Properties

Label 855.2.k.k.676.6
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 10 x^{9} + 44 x^{8} - 20 x^{7} + 119 x^{6} + 13 x^{5} + 83 x^{4} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.6
Root \(-0.832197 + 1.44141i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.k.406.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33220 - 2.30743i) q^{2} +(-2.54950 - 4.41586i) q^{4} +(0.500000 - 0.866025i) q^{5} +4.51669 q^{7} -8.25696 q^{8} +(-1.33220 - 2.30743i) q^{10} +1.88045 q^{11} +(-2.21597 - 3.83818i) q^{13} +(6.01713 - 10.4220i) q^{14} +(-5.90090 + 10.2207i) q^{16} +(-0.818122 + 1.41703i) q^{17} +(-1.60125 - 4.05413i) q^{19} -5.09900 q^{20} +(2.50513 - 4.33901i) q^{22} +(3.47432 + 6.01770i) q^{23} +(-0.500000 - 0.866025i) q^{25} -11.8085 q^{26} +(-11.5153 - 19.9451i) q^{28} +(3.37483 + 5.84538i) q^{29} -2.32879 q^{31} +(7.46537 + 12.9304i) q^{32} +(2.17980 + 3.77552i) q^{34} +(2.25835 - 3.91157i) q^{35} -7.21276 q^{37} +(-11.4878 - 1.70612i) q^{38} +(-4.12848 + 7.15074i) q^{40} +(-3.12715 + 5.41639i) q^{41} +(1.41761 - 2.45538i) q^{43} +(-4.79420 - 8.30381i) q^{44} +18.5139 q^{46} +(-4.67129 - 8.09090i) q^{47} +13.4005 q^{49} -2.66439 q^{50} +(-11.2993 + 19.5709i) q^{52} +(5.90556 + 10.2287i) q^{53} +(0.940224 - 1.62852i) q^{55} -37.2941 q^{56} +17.9838 q^{58} +(1.24502 - 2.15644i) q^{59} +(7.28601 + 12.6197i) q^{61} +(-3.10241 + 5.37353i) q^{62} +16.1778 q^{64} -4.43195 q^{65} +(-0.479229 - 0.830050i) q^{67} +8.34321 q^{68} +(-6.01713 - 10.4220i) q^{70} +(-2.80004 + 4.84982i) q^{71} +(-0.664474 + 1.15090i) q^{73} +(-9.60882 + 16.6430i) q^{74} +(-13.8201 + 17.4069i) q^{76} +8.49341 q^{77} +(1.46452 - 2.53662i) q^{79} +(5.90090 + 10.2207i) q^{80} +(8.33197 + 14.4314i) q^{82} +12.9855 q^{83} +(0.818122 + 1.41703i) q^{85} +(-3.77708 - 6.54209i) q^{86} -15.5268 q^{88} +(-2.43379 - 4.21545i) q^{89} +(-10.0089 - 17.3359i) q^{91} +(17.7156 - 30.6843i) q^{92} -24.8923 q^{94} +(-4.31161 - 0.640341i) q^{95} +(9.04997 - 15.6750i) q^{97} +(17.8521 - 30.9208i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 5 q^{4} + 6 q^{5} + 4 q^{7} - 12 q^{8} - 3 q^{10} - 8 q^{13} + 10 q^{14} - 3 q^{16} + 4 q^{17} - 6 q^{19} - 10 q^{20} - 2 q^{23} - 6 q^{25} - 40 q^{26} - 26 q^{28} + 4 q^{29} + 24 q^{31}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33220 2.30743i 0.942006 1.63160i 0.180368 0.983599i \(-0.442271\pi\)
0.761638 0.648003i \(-0.224396\pi\)
\(3\) 0 0
\(4\) −2.54950 4.41586i −1.27475 2.20793i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 4.51669 1.70715 0.853575 0.520971i \(-0.174430\pi\)
0.853575 + 0.520971i \(0.174430\pi\)
\(8\) −8.25696 −2.91928
\(9\) 0 0
\(10\) −1.33220 2.30743i −0.421278 0.729675i
\(11\) 1.88045 0.566977 0.283488 0.958976i \(-0.408508\pi\)
0.283488 + 0.958976i \(0.408508\pi\)
\(12\) 0 0
\(13\) −2.21597 3.83818i −0.614601 1.06452i −0.990454 0.137841i \(-0.955984\pi\)
0.375854 0.926679i \(-0.377349\pi\)
\(14\) 6.01713 10.4220i 1.60814 2.78539i
\(15\) 0 0
\(16\) −5.90090 + 10.2207i −1.47523 + 2.55517i
\(17\) −0.818122 + 1.41703i −0.198424 + 0.343680i −0.948017 0.318218i \(-0.896916\pi\)
0.749594 + 0.661898i \(0.230249\pi\)
\(18\) 0 0
\(19\) −1.60125 4.05413i −0.367353 0.930082i
\(20\) −5.09900 −1.14017
\(21\) 0 0
\(22\) 2.50513 4.33901i 0.534095 0.925080i
\(23\) 3.47432 + 6.01770i 0.724446 + 1.25478i 0.959202 + 0.282723i \(0.0912376\pi\)
−0.234756 + 0.972054i \(0.575429\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −11.8085 −2.31583
\(27\) 0 0
\(28\) −11.5153 19.9451i −2.17619 3.76927i
\(29\) 3.37483 + 5.84538i 0.626690 + 1.08546i 0.988211 + 0.153095i \(0.0489242\pi\)
−0.361521 + 0.932364i \(0.617743\pi\)
\(30\) 0 0
\(31\) −2.32879 −0.418263 −0.209132 0.977888i \(-0.567064\pi\)
−0.209132 + 0.977888i \(0.567064\pi\)
\(32\) 7.46537 + 12.9304i 1.31970 + 2.28579i
\(33\) 0 0
\(34\) 2.17980 + 3.77552i 0.373832 + 0.647497i
\(35\) 2.25835 3.91157i 0.381730 0.661176i
\(36\) 0 0
\(37\) −7.21276 −1.18577 −0.592885 0.805287i \(-0.702011\pi\)
−0.592885 + 0.805287i \(0.702011\pi\)
\(38\) −11.4878 1.70612i −1.86357 0.276769i
\(39\) 0 0
\(40\) −4.12848 + 7.15074i −0.652770 + 1.13063i
\(41\) −3.12715 + 5.41639i −0.488379 + 0.845897i −0.999911 0.0133671i \(-0.995745\pi\)
0.511532 + 0.859264i \(0.329078\pi\)
\(42\) 0 0
\(43\) 1.41761 2.45538i 0.216184 0.374441i −0.737454 0.675397i \(-0.763972\pi\)
0.953638 + 0.300956i \(0.0973056\pi\)
\(44\) −4.79420 8.30381i −0.722753 1.25185i
\(45\) 0 0
\(46\) 18.5139 2.72973
\(47\) −4.67129 8.09090i −0.681377 1.18018i −0.974561 0.224124i \(-0.928048\pi\)
0.293184 0.956056i \(-0.405285\pi\)
\(48\) 0 0
\(49\) 13.4005 1.91436
\(50\) −2.66439 −0.376802
\(51\) 0 0
\(52\) −11.2993 + 19.5709i −1.56692 + 2.71399i
\(53\) 5.90556 + 10.2287i 0.811191 + 1.40502i 0.912031 + 0.410121i \(0.134514\pi\)
−0.100840 + 0.994903i \(0.532153\pi\)
\(54\) 0 0
\(55\) 0.940224 1.62852i 0.126780 0.219589i
\(56\) −37.2941 −4.98364
\(57\) 0 0
\(58\) 17.9838 2.36138
\(59\) 1.24502 2.15644i 0.162088 0.280744i −0.773529 0.633760i \(-0.781511\pi\)
0.935617 + 0.353016i \(0.114844\pi\)
\(60\) 0 0
\(61\) 7.28601 + 12.6197i 0.932878 + 1.61579i 0.778375 + 0.627799i \(0.216044\pi\)
0.154502 + 0.987992i \(0.450623\pi\)
\(62\) −3.10241 + 5.37353i −0.394006 + 0.682439i
\(63\) 0 0
\(64\) 16.1778 2.02222
\(65\) −4.43195 −0.549716
\(66\) 0 0
\(67\) −0.479229 0.830050i −0.0585472 0.101407i 0.835266 0.549846i \(-0.185313\pi\)
−0.893813 + 0.448439i \(0.851980\pi\)
\(68\) 8.34321 1.01176
\(69\) 0 0
\(70\) −6.01713 10.4220i −0.719184 1.24566i
\(71\) −2.80004 + 4.84982i −0.332304 + 0.575568i −0.982963 0.183802i \(-0.941159\pi\)
0.650659 + 0.759370i \(0.274493\pi\)
\(72\) 0 0
\(73\) −0.664474 + 1.15090i −0.0777708 + 0.134703i −0.902288 0.431134i \(-0.858114\pi\)
0.824517 + 0.565837i \(0.191447\pi\)
\(74\) −9.60882 + 16.6430i −1.11700 + 1.93471i
\(75\) 0 0
\(76\) −13.8201 + 17.4069i −1.58527 + 1.99671i
\(77\) 8.49341 0.967914
\(78\) 0 0
\(79\) 1.46452 2.53662i 0.164771 0.285392i −0.771803 0.635862i \(-0.780645\pi\)
0.936574 + 0.350470i \(0.113978\pi\)
\(80\) 5.90090 + 10.2207i 0.659741 + 1.14270i
\(81\) 0 0
\(82\) 8.33197 + 14.4314i 0.920112 + 1.59368i
\(83\) 12.9855 1.42535 0.712675 0.701495i \(-0.247484\pi\)
0.712675 + 0.701495i \(0.247484\pi\)
\(84\) 0 0
\(85\) 0.818122 + 1.41703i 0.0887378 + 0.153698i
\(86\) −3.77708 6.54209i −0.407293 0.705452i
\(87\) 0 0
\(88\) −15.5268 −1.65516
\(89\) −2.43379 4.21545i −0.257981 0.446837i 0.707720 0.706493i \(-0.249724\pi\)
−0.965701 + 0.259657i \(0.916391\pi\)
\(90\) 0 0
\(91\) −10.0089 17.3359i −1.04921 1.81729i
\(92\) 17.7156 30.6843i 1.84697 3.19905i
\(93\) 0 0
\(94\) −24.8923 −2.56744
\(95\) −4.31161 0.640341i −0.442362 0.0656976i
\(96\) 0 0
\(97\) 9.04997 15.6750i 0.918885 1.59156i 0.117775 0.993040i \(-0.462424\pi\)
0.801111 0.598516i \(-0.204243\pi\)
\(98\) 17.8521 30.9208i 1.80334 3.12347i
\(99\) 0 0
\(100\) −2.54950 + 4.41586i −0.254950 + 0.441586i
\(101\) −5.31587 9.20736i −0.528949 0.916166i −0.999430 0.0337562i \(-0.989253\pi\)
0.470481 0.882410i \(-0.344080\pi\)
\(102\) 0 0
\(103\) 3.36712 0.331772 0.165886 0.986145i \(-0.446952\pi\)
0.165886 + 0.986145i \(0.446952\pi\)
\(104\) 18.2972 + 31.6917i 1.79419 + 3.10763i
\(105\) 0 0
\(106\) 31.4695 3.05659
\(107\) −1.11074 −0.107380 −0.0536898 0.998558i \(-0.517098\pi\)
−0.0536898 + 0.998558i \(0.517098\pi\)
\(108\) 0 0
\(109\) 2.92296 5.06272i 0.279969 0.484921i −0.691408 0.722465i \(-0.743009\pi\)
0.971377 + 0.237544i \(0.0763424\pi\)
\(110\) −2.50513 4.33901i −0.238855 0.413708i
\(111\) 0 0
\(112\) −26.6526 + 46.1636i −2.51843 + 4.36205i
\(113\) −12.7544 −1.19983 −0.599915 0.800064i \(-0.704799\pi\)
−0.599915 + 0.800064i \(0.704799\pi\)
\(114\) 0 0
\(115\) 6.94864 0.647964
\(116\) 17.2083 29.8056i 1.59775 2.76738i
\(117\) 0 0
\(118\) −3.31723 5.74561i −0.305375 0.528926i
\(119\) −3.69520 + 6.40028i −0.338739 + 0.586713i
\(120\) 0 0
\(121\) −7.46391 −0.678538
\(122\) 38.8256 3.51510
\(123\) 0 0
\(124\) 5.93725 + 10.2836i 0.533181 + 0.923496i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.70994 + 6.42581i 0.329204 + 0.570199i 0.982354 0.187030i \(-0.0598862\pi\)
−0.653150 + 0.757229i \(0.726553\pi\)
\(128\) 6.62127 11.4684i 0.585243 1.01367i
\(129\) 0 0
\(130\) −5.90423 + 10.2264i −0.517835 + 0.896917i
\(131\) 1.67881 2.90779i 0.146678 0.254054i −0.783319 0.621619i \(-0.786475\pi\)
0.929998 + 0.367565i \(0.119808\pi\)
\(132\) 0 0
\(133\) −7.23236 18.3113i −0.627126 1.58779i
\(134\) −2.55371 −0.220607
\(135\) 0 0
\(136\) 6.75520 11.7003i 0.579254 1.00330i
\(137\) 3.55570 + 6.15865i 0.303784 + 0.526169i 0.976990 0.213286i \(-0.0684166\pi\)
−0.673206 + 0.739455i \(0.735083\pi\)
\(138\) 0 0
\(139\) 7.13412 + 12.3567i 0.605108 + 1.04808i 0.992034 + 0.125968i \(0.0402036\pi\)
−0.386926 + 0.922111i \(0.626463\pi\)
\(140\) −23.0306 −1.94644
\(141\) 0 0
\(142\) 7.46043 + 12.9218i 0.626065 + 1.08438i
\(143\) −4.16703 7.21750i −0.348464 0.603558i
\(144\) 0 0
\(145\) 6.74966 0.560529
\(146\) 1.77042 + 3.06646i 0.146521 + 0.253782i
\(147\) 0 0
\(148\) 18.3889 + 31.8506i 1.51156 + 2.61810i
\(149\) 9.50361 16.4607i 0.778566 1.34852i −0.154202 0.988039i \(-0.549281\pi\)
0.932768 0.360477i \(-0.117386\pi\)
\(150\) 0 0
\(151\) −10.2727 −0.835982 −0.417991 0.908451i \(-0.637266\pi\)
−0.417991 + 0.908451i \(0.637266\pi\)
\(152\) 13.2215 + 33.4748i 1.07240 + 2.71517i
\(153\) 0 0
\(154\) 11.3149 19.5980i 0.911780 1.57925i
\(155\) −1.16439 + 2.01679i −0.0935265 + 0.161993i
\(156\) 0 0
\(157\) 10.6692 18.4796i 0.851497 1.47484i −0.0283608 0.999598i \(-0.509029\pi\)
0.879857 0.475238i \(-0.157638\pi\)
\(158\) −3.90206 6.75856i −0.310431 0.537682i
\(159\) 0 0
\(160\) 14.9307 1.18038
\(161\) 15.6924 + 27.1801i 1.23674 + 2.14209i
\(162\) 0 0
\(163\) 17.4134 1.36392 0.681960 0.731389i \(-0.261128\pi\)
0.681960 + 0.731389i \(0.261128\pi\)
\(164\) 31.8907 2.49025
\(165\) 0 0
\(166\) 17.2993 29.9633i 1.34269 2.32560i
\(167\) 8.48787 + 14.7014i 0.656811 + 1.13763i 0.981437 + 0.191787i \(0.0614284\pi\)
−0.324626 + 0.945843i \(0.605238\pi\)
\(168\) 0 0
\(169\) −3.32108 + 5.75229i −0.255468 + 0.442483i
\(170\) 4.35960 0.334366
\(171\) 0 0
\(172\) −14.4568 −1.10232
\(173\) −0.244205 + 0.422976i −0.0185666 + 0.0321583i −0.875159 0.483835i \(-0.839244\pi\)
0.856593 + 0.515993i \(0.172577\pi\)
\(174\) 0 0
\(175\) −2.25835 3.91157i −0.170715 0.295687i
\(176\) −11.0963 + 19.2194i −0.836418 + 1.44872i
\(177\) 0 0
\(178\) −12.9692 −0.972079
\(179\) −17.0592 −1.27507 −0.637533 0.770423i \(-0.720045\pi\)
−0.637533 + 0.770423i \(0.720045\pi\)
\(180\) 0 0
\(181\) 2.25090 + 3.89867i 0.167308 + 0.289786i 0.937473 0.348059i \(-0.113159\pi\)
−0.770164 + 0.637845i \(0.779826\pi\)
\(182\) −53.3352 −3.95347
\(183\) 0 0
\(184\) −28.6873 49.6879i −2.11486 3.66304i
\(185\) −3.60638 + 6.24644i −0.265146 + 0.459247i
\(186\) 0 0
\(187\) −1.53844 + 2.66465i −0.112502 + 0.194858i
\(188\) −23.8189 + 41.2555i −1.73717 + 3.00887i
\(189\) 0 0
\(190\) −7.22146 + 9.09569i −0.523900 + 0.659871i
\(191\) −1.64135 −0.118764 −0.0593818 0.998235i \(-0.518913\pi\)
−0.0593818 + 0.998235i \(0.518913\pi\)
\(192\) 0 0
\(193\) −12.9749 + 22.4732i −0.933953 + 1.61765i −0.157462 + 0.987525i \(0.550331\pi\)
−0.776491 + 0.630129i \(0.783002\pi\)
\(194\) −24.1127 41.7644i −1.73119 2.99851i
\(195\) 0 0
\(196\) −34.1646 59.1748i −2.44033 4.22677i
\(197\) −5.66403 −0.403546 −0.201773 0.979432i \(-0.564670\pi\)
−0.201773 + 0.979432i \(0.564670\pi\)
\(198\) 0 0
\(199\) −0.546183 0.946016i −0.0387179 0.0670613i 0.846017 0.533156i \(-0.178994\pi\)
−0.884735 + 0.466094i \(0.845661\pi\)
\(200\) 4.12848 + 7.15074i 0.291928 + 0.505634i
\(201\) 0 0
\(202\) −28.3272 −1.99309
\(203\) 15.2431 + 26.4018i 1.06985 + 1.85304i
\(204\) 0 0
\(205\) 3.12715 + 5.41639i 0.218410 + 0.378297i
\(206\) 4.48567 7.76941i 0.312532 0.541321i
\(207\) 0 0
\(208\) 52.3050 3.62670
\(209\) −3.01107 7.62359i −0.208280 0.527335i
\(210\) 0 0
\(211\) 1.42499 2.46816i 0.0981006 0.169915i −0.812798 0.582546i \(-0.802057\pi\)
0.910898 + 0.412631i \(0.135390\pi\)
\(212\) 30.1124 52.1563i 2.06813 3.58211i
\(213\) 0 0
\(214\) −1.47973 + 2.56297i −0.101152 + 0.175201i
\(215\) −1.41761 2.45538i −0.0966803 0.167455i
\(216\) 0 0
\(217\) −10.5184 −0.714037
\(218\) −7.78793 13.4891i −0.527465 0.913596i
\(219\) 0 0
\(220\) −9.58841 −0.646450
\(221\) 7.25175 0.487805
\(222\) 0 0
\(223\) −7.97774 + 13.8178i −0.534229 + 0.925312i 0.464971 + 0.885326i \(0.346065\pi\)
−0.999200 + 0.0399859i \(0.987269\pi\)
\(224\) 33.7188 + 58.4027i 2.25293 + 3.90219i
\(225\) 0 0
\(226\) −16.9913 + 29.4299i −1.13025 + 1.95765i
\(227\) 16.7113 1.10917 0.554583 0.832128i \(-0.312878\pi\)
0.554583 + 0.832128i \(0.312878\pi\)
\(228\) 0 0
\(229\) 1.43075 0.0945464 0.0472732 0.998882i \(-0.484947\pi\)
0.0472732 + 0.998882i \(0.484947\pi\)
\(230\) 9.25696 16.0335i 0.610386 1.05722i
\(231\) 0 0
\(232\) −27.8658 48.2650i −1.82948 3.16876i
\(233\) 0.889166 1.54008i 0.0582512 0.100894i −0.835429 0.549598i \(-0.814781\pi\)
0.893680 + 0.448704i \(0.148114\pi\)
\(234\) 0 0
\(235\) −9.34257 −0.609442
\(236\) −12.6967 −0.826486
\(237\) 0 0
\(238\) 9.84548 + 17.0529i 0.638188 + 1.10537i
\(239\) −14.6228 −0.945873 −0.472937 0.881096i \(-0.656806\pi\)
−0.472937 + 0.881096i \(0.656806\pi\)
\(240\) 0 0
\(241\) −3.96473 6.86712i −0.255391 0.442350i 0.709611 0.704594i \(-0.248871\pi\)
−0.965002 + 0.262244i \(0.915538\pi\)
\(242\) −9.94341 + 17.2225i −0.639186 + 1.10710i
\(243\) 0 0
\(244\) 37.1514 64.3480i 2.37837 4.11946i
\(245\) 6.70025 11.6052i 0.428063 0.741428i
\(246\) 0 0
\(247\) −12.0122 + 15.1297i −0.764315 + 0.962683i
\(248\) 19.2287 1.22103
\(249\) 0 0
\(250\) −1.33220 + 2.30743i −0.0842556 + 0.145935i
\(251\) 11.0212 + 19.0892i 0.695650 + 1.20490i 0.969961 + 0.243260i \(0.0782170\pi\)
−0.274311 + 0.961641i \(0.588450\pi\)
\(252\) 0 0
\(253\) 6.53328 + 11.3160i 0.410744 + 0.711429i
\(254\) 19.7695 1.24045
\(255\) 0 0
\(256\) −1.46389 2.53553i −0.0914931 0.158471i
\(257\) 6.38142 + 11.0529i 0.398062 + 0.689464i 0.993487 0.113947i \(-0.0363496\pi\)
−0.595425 + 0.803411i \(0.703016\pi\)
\(258\) 0 0
\(259\) −32.5778 −2.02429
\(260\) 11.2993 + 19.5709i 0.700750 + 1.21373i
\(261\) 0 0
\(262\) −4.47301 7.74749i −0.276344 0.478641i
\(263\) −14.6760 + 25.4196i −0.904963 + 1.56744i −0.0839962 + 0.996466i \(0.526768\pi\)
−0.820967 + 0.570976i \(0.806565\pi\)
\(264\) 0 0
\(265\) 11.8111 0.725551
\(266\) −51.8870 7.70602i −3.18139 0.472487i
\(267\) 0 0
\(268\) −2.44359 + 4.23242i −0.149266 + 0.258536i
\(269\) 8.09111 14.0142i 0.493323 0.854461i −0.506647 0.862154i \(-0.669115\pi\)
0.999970 + 0.00769238i \(0.00244859\pi\)
\(270\) 0 0
\(271\) 5.82336 10.0864i 0.353744 0.612702i −0.633158 0.774022i \(-0.718242\pi\)
0.986902 + 0.161320i \(0.0515751\pi\)
\(272\) −9.65531 16.7235i −0.585439 1.01401i
\(273\) 0 0
\(274\) 18.9476 1.14466
\(275\) −0.940224 1.62852i −0.0566977 0.0982032i
\(276\) 0 0
\(277\) −24.3273 −1.46168 −0.730842 0.682547i \(-0.760872\pi\)
−0.730842 + 0.682547i \(0.760872\pi\)
\(278\) 38.0162 2.28006
\(279\) 0 0
\(280\) −18.6471 + 32.2977i −1.11438 + 1.93016i
\(281\) −7.50719 13.0028i −0.447841 0.775684i 0.550404 0.834899i \(-0.314474\pi\)
−0.998245 + 0.0592145i \(0.981140\pi\)
\(282\) 0 0
\(283\) 5.11877 8.86596i 0.304279 0.527027i −0.672821 0.739805i \(-0.734918\pi\)
0.977101 + 0.212778i \(0.0682511\pi\)
\(284\) 28.5549 1.69442
\(285\) 0 0
\(286\) −22.2052 −1.31302
\(287\) −14.1244 + 24.4641i −0.833736 + 1.44407i
\(288\) 0 0
\(289\) 7.16135 + 12.4038i 0.421256 + 0.729637i
\(290\) 8.99188 15.5744i 0.528021 0.914560i
\(291\) 0 0
\(292\) 6.77631 0.396554
\(293\) 8.33200 0.486760 0.243380 0.969931i \(-0.421744\pi\)
0.243380 + 0.969931i \(0.421744\pi\)
\(294\) 0 0
\(295\) −1.24502 2.15644i −0.0724879 0.125553i
\(296\) 59.5555 3.46159
\(297\) 0 0
\(298\) −25.3214 43.8579i −1.46683 2.54062i
\(299\) 15.3980 26.6701i 0.890490 1.54237i
\(300\) 0 0
\(301\) 6.40292 11.0902i 0.369058 0.639227i
\(302\) −13.6853 + 23.7036i −0.787500 + 1.36399i
\(303\) 0 0
\(304\) 50.8848 + 7.55718i 2.91844 + 0.433434i
\(305\) 14.5720 0.834391
\(306\) 0 0
\(307\) −2.99821 + 5.19305i −0.171117 + 0.296383i −0.938811 0.344434i \(-0.888071\pi\)
0.767694 + 0.640817i \(0.221404\pi\)
\(308\) −21.6539 37.5057i −1.23385 2.13709i
\(309\) 0 0
\(310\) 3.10241 + 5.37353i 0.176205 + 0.305196i
\(311\) −23.0404 −1.30650 −0.653252 0.757141i \(-0.726596\pi\)
−0.653252 + 0.757141i \(0.726596\pi\)
\(312\) 0 0
\(313\) 7.90040 + 13.6839i 0.446557 + 0.773460i 0.998159 0.0606477i \(-0.0193166\pi\)
−0.551602 + 0.834107i \(0.685983\pi\)
\(314\) −28.4270 49.2370i −1.60423 2.77861i
\(315\) 0 0
\(316\) −14.9352 −0.840169
\(317\) 1.65437 + 2.86546i 0.0929188 + 0.160940i 0.908738 0.417367i \(-0.137047\pi\)
−0.815819 + 0.578307i \(0.803714\pi\)
\(318\) 0 0
\(319\) 6.34619 + 10.9919i 0.355319 + 0.615430i
\(320\) 8.08890 14.0104i 0.452183 0.783204i
\(321\) 0 0
\(322\) 83.6217 4.66005
\(323\) 7.05484 + 1.04775i 0.392542 + 0.0582986i
\(324\) 0 0
\(325\) −2.21597 + 3.83818i −0.122920 + 0.212904i
\(326\) 23.1981 40.1802i 1.28482 2.22538i
\(327\) 0 0
\(328\) 25.8208 44.7229i 1.42571 2.46941i
\(329\) −21.0988 36.5441i −1.16321 2.01474i
\(330\) 0 0
\(331\) −17.6455 −0.969886 −0.484943 0.874546i \(-0.661160\pi\)
−0.484943 + 0.874546i \(0.661160\pi\)
\(332\) −33.1067 57.3424i −1.81696 3.14707i
\(333\) 0 0
\(334\) 45.2301 2.47488
\(335\) −0.958459 −0.0523662
\(336\) 0 0
\(337\) 1.49807 2.59473i 0.0816049 0.141344i −0.822335 0.569004i \(-0.807329\pi\)
0.903939 + 0.427660i \(0.140662\pi\)
\(338\) 8.84868 + 15.3264i 0.481305 + 0.833644i
\(339\) 0 0
\(340\) 4.17160 7.22543i 0.226237 0.391854i
\(341\) −4.37917 −0.237145
\(342\) 0 0
\(343\) 28.9091 1.56095
\(344\) −11.7052 + 20.2739i −0.631100 + 1.09310i
\(345\) 0 0
\(346\) 0.650659 + 1.12697i 0.0349797 + 0.0605865i
\(347\) −9.23585 + 15.9970i −0.495806 + 0.858762i −0.999988 0.00483560i \(-0.998461\pi\)
0.504182 + 0.863597i \(0.331794\pi\)
\(348\) 0 0
\(349\) −8.28156 −0.443302 −0.221651 0.975126i \(-0.571145\pi\)
−0.221651 + 0.975126i \(0.571145\pi\)
\(350\) −12.0343 −0.643258
\(351\) 0 0
\(352\) 14.0383 + 24.3150i 0.748241 + 1.29599i
\(353\) 11.2013 0.596182 0.298091 0.954537i \(-0.403650\pi\)
0.298091 + 0.954537i \(0.403650\pi\)
\(354\) 0 0
\(355\) 2.80004 + 4.84982i 0.148611 + 0.257402i
\(356\) −12.4099 + 21.4946i −0.657723 + 1.13921i
\(357\) 0 0
\(358\) −22.7263 + 39.3630i −1.20112 + 2.08040i
\(359\) −2.97676 + 5.15590i −0.157107 + 0.272118i −0.933824 0.357732i \(-0.883550\pi\)
0.776717 + 0.629850i \(0.216884\pi\)
\(360\) 0 0
\(361\) −13.8720 + 12.9834i −0.730104 + 0.683336i
\(362\) 11.9946 0.630421
\(363\) 0 0
\(364\) −51.0352 + 88.3956i −2.67497 + 4.63319i
\(365\) 0.664474 + 1.15090i 0.0347802 + 0.0602410i
\(366\) 0 0
\(367\) −7.01251 12.1460i −0.366050 0.634017i 0.622894 0.782306i \(-0.285957\pi\)
−0.988944 + 0.148289i \(0.952623\pi\)
\(368\) −82.0065 −4.27488
\(369\) 0 0
\(370\) 9.60882 + 16.6430i 0.499539 + 0.865227i
\(371\) 26.6736 + 46.2000i 1.38482 + 2.39859i
\(372\) 0 0
\(373\) 21.7329 1.12529 0.562643 0.826700i \(-0.309785\pi\)
0.562643 + 0.826700i \(0.309785\pi\)
\(374\) 4.09900 + 7.09968i 0.211954 + 0.367116i
\(375\) 0 0
\(376\) 38.5706 + 66.8063i 1.98913 + 3.44527i
\(377\) 14.9571 25.9064i 0.770328 1.33425i
\(378\) 0 0
\(379\) −21.2847 −1.09332 −0.546662 0.837353i \(-0.684102\pi\)
−0.546662 + 0.837353i \(0.684102\pi\)
\(380\) 8.16479 + 20.6720i 0.418845 + 1.06045i
\(381\) 0 0
\(382\) −2.18660 + 3.78730i −0.111876 + 0.193775i
\(383\) −9.33435 + 16.1676i −0.476963 + 0.826125i −0.999651 0.0263993i \(-0.991596\pi\)
0.522688 + 0.852524i \(0.324929\pi\)
\(384\) 0 0
\(385\) 4.24670 7.35551i 0.216432 0.374871i
\(386\) 34.5702 + 59.8774i 1.75958 + 3.04768i
\(387\) 0 0
\(388\) −92.2916 −4.68540
\(389\) −4.17221 7.22648i −0.211540 0.366397i 0.740657 0.671883i \(-0.234514\pi\)
−0.952197 + 0.305486i \(0.901181\pi\)
\(390\) 0 0
\(391\) −11.3697 −0.574989
\(392\) −110.647 −5.58854
\(393\) 0 0
\(394\) −7.54561 + 13.0694i −0.380142 + 0.658426i
\(395\) −1.46452 2.53662i −0.0736880 0.127631i
\(396\) 0 0
\(397\) −7.00796 + 12.1381i −0.351719 + 0.609196i −0.986551 0.163455i \(-0.947736\pi\)
0.634831 + 0.772651i \(0.281070\pi\)
\(398\) −2.91049 −0.145890
\(399\) 0 0
\(400\) 11.8018 0.590090
\(401\) 18.5113 32.0625i 0.924411 1.60113i 0.131905 0.991262i \(-0.457890\pi\)
0.792506 0.609865i \(-0.208776\pi\)
\(402\) 0 0
\(403\) 5.16054 + 8.93831i 0.257065 + 0.445249i
\(404\) −27.1056 + 46.9483i −1.34856 + 2.33577i
\(405\) 0 0
\(406\) 81.2271 4.03123
\(407\) −13.5632 −0.672304
\(408\) 0 0
\(409\) −8.58224 14.8649i −0.424365 0.735021i 0.571996 0.820256i \(-0.306169\pi\)
−0.996361 + 0.0852352i \(0.972836\pi\)
\(410\) 16.6639 0.822973
\(411\) 0 0
\(412\) −8.58448 14.8688i −0.422927 0.732531i
\(413\) 5.62337 9.73997i 0.276708 0.479273i
\(414\) 0 0
\(415\) 6.49277 11.2458i 0.318718 0.552035i
\(416\) 33.0861 57.3069i 1.62218 2.80970i
\(417\) 0 0
\(418\) −21.6023 3.20827i −1.05660 0.156922i
\(419\) −36.1617 −1.76661 −0.883307 0.468795i \(-0.844688\pi\)
−0.883307 + 0.468795i \(0.844688\pi\)
\(420\) 0 0
\(421\) −11.5673 + 20.0352i −0.563757 + 0.976455i 0.433407 + 0.901198i \(0.357311\pi\)
−0.997164 + 0.0752572i \(0.976022\pi\)
\(422\) −3.79674 6.57615i −0.184823 0.320122i
\(423\) 0 0
\(424\) −48.7620 84.4582i −2.36809 4.10165i
\(425\) 1.63624 0.0793695
\(426\) 0 0
\(427\) 32.9087 + 56.9995i 1.59256 + 2.75840i
\(428\) 2.83184 + 4.90489i 0.136882 + 0.237087i
\(429\) 0 0
\(430\) −7.55416 −0.364294
\(431\) −13.5896 23.5380i −0.654590 1.13378i −0.981996 0.188900i \(-0.939508\pi\)
0.327406 0.944884i \(-0.393825\pi\)
\(432\) 0 0
\(433\) 2.42502 + 4.20025i 0.116539 + 0.201851i 0.918394 0.395667i \(-0.129487\pi\)
−0.801855 + 0.597519i \(0.796153\pi\)
\(434\) −14.0126 + 24.2706i −0.672627 + 1.16502i
\(435\) 0 0
\(436\) −29.8084 −1.42756
\(437\) 18.8333 23.7212i 0.900918 1.13474i
\(438\) 0 0
\(439\) −1.49026 + 2.58121i −0.0711264 + 0.123195i −0.899395 0.437136i \(-0.855993\pi\)
0.828269 + 0.560331i \(0.189326\pi\)
\(440\) −7.76340 + 13.4466i −0.370105 + 0.641041i
\(441\) 0 0
\(442\) 9.66076 16.7329i 0.459515 0.795904i
\(443\) 6.95331 + 12.0435i 0.330362 + 0.572203i 0.982583 0.185825i \(-0.0594959\pi\)
−0.652221 + 0.758029i \(0.726163\pi\)
\(444\) 0 0
\(445\) −4.86758 −0.230745
\(446\) 21.2558 + 36.8162i 1.00649 + 1.74330i
\(447\) 0 0
\(448\) 73.0701 3.45224
\(449\) −0.142915 −0.00674457 −0.00337228 0.999994i \(-0.501073\pi\)
−0.00337228 + 0.999994i \(0.501073\pi\)
\(450\) 0 0
\(451\) −5.88045 + 10.1852i −0.276900 + 0.479604i
\(452\) 32.5173 + 56.3216i 1.52948 + 2.64914i
\(453\) 0 0
\(454\) 22.2627 38.5602i 1.04484 1.80972i
\(455\) −20.0177 −0.938446
\(456\) 0 0
\(457\) −20.9389 −0.979481 −0.489741 0.871868i \(-0.662909\pi\)
−0.489741 + 0.871868i \(0.662909\pi\)
\(458\) 1.90604 3.30135i 0.0890633 0.154262i
\(459\) 0 0
\(460\) −17.7156 30.6843i −0.825992 1.43066i
\(461\) 2.59825 4.50030i 0.121012 0.209600i −0.799155 0.601125i \(-0.794719\pi\)
0.920167 + 0.391526i \(0.128053\pi\)
\(462\) 0 0
\(463\) −5.87258 −0.272922 −0.136461 0.990645i \(-0.543573\pi\)
−0.136461 + 0.990645i \(0.543573\pi\)
\(464\) −79.6582 −3.69804
\(465\) 0 0
\(466\) −2.36909 4.10338i −0.109746 0.190086i
\(467\) −20.4523 −0.946420 −0.473210 0.880950i \(-0.656905\pi\)
−0.473210 + 0.880950i \(0.656905\pi\)
\(468\) 0 0
\(469\) −2.16453 3.74908i −0.0999488 0.173116i
\(470\) −12.4462 + 21.5574i −0.574098 + 0.994367i
\(471\) 0 0
\(472\) −10.2801 + 17.8056i −0.473179 + 0.819571i
\(473\) 2.66575 4.61721i 0.122571 0.212299i
\(474\) 0 0
\(475\) −2.71036 + 3.41379i −0.124360 + 0.156636i
\(476\) 37.6837 1.72723
\(477\) 0 0
\(478\) −19.4805 + 33.7412i −0.891018 + 1.54329i
\(479\) 6.62827 + 11.4805i 0.302853 + 0.524557i 0.976781 0.214240i \(-0.0687275\pi\)
−0.673928 + 0.738797i \(0.735394\pi\)
\(480\) 0 0
\(481\) 15.9833 + 27.6839i 0.728776 + 1.26228i
\(482\) −21.1272 −0.962319
\(483\) 0 0
\(484\) 19.0292 + 32.9596i 0.864966 + 1.49816i
\(485\) −9.04997 15.6750i −0.410938 0.711766i
\(486\) 0 0
\(487\) 17.6333 0.799039 0.399520 0.916725i \(-0.369177\pi\)
0.399520 + 0.916725i \(0.369177\pi\)
\(488\) −60.1603 104.201i −2.72333 4.71694i
\(489\) 0 0
\(490\) −17.8521 30.9208i −0.806477 1.39686i
\(491\) −0.490857 + 0.850189i −0.0221521 + 0.0383685i −0.876889 0.480693i \(-0.840385\pi\)
0.854737 + 0.519062i \(0.173718\pi\)
\(492\) 0 0
\(493\) −11.0441 −0.497401
\(494\) 18.9083 + 47.8731i 0.850726 + 2.15391i
\(495\) 0 0
\(496\) 13.7420 23.8018i 0.617032 1.06873i
\(497\) −12.6469 + 21.9051i −0.567293 + 0.982580i
\(498\) 0 0
\(499\) 2.12821 3.68617i 0.0952718 0.165016i −0.814450 0.580233i \(-0.802961\pi\)
0.909722 + 0.415218i \(0.136295\pi\)
\(500\) 2.54950 + 4.41586i 0.114017 + 0.197483i
\(501\) 0 0
\(502\) 58.7295 2.62123
\(503\) −3.62562 6.27975i −0.161658 0.280000i 0.773805 0.633424i \(-0.218351\pi\)
−0.935464 + 0.353423i \(0.885018\pi\)
\(504\) 0 0
\(505\) −10.6317 −0.473106
\(506\) 34.8145 1.54769
\(507\) 0 0
\(508\) 18.9170 32.7652i 0.839307 1.45372i
\(509\) 8.38731 + 14.5272i 0.371761 + 0.643909i 0.989837 0.142210i \(-0.0454208\pi\)
−0.618076 + 0.786119i \(0.712087\pi\)
\(510\) 0 0
\(511\) −3.00123 + 5.19828i −0.132766 + 0.229958i
\(512\) 18.6843 0.825739
\(513\) 0 0
\(514\) 34.0052 1.49991
\(515\) 1.68356 2.91601i 0.0741866 0.128495i
\(516\) 0 0
\(517\) −8.78411 15.2145i −0.386325 0.669134i
\(518\) −43.4001 + 75.1712i −1.90689 + 3.30283i
\(519\) 0 0
\(520\) 36.5944 1.60477
\(521\) −6.04583 −0.264873 −0.132436 0.991192i \(-0.542280\pi\)
−0.132436 + 0.991192i \(0.542280\pi\)
\(522\) 0 0
\(523\) −11.5640 20.0295i −0.505659 0.875827i −0.999979 0.00654663i \(-0.997916\pi\)
0.494320 0.869280i \(-0.335417\pi\)
\(524\) −17.1205 −0.747913
\(525\) 0 0
\(526\) 39.1028 + 67.7280i 1.70496 + 2.95308i
\(527\) 1.90523 3.29996i 0.0829933 0.143749i
\(528\) 0 0
\(529\) −12.6418 + 21.8962i −0.549644 + 0.952011i
\(530\) 15.7347 27.2534i 0.683474 1.18381i
\(531\) 0 0
\(532\) −62.4212 + 78.6217i −2.70630 + 3.40868i
\(533\) 27.7188 1.20063
\(534\) 0 0
\(535\) −0.555372 + 0.961932i −0.0240108 + 0.0415879i
\(536\) 3.95698 + 6.85369i 0.170915 + 0.296034i
\(537\) 0 0
\(538\) −21.5579 37.3394i −0.929427 1.60981i
\(539\) 25.1990 1.08540
\(540\) 0 0
\(541\) −3.59500 6.22672i −0.154561 0.267708i 0.778338 0.627846i \(-0.216063\pi\)
−0.932899 + 0.360138i \(0.882730\pi\)
\(542\) −15.5157 26.8740i −0.666458 1.15434i
\(543\) 0 0
\(544\) −24.4303 −1.04744
\(545\) −2.92296 5.06272i −0.125206 0.216863i
\(546\) 0 0
\(547\) −7.45323 12.9094i −0.318677 0.551965i 0.661535 0.749914i \(-0.269905\pi\)
−0.980212 + 0.197949i \(0.936572\pi\)
\(548\) 18.1305 31.4029i 0.774497 1.34147i
\(549\) 0 0
\(550\) −5.01026 −0.213638
\(551\) 18.2940 23.0419i 0.779350 0.981619i
\(552\) 0 0
\(553\) 6.61478 11.4571i 0.281289 0.487207i
\(554\) −32.4087 + 56.1336i −1.37692 + 2.38489i
\(555\) 0 0
\(556\) 36.3769 63.0066i 1.54272 2.67208i
\(557\) −8.51591 14.7500i −0.360831 0.624977i 0.627267 0.778804i \(-0.284173\pi\)
−0.988098 + 0.153827i \(0.950840\pi\)
\(558\) 0 0
\(559\) −12.5656 −0.531467
\(560\) 26.6526 + 46.1636i 1.12628 + 1.95077i
\(561\) 0 0
\(562\) −40.0042 −1.68748
\(563\) −29.5414 −1.24502 −0.622512 0.782610i \(-0.713888\pi\)
−0.622512 + 0.782610i \(0.713888\pi\)
\(564\) 0 0
\(565\) −6.37719 + 11.0456i −0.268290 + 0.464692i
\(566\) −13.6384 23.6224i −0.573265 0.992925i
\(567\) 0 0
\(568\) 23.1199 40.0448i 0.970088 1.68024i
\(569\) −40.3731 −1.69253 −0.846264 0.532764i \(-0.821153\pi\)
−0.846264 + 0.532764i \(0.821153\pi\)
\(570\) 0 0
\(571\) 29.1918 1.22164 0.610819 0.791770i \(-0.290840\pi\)
0.610819 + 0.791770i \(0.290840\pi\)
\(572\) −21.2477 + 36.8020i −0.888410 + 1.53877i
\(573\) 0 0
\(574\) 37.6329 + 65.1822i 1.57077 + 2.72065i
\(575\) 3.47432 6.01770i 0.144889 0.250955i
\(576\) 0 0
\(577\) 10.8930 0.453483 0.226741 0.973955i \(-0.427193\pi\)
0.226741 + 0.973955i \(0.427193\pi\)
\(578\) 38.1613 1.58730
\(579\) 0 0
\(580\) −17.2083 29.8056i −0.714534 1.23761i
\(581\) 58.6517 2.43328
\(582\) 0 0
\(583\) 11.1051 + 19.2346i 0.459926 + 0.796616i
\(584\) 5.48654 9.50296i 0.227035 0.393235i
\(585\) 0 0
\(586\) 11.0999 19.2255i 0.458531 0.794199i
\(587\) 10.7066 18.5444i 0.441909 0.765409i −0.555922 0.831234i \(-0.687635\pi\)
0.997831 + 0.0658255i \(0.0209681\pi\)
\(588\) 0 0
\(589\) 3.72898 + 9.44122i 0.153650 + 0.389019i
\(590\) −6.63445 −0.273136
\(591\) 0 0
\(592\) 42.5618 73.7192i 1.74928 3.02984i
\(593\) 14.6972 + 25.4563i 0.603541 + 1.04536i 0.992280 + 0.124016i \(0.0395774\pi\)
−0.388739 + 0.921348i \(0.627089\pi\)
\(594\) 0 0
\(595\) 3.69520 + 6.40028i 0.151489 + 0.262386i
\(596\) −96.9179 −3.96991
\(597\) 0 0
\(598\) −41.0264 71.0598i −1.67769 2.90585i
\(599\) −15.5165 26.8754i −0.633988 1.09810i −0.986729 0.162379i \(-0.948083\pi\)
0.352740 0.935721i \(-0.385250\pi\)
\(600\) 0 0
\(601\) −31.8939 −1.30098 −0.650490 0.759515i \(-0.725436\pi\)
−0.650490 + 0.759515i \(0.725436\pi\)
\(602\) −17.0599 29.5486i −0.695310 1.20431i
\(603\) 0 0
\(604\) 26.1903 + 45.3629i 1.06567 + 1.84579i
\(605\) −3.73196 + 6.46394i −0.151726 + 0.262796i
\(606\) 0 0
\(607\) 15.2357 0.618398 0.309199 0.950997i \(-0.399939\pi\)
0.309199 + 0.950997i \(0.399939\pi\)
\(608\) 40.4676 50.9705i 1.64118 2.06713i
\(609\) 0 0
\(610\) 19.4128 33.6240i 0.786001 1.36139i
\(611\) −20.7029 + 35.8585i −0.837550 + 1.45068i
\(612\) 0 0
\(613\) 13.1709 22.8127i 0.531968 0.921395i −0.467336 0.884080i \(-0.654786\pi\)
0.999304 0.0373154i \(-0.0118806\pi\)
\(614\) 7.98842 + 13.8363i 0.322386 + 0.558389i
\(615\) 0 0
\(616\) −70.1297 −2.82561
\(617\) −16.7665 29.0404i −0.674993 1.16912i −0.976471 0.215650i \(-0.930813\pi\)
0.301477 0.953473i \(-0.402520\pi\)
\(618\) 0 0
\(619\) −13.6427 −0.548347 −0.274173 0.961680i \(-0.588404\pi\)
−0.274173 + 0.961680i \(0.588404\pi\)
\(620\) 11.8745 0.476891
\(621\) 0 0
\(622\) −30.6944 + 53.1643i −1.23073 + 2.13169i
\(623\) −10.9927 19.0399i −0.440412 0.762817i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 42.0996 1.68264
\(627\) 0 0
\(628\) −108.805 −4.34178
\(629\) 5.90092 10.2207i 0.235285 0.407526i
\(630\) 0 0
\(631\) −15.6058 27.0300i −0.621256 1.07605i −0.989252 0.146220i \(-0.953289\pi\)
0.367996 0.929827i \(-0.380044\pi\)
\(632\) −12.0925 + 20.9448i −0.481013 + 0.833139i
\(633\) 0 0
\(634\) 8.81580 0.350120
\(635\) 7.41989 0.294449
\(636\) 0 0
\(637\) −29.6952 51.4336i −1.17657 2.03787i
\(638\) 33.8175 1.33885
\(639\) 0 0
\(640\) −6.62127 11.4684i −0.261729 0.453328i
\(641\) 2.43993 4.22607i 0.0963713 0.166920i −0.813809 0.581133i \(-0.802610\pi\)
0.910180 + 0.414213i \(0.135943\pi\)
\(642\) 0 0
\(643\) 20.2215 35.0246i 0.797456 1.38123i −0.123811 0.992306i \(-0.539512\pi\)
0.921268 0.388929i \(-0.127155\pi\)
\(644\) 80.0157 138.591i 3.15306 5.46126i
\(645\) 0 0
\(646\) 11.8161 14.8828i 0.464897 0.585554i
\(647\) −3.10173 −0.121942 −0.0609709 0.998140i \(-0.519420\pi\)
−0.0609709 + 0.998140i \(0.519420\pi\)
\(648\) 0 0
\(649\) 2.34120 4.05507i 0.0919000 0.159176i
\(650\) 5.90423 + 10.2264i 0.231583 + 0.401113i
\(651\) 0 0
\(652\) −44.3954 76.8951i −1.73866 3.01144i
\(653\) 50.1213 1.96140 0.980700 0.195520i \(-0.0626395\pi\)
0.980700 + 0.195520i \(0.0626395\pi\)
\(654\) 0 0
\(655\) −1.67881 2.90779i −0.0655966 0.113617i
\(656\) −36.9060 63.9231i −1.44094 2.49578i
\(657\) 0 0
\(658\) −112.431 −4.38301
\(659\) 9.81970 + 17.0082i 0.382521 + 0.662546i 0.991422 0.130700i \(-0.0417226\pi\)
−0.608901 + 0.793246i \(0.708389\pi\)
\(660\) 0 0
\(661\) 16.2367 + 28.1228i 0.631535 + 1.09385i 0.987238 + 0.159251i \(0.0509080\pi\)
−0.355703 + 0.934599i \(0.615759\pi\)
\(662\) −23.5073 + 40.7159i −0.913638 + 1.58247i
\(663\) 0 0
\(664\) −107.221 −4.16099
\(665\) −19.4742 2.89222i −0.755177 0.112156i
\(666\) 0 0
\(667\) −23.4505 + 40.6174i −0.908006 + 1.57271i
\(668\) 43.2796 74.9625i 1.67454 2.90039i
\(669\) 0 0
\(670\) −1.27686 + 2.21158i −0.0493293 + 0.0854408i
\(671\) 13.7010 + 23.7308i 0.528920 + 0.916116i
\(672\) 0 0
\(673\) 42.1609 1.62518 0.812591 0.582835i \(-0.198056\pi\)
0.812591 + 0.582835i \(0.198056\pi\)
\(674\) −3.99144 6.91338i −0.153745 0.266294i
\(675\) 0 0
\(676\) 33.8684 1.30263
\(677\) −5.35812 −0.205929 −0.102965 0.994685i \(-0.532833\pi\)
−0.102965 + 0.994685i \(0.532833\pi\)
\(678\) 0 0
\(679\) 40.8759 70.7992i 1.56867 2.71702i
\(680\) −6.75520 11.7003i −0.259050 0.448688i
\(681\) 0 0
\(682\) −5.83392 + 10.1046i −0.223392 + 0.386927i
\(683\) −33.7370 −1.29091 −0.645454 0.763799i \(-0.723332\pi\)
−0.645454 + 0.763799i \(0.723332\pi\)
\(684\) 0 0
\(685\) 7.11139 0.271712
\(686\) 38.5126 66.7059i 1.47042 2.54684i
\(687\) 0 0
\(688\) 16.7304 + 28.9779i 0.637840 + 1.10477i
\(689\) 26.1731 45.3332i 0.997117 1.72706i
\(690\) 0 0
\(691\) 6.49582 0.247113 0.123556 0.992338i \(-0.460570\pi\)
0.123556 + 0.992338i \(0.460570\pi\)
\(692\) 2.49040 0.0946710
\(693\) 0 0
\(694\) 24.6080 + 42.6222i 0.934105 + 1.61792i
\(695\) 14.2682 0.541225
\(696\) 0 0
\(697\) −5.11678 8.86253i −0.193812 0.335692i
\(698\) −11.0327 + 19.1091i −0.417593 + 0.723292i
\(699\) 0 0
\(700\) −11.5153 + 19.9451i −0.435238 + 0.753854i
\(701\) −22.8294 + 39.5416i −0.862253 + 1.49347i 0.00749659 + 0.999972i \(0.497614\pi\)
−0.869749 + 0.493494i \(0.835720\pi\)
\(702\) 0 0
\(703\) 11.5495 + 29.2415i 0.435596 + 1.10286i
\(704\) 30.4215 1.14655
\(705\) 0 0
\(706\) 14.9223 25.8461i 0.561607 0.972732i
\(707\) −24.0101 41.5868i −0.902994 1.56403i
\(708\) 0 0
\(709\) −7.34917 12.7291i −0.276004 0.478052i 0.694384 0.719604i \(-0.255677\pi\)
−0.970388 + 0.241552i \(0.922344\pi\)
\(710\) 14.9209 0.559970
\(711\) 0 0
\(712\) 20.0957 + 34.8068i 0.753119 + 1.30444i
\(713\) −8.09096 14.0140i −0.303009 0.524827i
\(714\) 0 0
\(715\) −8.33405 −0.311676
\(716\) 43.4925 + 75.3312i 1.62539 + 2.81526i
\(717\) 0 0
\(718\) 7.93127 + 13.7374i 0.295992 + 0.512674i
\(719\) −8.47967 + 14.6872i −0.316238 + 0.547741i −0.979700 0.200470i \(-0.935753\pi\)
0.663462 + 0.748210i \(0.269087\pi\)
\(720\) 0 0
\(721\) 15.2083 0.566385
\(722\) 11.4781 + 49.3051i 0.427170 + 1.83495i
\(723\) 0 0
\(724\) 11.4773 19.8793i 0.426552 0.738810i
\(725\) 3.37483 5.84538i 0.125338 0.217092i
\(726\) 0 0
\(727\) 8.11714 14.0593i 0.301048 0.521431i −0.675326 0.737520i \(-0.735997\pi\)
0.976374 + 0.216089i \(0.0693302\pi\)
\(728\) 82.6429 + 143.142i 3.06295 + 5.30518i
\(729\) 0 0
\(730\) 3.54084 0.131053
\(731\) 2.31956 + 4.01759i 0.0857920 + 0.148596i
\(732\) 0 0
\(733\) 3.72156 0.137459 0.0687295 0.997635i \(-0.478105\pi\)
0.0687295 + 0.997635i \(0.478105\pi\)
\(734\) −37.3682 −1.37929
\(735\) 0 0
\(736\) −51.8742 + 89.8487i −1.91211 + 3.31187i
\(737\) −0.901166 1.56087i −0.0331949 0.0574952i
\(738\) 0 0
\(739\) −16.0421 + 27.7857i −0.590117 + 1.02211i 0.404099 + 0.914715i \(0.367585\pi\)
−0.994216 + 0.107398i \(0.965748\pi\)
\(740\) 36.7779 1.35198
\(741\) 0 0
\(742\) 142.138 5.21805
\(743\) −25.4107 + 44.0127i −0.932229 + 1.61467i −0.152728 + 0.988268i \(0.548806\pi\)
−0.779501 + 0.626401i \(0.784527\pi\)
\(744\) 0 0
\(745\) −9.50361 16.4607i −0.348185 0.603075i
\(746\) 28.9525 50.1472i 1.06003 1.83602i
\(747\) 0 0
\(748\) 15.6890 0.573646
\(749\) −5.01688 −0.183313
\(750\) 0 0
\(751\) −13.5576 23.4824i −0.494723 0.856885i 0.505259 0.862968i \(-0.331397\pi\)
−0.999981 + 0.00608317i \(0.998064\pi\)
\(752\) 110.259 4.02074
\(753\) 0 0
\(754\) −39.8515 69.0249i −1.45131 2.51374i
\(755\) −5.13636 + 8.89644i −0.186931 + 0.323774i
\(756\) 0 0
\(757\) 2.05907 3.56641i 0.0748381 0.129623i −0.826178 0.563410i \(-0.809489\pi\)
0.901016 + 0.433786i \(0.142823\pi\)
\(758\) −28.3555 + 49.1131i −1.02992 + 1.78387i
\(759\) 0 0
\(760\) 35.6008 + 5.28727i 1.29138 + 0.191789i
\(761\) 1.95450 0.0708506 0.0354253 0.999372i \(-0.488721\pi\)
0.0354253 + 0.999372i \(0.488721\pi\)
\(762\) 0 0
\(763\) 13.2021 22.8667i 0.477949 0.827832i
\(764\) 4.18461 + 7.24796i 0.151394 + 0.262222i
\(765\) 0 0
\(766\) 24.8704 + 43.0768i 0.898604 + 1.55643i
\(767\) −11.0357 −0.398477
\(768\) 0 0
\(769\) −18.1734 31.4772i −0.655349 1.13510i −0.981806 0.189886i \(-0.939188\pi\)
0.326457 0.945212i \(-0.394145\pi\)
\(770\) −11.3149 19.5980i −0.407761 0.706262i
\(771\) 0 0
\(772\) 132.318 4.76223
\(773\) −2.98175 5.16454i −0.107246 0.185756i 0.807408 0.589994i \(-0.200870\pi\)
−0.914654 + 0.404238i \(0.867537\pi\)
\(774\) 0 0
\(775\) 1.16439 + 2.01679i 0.0418263 + 0.0724453i
\(776\) −74.7253 + 129.428i −2.68248 + 4.64619i
\(777\) 0 0
\(778\) −22.2328 −0.797086
\(779\) 26.9661 + 4.00489i 0.966161 + 0.143490i
\(780\) 0 0
\(781\) −5.26534 + 9.11984i −0.188409 + 0.326333i
\(782\) −15.1466 + 26.2348i −0.541643 + 0.938153i
\(783\) 0 0
\(784\) −79.0751 + 136.962i −2.82411 + 4.89150i
\(785\) −10.6692 18.4796i −0.380801 0.659566i
\(786\) 0 0
\(787\) 50.2017 1.78950 0.894749 0.446569i \(-0.147354\pi\)
0.894749 + 0.446569i \(0.147354\pi\)
\(788\) 14.4405 + 25.0116i 0.514420 + 0.891001i
\(789\) 0 0
\(790\) −7.80412 −0.277658
\(791\) −57.6076 −2.04829
\(792\) 0 0
\(793\) 32.2912 55.9300i 1.14669 1.98613i
\(794\) 18.6720 + 32.3408i 0.662643 + 1.14773i
\(795\) 0 0
\(796\) −2.78498 + 4.82374i −0.0987112 + 0.170973i
\(797\) 34.8676 1.23508 0.617538 0.786541i \(-0.288130\pi\)
0.617538 + 0.786541i \(0.288130\pi\)
\(798\) 0 0
\(799\) 15.2867 0.540805
\(800\) 7.46537 12.9304i 0.263941 0.457159i
\(801\) 0 0
\(802\) −49.3215 85.4273i −1.74160 3.01654i
\(803\) −1.24951 + 2.16421i −0.0440942 + 0.0763735i
\(804\) 0 0
\(805\) 31.3849 1.10617
\(806\) 27.4994 0.968626
\(807\) 0 0
\(808\) 43.8929 + 76.0248i 1.54415 + 2.67454i
\(809\) −29.0835 −1.02252 −0.511261 0.859425i \(-0.670822\pi\)
−0.511261 + 0.859425i \(0.670822\pi\)
\(810\) 0 0
\(811\) −23.7180 41.0808i −0.832853 1.44254i −0.895767 0.444524i \(-0.853373\pi\)
0.0629142 0.998019i \(-0.479961\pi\)
\(812\) 77.7244 134.623i 2.72759 4.72433i
\(813\) 0 0
\(814\) −18.0689 + 31.2963i −0.633315 + 1.09693i
\(815\) 8.70669 15.0804i 0.304982 0.528244i
\(816\) 0 0
\(817\) −12.2244 1.81551i −0.427677 0.0635166i
\(818\) −45.7330 −1.59902
\(819\) 0 0
\(820\) 15.9453 27.6182i 0.556836 0.964468i
\(821\) −20.7041 35.8605i −0.722577 1.25154i −0.959964 0.280124i \(-0.909624\pi\)
0.237387 0.971415i \(-0.423709\pi\)
\(822\) 0 0
\(823\) 5.59572 + 9.69207i 0.195054 + 0.337844i 0.946918 0.321474i \(-0.104178\pi\)
−0.751864 + 0.659318i \(0.770845\pi\)
\(824\) −27.8022 −0.968535
\(825\) 0 0
\(826\) −14.9829 25.9511i −0.521321 0.902955i
\(827\) 11.6195 + 20.1256i 0.404050 + 0.699835i 0.994210 0.107451i \(-0.0342689\pi\)
−0.590161 + 0.807286i \(0.700936\pi\)
\(828\) 0 0
\(829\) 8.29502 0.288098 0.144049 0.989571i \(-0.453988\pi\)
0.144049 + 0.989571i \(0.453988\pi\)
\(830\) −17.2993 29.9633i −0.600468 1.04004i
\(831\) 0 0
\(832\) −35.8496 62.0933i −1.24286 2.15270i
\(833\) −10.9632 + 18.9889i −0.379854 + 0.657926i
\(834\) 0 0
\(835\) 16.9757 0.587470
\(836\) −25.9880 + 32.7328i −0.898814 + 1.13209i
\(837\) 0 0
\(838\) −48.1745 + 83.4407i −1.66416 + 2.88241i
\(839\) 3.83072 6.63500i 0.132251 0.229066i −0.792293 0.610141i \(-0.791113\pi\)
0.924544 + 0.381075i \(0.124446\pi\)
\(840\) 0 0
\(841\) −8.27895 + 14.3396i −0.285481 + 0.494468i
\(842\) 30.8199 + 53.3817i 1.06212 + 1.83965i
\(843\) 0 0
\(844\) −14.5321 −0.500215
\(845\) 3.32108 + 5.75229i 0.114249 + 0.197885i
\(846\) 0 0
\(847\) −33.7122 −1.15836
\(848\) −139.393 −4.78676
\(849\) 0 0
\(850\) 2.17980 3.77552i 0.0747665 0.129499i
\(851\) −25.0594 43.4042i −0.859027 1.48788i
\(852\) 0 0
\(853\) −15.6915 + 27.1784i −0.537266 + 0.930572i 0.461784 + 0.886992i \(0.347209\pi\)
−0.999050 + 0.0435793i \(0.986124\pi\)
\(854\) 175.363 6.00081
\(855\) 0 0
\(856\) 9.17136 0.313471
\(857\) −7.62506 + 13.2070i −0.260467 + 0.451142i −0.966366 0.257170i \(-0.917210\pi\)
0.705899 + 0.708313i \(0.250543\pi\)
\(858\) 0 0
\(859\) 9.17194 + 15.8863i 0.312942 + 0.542032i 0.978998 0.203870i \(-0.0653520\pi\)
−0.666056 + 0.745902i \(0.732019\pi\)
\(860\) −7.22840 + 12.5200i −0.246487 + 0.426927i
\(861\) 0 0
\(862\) −72.4164 −2.46651
\(863\) 15.7389 0.535757 0.267878 0.963453i \(-0.413677\pi\)
0.267878 + 0.963453i \(0.413677\pi\)
\(864\) 0 0
\(865\) 0.244205 + 0.422976i 0.00830323 + 0.0143816i
\(866\) 12.9224 0.439121
\(867\) 0 0
\(868\) 26.8167 + 46.4479i 0.910219 + 1.57655i
\(869\) 2.75395 4.76999i 0.0934215 0.161811i
\(870\) 0 0
\(871\) −2.12392 + 3.67874i −0.0719663 + 0.124649i
\(872\) −24.1348 + 41.8027i −0.817307 + 1.41562i
\(873\) 0 0
\(874\) −29.6455 75.0579i −1.00277 2.53887i
\(875\) −4.51669 −0.152692
\(876\) 0 0
\(877\) 20.9449 36.2776i 0.707259 1.22501i −0.258611 0.965981i \(-0.583265\pi\)
0.965870 0.259027i \(-0.0834018\pi\)
\(878\) 3.97065 + 6.87737i 0.134003 + 0.232100i
\(879\) 0 0
\(880\) 11.0963 + 19.2194i 0.374058 + 0.647887i
\(881\) −36.6761 −1.23565 −0.617825 0.786315i \(-0.711986\pi\)
−0.617825 + 0.786315i \(0.711986\pi\)
\(882\) 0 0
\(883\) 4.74307 + 8.21524i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775114 + 0.631822i \(0.782307\pi\)
\(884\) −18.4883 32.0227i −0.621830 1.07704i
\(885\) 0 0
\(886\) 37.0527 1.24481
\(887\) −5.06704 8.77638i −0.170135 0.294682i 0.768332 0.640051i \(-0.221087\pi\)
−0.938467 + 0.345369i \(0.887754\pi\)
\(888\) 0 0
\(889\) 16.7567 + 29.0234i 0.562001 + 0.973414i
\(890\) −6.48458 + 11.2316i −0.217364 + 0.376485i
\(891\) 0 0
\(892\) 81.3570 2.72403
\(893\) −25.3217 + 31.8936i −0.847358 + 1.06728i
\(894\) 0 0
\(895\) −8.52961 + 14.7737i −0.285113 + 0.493831i
\(896\) 29.9062 51.7991i 0.999098 1.73049i
\(897\) 0 0
\(898\) −0.190391 + 0.329767i −0.00635342 + 0.0110045i
\(899\) −7.85927 13.6127i −0.262121 0.454007i
\(900\) 0 0
\(901\) −19.3259 −0.643838
\(902\) 15.6678 + 27.1375i 0.521682 + 0.903580i
\(903\) 0 0
\(904\) 105.312 3.50264
\(905\) 4.50180 0.149645
\(906\) 0 0
\(907\) 8.21216 14.2239i 0.272680 0.472296i −0.696867 0.717200i \(-0.745423\pi\)
0.969547 + 0.244904i \(0.0787565\pi\)
\(908\) −42.6054 73.7947i −1.41391 2.44896i
\(909\) 0 0
\(910\) −26.6676 + 46.1896i −0.884022 + 1.53117i
\(911\) 40.7261 1.34931 0.674657 0.738131i \(-0.264291\pi\)
0.674657 + 0.738131i \(0.264291\pi\)
\(912\) 0 0
\(913\) 24.4187 0.808140
\(914\) −27.8948 + 48.3152i −0.922677 + 1.59812i
\(915\) 0 0
\(916\) −3.64769 6.31799i −0.120523 0.208752i
\(917\) 7.58267 13.1336i 0.250402 0.433709i
\(918\) 0 0
\(919\) 21.4531 0.707673 0.353837 0.935307i \(-0.384877\pi\)
0.353837 + 0.935307i \(0.384877\pi\)
\(920\) −57.3747 −1.89159
\(921\) 0 0
\(922\) −6.92276 11.9906i −0.227989 0.394888i
\(923\) 24.8193 0.816938
\(924\) 0 0
\(925\) 3.60638 + 6.24644i 0.118577 + 0.205382i
\(926\) −7.82343 + 13.5506i −0.257094 + 0.445300i
\(927\) 0 0
\(928\) −50.3887 + 87.2758i −1.65409 + 2.86497i
\(929\) −0.375163 + 0.649802i −0.0123087 + 0.0213193i −0.872114 0.489302i \(-0.837251\pi\)
0.859805 + 0.510622i \(0.170585\pi\)
\(930\) 0 0
\(931\) −21.4576 54.3274i −0.703244 1.78051i
\(932\) −9.06772 −0.297023
\(933\) 0 0
\(934\) −27.2465 + 47.1923i −0.891533 + 1.54418i
\(935\) 1.53844 + 2.66465i 0.0503122 + 0.0871433i
\(936\) 0 0
\(937\) 30.3240 + 52.5228i 0.990643 + 1.71584i 0.613516 + 0.789682i \(0.289755\pi\)
0.377127 + 0.926161i \(0.376912\pi\)
\(938\) −11.5343 −0.376609
\(939\) 0 0
\(940\) 23.8189 + 41.2555i 0.776887 + 1.34561i
\(941\) 8.00297 + 13.8616i 0.260889 + 0.451874i 0.966479 0.256747i \(-0.0826509\pi\)
−0.705589 + 0.708621i \(0.749318\pi\)
\(942\) 0 0
\(943\) −43.4589 −1.41522
\(944\) 14.6935 + 25.4499i 0.478232 + 0.828323i
\(945\) 0 0
\(946\) −7.10260 12.3021i −0.230926 0.399975i
\(947\) −21.1841 + 36.6919i −0.688390 + 1.19233i 0.283969 + 0.958834i \(0.408349\pi\)
−0.972359 + 0.233493i \(0.924985\pi\)
\(948\) 0 0
\(949\) 5.88983 0.191192
\(950\) 4.26637 + 10.8018i 0.138419 + 0.350457i
\(951\) 0 0
\(952\) 30.5112 52.8469i 0.988872 1.71278i
\(953\) 23.7881 41.2022i 0.770573 1.33467i −0.166677 0.986012i \(-0.553304\pi\)
0.937249 0.348660i \(-0.113363\pi\)
\(954\) 0 0
\(955\) −0.820673 + 1.42145i −0.0265564 + 0.0459969i
\(956\) 37.2809 + 64.5725i 1.20575 + 2.08842i
\(957\) 0 0
\(958\) 35.3206 1.14116
\(959\) 16.0600 + 27.8167i 0.518604 + 0.898249i
\(960\) 0 0
\(961\) −25.5767 −0.825056
\(962\) 85.1716 2.74604
\(963\) 0 0
\(964\) −20.2162 + 35.0155i −0.651119 + 1.12777i
\(965\) 12.9749 + 22.4732i 0.417676 + 0.723437i
\(966\) 0 0
\(967\) −20.0961 + 34.8074i −0.646246 + 1.11933i 0.337766 + 0.941230i \(0.390329\pi\)
−0.984012 + 0.178101i \(0.943005\pi\)
\(968\) 61.6292 1.98084
\(969\) 0 0
\(970\) −48.2254 −1.54842
\(971\) −12.3086 + 21.3191i −0.395002 + 0.684163i −0.993101 0.117259i \(-0.962589\pi\)
0.598100 + 0.801422i \(0.295923\pi\)
\(972\) 0 0
\(973\) 32.2226 + 55.8112i 1.03301 + 1.78923i
\(974\) 23.4910 40.6876i 0.752700 1.30371i
\(975\) 0 0
\(976\) −171.976 −5.50482
\(977\) −2.08364 −0.0666616 −0.0333308 0.999444i \(-0.510611\pi\)
−0.0333308 + 0.999444i \(0.510611\pi\)
\(978\) 0 0
\(979\) −4.57662 7.92693i −0.146269 0.253346i
\(980\) −68.3292 −2.18270
\(981\) 0 0
\(982\) 1.30784 + 2.26524i 0.0417347 + 0.0722867i
\(983\) −7.74204 + 13.4096i −0.246933 + 0.427700i −0.962673 0.270666i \(-0.912756\pi\)
0.715740 + 0.698366i \(0.246089\pi\)
\(984\) 0 0
\(985\) −2.83202 + 4.90520i −0.0902355 + 0.156293i
\(986\) −14.7129 + 25.4835i −0.468554 + 0.811560i
\(987\) 0 0
\(988\) 97.4359 + 14.4707i 3.09985 + 0.460376i
\(989\) 19.7010 0.626454
\(990\) 0 0
\(991\) −12.9988 + 22.5146i −0.412921 + 0.715201i −0.995208 0.0977829i \(-0.968825\pi\)
0.582286 + 0.812984i \(0.302158\pi\)
\(992\) −17.3853 30.1122i −0.551983 0.956063i
\(993\) 0 0
\(994\) 33.6964 + 58.3640i 1.06879 + 1.85119i
\(995\) −1.09237 −0.0346303
\(996\) 0 0
\(997\) −22.2632 38.5610i −0.705083 1.22124i −0.966662 0.256057i \(-0.917576\pi\)
0.261579 0.965182i \(-0.415757\pi\)
\(998\) −5.67039 9.82141i −0.179493 0.310891i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.k.k.676.6 yes 12
3.2 odd 2 855.2.k.j.676.1 yes 12
19.7 even 3 inner 855.2.k.k.406.6 yes 12
57.26 odd 6 855.2.k.j.406.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.k.j.406.1 12 57.26 odd 6
855.2.k.j.676.1 yes 12 3.2 odd 2
855.2.k.k.406.6 yes 12 19.7 even 3 inner
855.2.k.k.676.6 yes 12 1.1 even 1 trivial