + 0.998553i 0.517129π0.517129\pi
252252 0 0
253253 104.614i 0.413492i
254254 0 0
255255 0 0
256256 256.000 1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 335.635i 1.27618i −0.769962 0.638090i 0.779725π-0.779725\pi
0.769962 0.638090i 0.220275π-0.220275\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 142.000 0.523985 0.261993 0.965070i 0.415620π-0.415620\pi
0.261993 + 0.965070i 0.415620π0.415620\pi
272272 488.197i 1.79484i
273273 0 0
274274 0 0
275275 46.5000 58.8451i 0.169091 0.213982i
276276 0 0
277277 143.844i 0.519291i −0.965704 0.259646i 0.916394π-0.916394\pi
0.965704 0.259646i 0.0836057π-0.0836057\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 405.378i 1.43243i −0.697880 0.716215i 0.745873π-0.745873\pi
0.697880 0.716215i 0.254127π-0.254127\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −642.000 −2.22145
290290 0 0
291291 0 0
292292 575.375i 1.97046i
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −171.000 −0.568106
302302 0 0
303303 0 0
304304 −304.000 −1.00000
305305 −463.500 + 224.483i −1.51967 + 0.736011i
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 156.920i 0.509482i
309309 0 0
310310 0 0
311311 603.000 1.93891 0.969453 0.245276i 0.0788785π-0.0788785\pi
0.969453 + 0.245276i 0.0788785π0.0788785\pi
312312 0 0
313313 209.227i 0.668457i −0.942492 0.334229i 0.891524π-0.891524\pi
0.942492 0.334229i 0.108476π-0.108476\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 −288.000 + 139.485i −0.900000 + 0.435890i
321321 0 0
322322 0 0
323323 579.734i 1.79484i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 741.000 2.25228
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 557.939i 1.68054i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 0 0
340340 266.000 + 549.221i 0.782353 + 1.61536i
341341 0 0
342342 0 0
343343 954.599i 2.78309i
344344 0 0
345345 0 0
346346 0 0
347347 161.279i 0.464782i −0.972622 0.232391i 0.925345π-0.925345\pi
0.972622 0.232391i 0.0746548π-0.0746548\pi
348348 0 0
349349 527.000 1.51003 0.755014 0.655708i 0.227630π-0.227630\pi
0.755014 + 0.655708i 0.227630π0.227630\pi
350350 0 0
351351 0 0
352352 0 0
353353 488.197i 1.38299i −0.722380 0.691497i 0.756952π-0.756952\pi
0.722380 0.691497i 0.243048π-0.243048\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 243.000 0.676880 0.338440 0.940988i 0.390101π-0.390101\pi
0.338440 + 0.940988i 0.390101π0.390101\pi
360360 0 0
361361 361.000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 −313.500 647.296i −0.858904 1.77342i
366366 0 0
367367 732.295i 1.99535i −0.0681199 0.997677i 0.521700π-0.521700\pi
0.0681199 0.997677i 0.478300π-0.478300\pi
368368 557.939i 1.51614i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 342.000 165.638i 0.900000 0.435890i
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 −85.5000 176.535i −0.222078 0.458534i
386386 0 0
387387 0 0
388388 0 0
389389 153.000 0.393316 0.196658 0.980472i 0.436991π-0.436991\pi
0.196658 + 0.980472i 0.436991π0.436991\pi
390390 0 0
391391 1064.00 2.72123
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 274.611i 0.691714i −0.938287 0.345857i 0.887588π-0.887588\pi
0.938287 0.345857i 0.112412π-0.112412\pi
398398 0 0
399399 0 0
400400 248.000 313.841i 0.620000 0.784602i
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 408.000 1.00990
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −304.000 627.681i −0.732530 1.51249i
416416 0 0
417417 0 0
418418 0 0
419419 −762.000 −1.81862 −0.909308 0.416124i 0.863388π-0.863388\pi
−0.909308 + 0.416124i 0.863388π0.863388\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 −598.500 472.941i −1.40824 1.11280i
426426 0 0
427427 1346.90i 3.15433i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 662.553i 1.51614i
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 0 0
443443 884.856i 1.99742i 0.0507901 + 0.998709i 0.483826π0.483826\pi
−0.0507901 + 0.998709i 0.516174π0.516174\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 836.909i 1.86810i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 666.912i 1.45933i −0.683807 0.729663i 0.739677π-0.739677\pi
0.683807 0.729663i 0.260323π-0.260323\pi
458458 0 0
459459 0 0
460460 −304.000 627.681i −0.660870 1.36452i
461461 −447.000 −0.969631 −0.484816 0.874616i 0.661113π-0.661113\pi
−0.484816 + 0.874616i 0.661113π0.661113\pi
462462 0 0
463463 536.145i 1.15798i −0.815335 0.578990i 0.803447π-0.803447\pi
0.815335 0.578990i 0.196553π-0.196553\pi
464464 0 0
465465 0 0
466466 0 0
467467 187.433i 0.401355i 0.979657 + 0.200677i 0.0643143π0.0643143\pi
−0.979657 + 0.200677i 0.935686π0.935686\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 39.2301i 0.0829389i
474474 0 0
475475 −294.500 + 372.686i −0.620000 + 0.784602i
476476 1596.00 3.35294
477477 0 0
478478 0 0
479479 −942.000 −1.96660 −0.983299 0.182000i 0.941743π-0.941743\pi
−0.983299 + 0.182000i 0.941743π0.941743\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 448.000 0.925620
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 918.000 1.86965 0.934827 0.355104i 0.115554π-0.115554\pi
0.934827 + 0.355104i 0.115554π0.115554\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −523.000 −1.04810 −0.524048 0.851689i 0.675579π-0.675579\pi
−0.524048 + 0.851689i 0.675579π0.675579\pi
500500 −108.000 + 488.197i −0.216000 + 0.976393i
501501 0 0
502502 0 0
503503 383.583i 0.762591i 0.924453 + 0.381295i 0.124522π0.124522\pi
−0.924453 + 0.381295i 0.875478π0.875478\pi
504504 0 0
505505 −459.000 + 222.304i −0.908911 + 0.440206i
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 −1881.00 −3.68102
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 169.997i 0.328814i
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 −852.000 −1.62595
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −687.000 −1.29868
530530 0 0
531531 0 0
532532 993.829i 1.86810i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −366.000 −0.679035
540540 0 0
541541 457.000 0.844732 0.422366 0.906425i 0.361200π-0.361200\pi
0.422366 + 0.906425i 0.361200π0.361200\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 401.019i 0.731786i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 −788.000 −1.41727
557557 204.868i 0.367807i −0.982944 0.183903i 0.941127π-0.941127\pi
0.982944 0.183903i 0.0588733π-0.0588733\pi
558558 0 0
559559 0 0
560560 −456.000 941.522i −0.814286 1.68129i
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 −458.000 −0.802102 −0.401051 0.916056i 0.631355π-0.631355\pi
−0.401051 + 0.916056i 0.631355π0.631355\pi
572572 0 0
573573 0 0
574574 0 0
575575 684.000 + 540.503i 1.18957 + 0.940006i
576576 0 0
577577 143.844i 0.249296i −0.992201 0.124648i 0.960220π-0.960220\pi
0.992201 0.124648i 0.0397801π-0.0397801\pi
578578 0 0
579579 0 0
580580 0 0
581581 −1824.00 −3.13941
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 335.635i 0.571781i −0.958262 0.285890i 0.907711π-0.907711\pi
0.958262 0.285890i 0.0922893π-0.0922893\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1185.62i 1.99936i −0.0252951 0.999680i 0.508053π-0.508053\pi
0.0252951 0.999680i 0.491947π-0.491947\pi
594594 0 0
595595 −1795.50 + 869.600i −3.01765 + 1.46151i
596596 708.000 1.18792
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 −504.000 + 244.098i −0.833058 + 0.403468i
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1189.98i 1.94124i −0.240620 0.970619i 0.577351π-0.577351\pi
0.240620 0.970619i 0.422649π-0.422649\pi
614614 0 0
615615 0 0
616616 0 0
617617 623.323i 1.01025i 0.863047 + 0.505124i 0.168553π0.168553\pi
−0.863047 + 0.505124i 0.831447π0.831447\pi
618618 0 0
619619 662.000 1.06947 0.534733 0.845021i 0.320412π-0.320412\pi
0.534733 + 0.845021i 0.320412π0.320412\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −144.500 608.066i −0.231200 0.972906i
626626 0 0
627627 0 0
628628 1255.36i 1.99899i
629629 0 0
630630 0 0
631631 1037.00 1.64342 0.821712 0.569904i 0.193019π-0.193019\pi
0.821712 + 0.569904i 0.193019π0.193019\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 640.758i 0.996513i 0.867030 + 0.498257i 0.166026π0.166026\pi
−0.867030 + 0.498257i 0.833974π0.833974\pi
644644 −1824.00 −2.83230
645645 0 0
646646 0 0
647647 815.114i 1.25984i −0.776662 0.629918i 0.783088π-0.783088\pi
0.776662 0.629918i 0.216912π-0.216912\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 836.909i 1.28360i
653653 1251.00i 1.91578i −0.287136 0.957890i 0.592703π-0.592703\pi
0.287136 0.957890i 0.407297π-0.407297\pi
654654 0 0
655655 958.500 464.223i 1.46336 0.708737i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 541.500 + 1118.06i 0.814286 + 1.68129i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 −309.000 −0.460507
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 676.000 1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 218.500 + 451.146i 0.318978 + 0.658607i
686686 0 0
687687 0 0
688688 209.227i 0.304109i
689689 0 0
690690 0 0
691691 157.000 0.227207 0.113603 0.993526i 0.463761π-0.463761\pi
0.113603 + 0.993526i 0.463761π0.463761\pi
692692 0 0
693693 0 0
694694 0 0
695695 886.500 429.352i 1.27554 0.617772i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1026.00 + 810.755i 1.46571 + 1.15822i
701701 1098.00 1.56633 0.783167 0.621812i 0.213603π-0.213603\pi
0.783167 + 0.621812i 0.213603π0.213603\pi
702702 0 0
703703 0 0
704704 −192.000 −0.272727
705705 0 0
706706 0 0
707707 1333.82i 1.88660i
708708 0 0
709709 −1318.00 −1.85896 −0.929478 0.368877i 0.879742π-0.879742\pi
−0.929478 + 0.368877i 0.879742π0.879742\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 963.000 1.33936 0.669680 0.742650i 0.266431π-0.266431\pi
0.669680 + 0.742650i 0.266431π0.266431\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1451.51i 1.99658i −0.0584594 0.998290i 0.518619π-0.518619\pi
0.0584594 0.998290i 0.481381π-0.481381\pi
728728 0 0
729729 0 0
730730 0 0
731731 −399.000 −0.545828
732732 0 0
733733 732.295i 0.999038i −0.866303 0.499519i 0.833510π-0.833510\pi
0.866303 0.499519i 0.166490π-0.166490\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 547.000 0.740189 0.370095 0.928994i 0.379325π-0.379325\pi
0.370095 + 0.928994i 0.379325π0.379325\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 −796.500 + 385.763i −1.06913 + 0.517802i
746746 0 0
747747 0 0
748748 366.148i 0.489502i
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 906.651i 1.20565i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1294.59i 1.71016i 0.518494 + 0.855081i 0.326493π0.326493\pi
−0.518494 + 0.855081i 0.673507π0.673507\pi
758758 0 0
759759 0 0
760760 0 0
761761 1503.00 1.97503 0.987516 0.157516i 0.0503486π-0.0503486\pi
0.987516 + 0.157516i 0.0503486π0.0503486\pi
762762 0 0
763763 0 0
764764 −372.000 −0.486911
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −1063.00 −1.38231 −0.691157 0.722704i 0.742899π-0.742899\pi
−0.691157 + 0.722704i 0.742899π0.742899\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1952.00 −2.48980
785785 684.000 + 1412.28i 0.871338 + 1.79909i
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 1534.33i 1.94712i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −908.000 −1.14070
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 1729.00 2.16395
800800 0 0
801801 0 0
802802 0 0
803803 431.531i 0.537398i
804804 0 0
805805 2052.00 993.829i 2.54907 1.23457i
806806 0 0
807807 0 0
808808 0 0
809809 1593.00 1.96910 0.984549 0.175110i 0.0560282π-0.0560282\pi
0.984549 + 0.175110i 0.0560282π0.0560282\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 −456.000 941.522i −0.559509 1.15524i
816816 0 0
817817 248.457i 0.304109i
818818 0 0
819819 0 0
820820 0 0
821821 −1167.00 −1.42144 −0.710719 0.703476i 0.751630π-0.751630\pi
−0.710719 + 0.703476i 0.751630π0.751630\pi
822822 0 0
823823 509.991i 0.619673i 0.950790 + 0.309837i 0.100274π0.100274\pi
−0.950790 + 0.309837i 0.899726π0.899726\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 3722.50i 4.46879i
834834 0 0
835835 0 0
836836 228.000 0.272727
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 841.000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 −760.500 + 368.327i −0.900000 + 0.435890i
846846 0 0
847847 1464.59i 1.72915i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 1359.98i 1.59435i 0.603751 + 0.797173i 0.293672π0.293672\pi
−0.603751 + 0.797173i 0.706328π0.706328\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 −1493.00 −1.73807 −0.869034 0.494753i 0.835259π-0.835259\pi
−0.869034 + 0.494753i 0.835259π0.835259\pi
860860 114.000 + 235.381i 0.132558 + 0.273698i
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1596.00 353.071i −1.82400 0.403510i
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 216.000 104.614i 0.245455 0.118879i
881881 −537.000 −0.609535 −0.304767 0.952427i 0.598579π-0.598579\pi
−0.304767 + 0.952427i 0.598579π0.598579\pi
882882 0 0
883883 1556.13i 1.76232i 0.472820 + 0.881159i 0.343236π0.343236\pi
−0.472820 + 0.881159i 0.656764π0.656764\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1076.65i 1.20565i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 418.454i 0.458329i
914914 0 0
915915 0 0
916916 −68.0000 −0.0742358
917917 2785.34i 3.03744i
918918 0 0
919919 1762.00 1.91730 0.958651 0.284585i 0.0918559π-0.0918559\pi
0.958651 + 0.284585i 0.0918559π0.0918559\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −642.000 −0.691066 −0.345533 0.938407i 0.612302π-0.612302\pi
−0.345533 + 0.938407i 0.612302π0.612302\pi
930930 0 0
931931 2318.00 2.48980
932932 122.049i 0.130954i
933933 0 0
934934 0 0
935935 −199.500 411.916i −0.213369 0.440552i
936936 0 0
937937 1843.81i 1.96778i −0.178762 0.983892i 0.557209π-0.557209\pi
0.178762 0.983892i 0.442791π-0.442791\pi
938938 0 0
939939 0 0
940940 −494.000 1019.98i −0.525532 1.08509i
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 488.197i 0.515519i −0.966209 0.257760i 0.917016π-0.917016\pi
0.966209 0.257760i 0.0829843π-0.0829843\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 418.500 202.689i 0.438220 0.212240i
956956 −1812.00 −1.89540
957957 0 0
958958 0 0
959959 1311.00 1.36705
960960 0 0
961961 961.000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 732.295i 0.757285i −0.925543 0.378643i 0.876391π-0.876391\pi
0.925543 0.378643i 0.123609π-0.123609\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 2576.11i 2.64759i
974974 0 0
975975 0 0
976976 −1648.00 −1.68852
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 2196.00 1063.57i 2.24082 1.08528i
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 836.000 + 1726.12i 0.848731 + 1.75241i
986986 0 0
987987 0 0
988988 0 0
989989 456.000 0.461072
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 1021.50 494.735i 1.02663 0.497221i
996996 0 0
997997 274.611i 0.275437i −0.990471 0.137718i 0.956023π-0.956023\pi
0.990471 0.137718i 0.0439769π-0.0439769\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.3.g.a.379.1 2
3.2 odd 2 95.3.d.a.94.2 yes 2
5.4 even 2 inner 855.3.g.a.379.2 2
15.2 even 4 475.3.c.c.151.2 2
15.8 even 4 475.3.c.c.151.1 2
15.14 odd 2 95.3.d.a.94.1 2
19.18 odd 2 CM 855.3.g.a.379.1 2
57.56 even 2 95.3.d.a.94.2 yes 2
95.94 odd 2 inner 855.3.g.a.379.2 2
285.113 odd 4 475.3.c.c.151.1 2
285.227 odd 4 475.3.c.c.151.2 2
285.284 even 2 95.3.d.a.94.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.3.d.a.94.1 2 15.14 odd 2
95.3.d.a.94.1 2 285.284 even 2
95.3.d.a.94.2 yes 2 3.2 odd 2
95.3.d.a.94.2 yes 2 57.56 even 2
475.3.c.c.151.1 2 15.8 even 4
475.3.c.c.151.1 2 285.113 odd 4
475.3.c.c.151.2 2 15.2 even 4
475.3.c.c.151.2 2 285.227 odd 4
855.3.g.a.379.1 2 1.1 even 1 trivial
855.3.g.a.379.1 2 19.18 odd 2 CM
855.3.g.a.379.2 2 5.4 even 2 inner
855.3.g.a.379.2 2 95.94 odd 2 inner