Properties

Label 855.2.k.j.676.6
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 10 x^{9} + 44 x^{8} - 20 x^{7} + 119 x^{6} + 13 x^{5} + 83 x^{4} + 14 x^{3} + 46 x^{2} + 12 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.6
Root \(1.50733 - 2.61078i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.j.406.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00733 - 1.74475i) q^{2} +(-1.02944 - 1.78305i) q^{4} +(-0.500000 + 0.866025i) q^{5} +1.66469 q^{7} -0.118641 q^{8} +O(q^{10})\) \(q+(1.00733 - 1.74475i) q^{2} +(-1.02944 - 1.78305i) q^{4} +(-0.500000 + 0.866025i) q^{5} +1.66469 q^{7} -0.118641 q^{8} +(1.00733 + 1.74475i) q^{10} +0.745446 q^{11} +(0.269815 + 0.467333i) q^{13} +(1.67690 - 2.90447i) q^{14} +(1.93938 - 3.35910i) q^{16} +(0.705067 - 1.22121i) q^{17} +(4.17330 - 1.25841i) q^{19} +2.05889 q^{20} +(0.750913 - 1.30062i) q^{22} +(0.437471 + 0.757722i) q^{23} +(-0.500000 - 0.866025i) q^{25} +1.08718 q^{26} +(-1.71370 - 2.96822i) q^{28} +(-3.70083 - 6.41003i) q^{29} +7.02934 q^{31} +(-4.02584 - 6.97297i) q^{32} +(-1.42048 - 2.46034i) q^{34} +(-0.832344 + 1.44166i) q^{35} +7.84476 q^{37} +(2.00828 - 8.54902i) q^{38} +(0.0593204 - 0.102746i) q^{40} +(-4.36591 + 7.56198i) q^{41} +(-2.93324 + 5.08052i) q^{43} +(-0.767395 - 1.32917i) q^{44} +1.76272 q^{46} +(-3.29875 - 5.71360i) q^{47} -4.22881 q^{49} -2.01467 q^{50} +(0.555519 - 0.962187i) q^{52} +(-3.85018 - 6.66871i) q^{53} +(-0.372723 + 0.645575i) q^{55} -0.197500 q^{56} -14.9119 q^{58} +(-2.45356 + 4.24969i) q^{59} +(2.60473 + 4.51153i) q^{61} +(7.08089 - 12.2645i) q^{62} -8.46397 q^{64} -0.539630 q^{65} +(-0.443531 - 0.768219i) q^{67} -2.90331 q^{68} +(1.67690 + 2.90447i) q^{70} +(-1.41061 + 2.44324i) q^{71} +(-0.524369 + 0.908233i) q^{73} +(7.90230 - 13.6872i) q^{74} +(-6.53999 - 6.14573i) q^{76} +1.24094 q^{77} +(-2.88624 + 4.99911i) q^{79} +(1.93938 + 3.35910i) q^{80} +(8.79587 + 15.2349i) q^{82} +3.61555 q^{83} +(0.705067 + 1.22121i) q^{85} +(5.90950 + 10.2356i) q^{86} -0.0884403 q^{88} +(0.464416 + 0.804392i) q^{89} +(0.449158 + 0.777964i) q^{91} +(0.900704 - 1.56007i) q^{92} -13.2918 q^{94} +(-0.996831 + 4.24339i) q^{95} +(-0.00920110 + 0.0159368i) q^{97} +(-4.25983 + 7.37824i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 5 q^{4} - 6 q^{5} + 4 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} - 5 q^{4} - 6 q^{5} + 4 q^{7} + 12 q^{8} - 3 q^{10} - 8 q^{13} - 10 q^{14} - 3 q^{16} - 4 q^{17} - 6 q^{19} + 10 q^{20} + 2 q^{23} - 6 q^{25} + 40 q^{26} - 26 q^{28} - 4 q^{29} + 24 q^{31} - 15 q^{32} + 7 q^{34} - 2 q^{35} + 29 q^{38} - 6 q^{40} - 12 q^{41} - 4 q^{43} - 6 q^{44} + 48 q^{46} - 6 q^{47} + 32 q^{49} + 6 q^{50} - 20 q^{52} - 26 q^{53} + 44 q^{56} - 20 q^{58} - 16 q^{59} + 20 q^{61} + 25 q^{62} + 28 q^{64} + 16 q^{65} - 12 q^{67} - 54 q^{68} - 10 q^{70} + 8 q^{71} - 4 q^{73} + 16 q^{74} - 66 q^{76} - 48 q^{77} - 12 q^{79} - 3 q^{80} + 26 q^{82} + 44 q^{83} - 4 q^{85} + 44 q^{86} - 32 q^{88} + 8 q^{89} + 2 q^{91} - 36 q^{92} - 14 q^{94} + 6 q^{95} + 30 q^{97} - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00733 1.74475i 0.712293 1.23373i −0.251702 0.967805i \(-0.580990\pi\)
0.963994 0.265922i \(-0.0856765\pi\)
\(3\) 0 0
\(4\) −1.02944 1.78305i −0.514722 0.891525i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 1.66469 0.629193 0.314596 0.949226i \(-0.398131\pi\)
0.314596 + 0.949226i \(0.398131\pi\)
\(8\) −0.118641 −0.0419458
\(9\) 0 0
\(10\) 1.00733 + 1.74475i 0.318547 + 0.551740i
\(11\) 0.745446 0.224760 0.112380 0.993665i \(-0.464153\pi\)
0.112380 + 0.993665i \(0.464153\pi\)
\(12\) 0 0
\(13\) 0.269815 + 0.467333i 0.0748332 + 0.129615i 0.901014 0.433791i \(-0.142824\pi\)
−0.826181 + 0.563405i \(0.809491\pi\)
\(14\) 1.67690 2.90447i 0.448170 0.776252i
\(15\) 0 0
\(16\) 1.93938 3.35910i 0.484844 0.839775i
\(17\) 0.705067 1.22121i 0.171004 0.296187i −0.767767 0.640729i \(-0.778632\pi\)
0.938771 + 0.344542i \(0.111966\pi\)
\(18\) 0 0
\(19\) 4.17330 1.25841i 0.957420 0.288700i
\(20\) 2.05889 0.460381
\(21\) 0 0
\(22\) 0.750913 1.30062i 0.160095 0.277293i
\(23\) 0.437471 + 0.757722i 0.0912190 + 0.157996i 0.908024 0.418917i \(-0.137590\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.08718 0.213213
\(27\) 0 0
\(28\) −1.71370 2.96822i −0.323859 0.560941i
\(29\) −3.70083 6.41003i −0.687228 1.19031i −0.972731 0.231935i \(-0.925494\pi\)
0.285504 0.958378i \(-0.407839\pi\)
\(30\) 0 0
\(31\) 7.02934 1.26251 0.631253 0.775577i \(-0.282541\pi\)
0.631253 + 0.775577i \(0.282541\pi\)
\(32\) −4.02584 6.97297i −0.711675 1.23266i
\(33\) 0 0
\(34\) −1.42048 2.46034i −0.243610 0.421944i
\(35\) −0.832344 + 1.44166i −0.140692 + 0.243685i
\(36\) 0 0
\(37\) 7.84476 1.28967 0.644836 0.764321i \(-0.276926\pi\)
0.644836 + 0.764321i \(0.276926\pi\)
\(38\) 2.00828 8.54902i 0.325787 1.38683i
\(39\) 0 0
\(40\) 0.0593204 0.102746i 0.00937937 0.0162455i
\(41\) −4.36591 + 7.56198i −0.681841 + 1.18098i 0.292577 + 0.956242i \(0.405487\pi\)
−0.974418 + 0.224742i \(0.927846\pi\)
\(42\) 0 0
\(43\) −2.93324 + 5.08052i −0.447315 + 0.774772i −0.998210 0.0598025i \(-0.980953\pi\)
0.550896 + 0.834574i \(0.314286\pi\)
\(44\) −0.767395 1.32917i −0.115689 0.200380i
\(45\) 0 0
\(46\) 1.76272 0.259899
\(47\) −3.29875 5.71360i −0.481172 0.833414i 0.518595 0.855020i \(-0.326455\pi\)
−0.999767 + 0.0216064i \(0.993122\pi\)
\(48\) 0 0
\(49\) −4.22881 −0.604116
\(50\) −2.01467 −0.284917
\(51\) 0 0
\(52\) 0.555519 0.962187i 0.0770366 0.133431i
\(53\) −3.85018 6.66871i −0.528863 0.916018i −0.999434 0.0336552i \(-0.989285\pi\)
0.470570 0.882362i \(-0.344048\pi\)
\(54\) 0 0
\(55\) −0.372723 + 0.645575i −0.0502580 + 0.0870494i
\(56\) −0.197500 −0.0263920
\(57\) 0 0
\(58\) −14.9119 −1.95803
\(59\) −2.45356 + 4.24969i −0.319426 + 0.553263i −0.980368 0.197174i \(-0.936824\pi\)
0.660942 + 0.750437i \(0.270157\pi\)
\(60\) 0 0
\(61\) 2.60473 + 4.51153i 0.333502 + 0.577643i 0.983196 0.182553i \(-0.0584362\pi\)
−0.649694 + 0.760196i \(0.725103\pi\)
\(62\) 7.08089 12.2645i 0.899274 1.55759i
\(63\) 0 0
\(64\) −8.46397 −1.05800
\(65\) −0.539630 −0.0669329
\(66\) 0 0
\(67\) −0.443531 0.768219i −0.0541860 0.0938528i 0.837660 0.546192i \(-0.183923\pi\)
−0.891846 + 0.452339i \(0.850590\pi\)
\(68\) −2.90331 −0.352078
\(69\) 0 0
\(70\) 1.67690 + 2.90447i 0.200428 + 0.347151i
\(71\) −1.41061 + 2.44324i −0.167408 + 0.289959i −0.937508 0.347964i \(-0.886873\pi\)
0.770100 + 0.637923i \(0.220206\pi\)
\(72\) 0 0
\(73\) −0.524369 + 0.908233i −0.0613727 + 0.106301i −0.895079 0.445907i \(-0.852881\pi\)
0.833707 + 0.552208i \(0.186214\pi\)
\(74\) 7.90230 13.6872i 0.918624 1.59110i
\(75\) 0 0
\(76\) −6.53999 6.14573i −0.750188 0.704963i
\(77\) 1.24094 0.141418
\(78\) 0 0
\(79\) −2.88624 + 4.99911i −0.324727 + 0.562444i −0.981457 0.191682i \(-0.938606\pi\)
0.656730 + 0.754126i \(0.271939\pi\)
\(80\) 1.93938 + 3.35910i 0.216829 + 0.375559i
\(81\) 0 0
\(82\) 8.79587 + 15.2349i 0.971341 + 1.68241i
\(83\) 3.61555 0.396858 0.198429 0.980115i \(-0.436416\pi\)
0.198429 + 0.980115i \(0.436416\pi\)
\(84\) 0 0
\(85\) 0.705067 + 1.22121i 0.0764752 + 0.132459i
\(86\) 5.90950 + 10.2356i 0.637238 + 1.10373i
\(87\) 0 0
\(88\) −0.0884403 −0.00942776
\(89\) 0.464416 + 0.804392i 0.0492280 + 0.0852654i 0.889589 0.456761i \(-0.150991\pi\)
−0.840361 + 0.542026i \(0.817657\pi\)
\(90\) 0 0
\(91\) 0.449158 + 0.777964i 0.0470845 + 0.0815528i
\(92\) 0.900704 1.56007i 0.0939049 0.162648i
\(93\) 0 0
\(94\) −13.2918 −1.37094
\(95\) −0.996831 + 4.24339i −0.102273 + 0.435362i
\(96\) 0 0
\(97\) −0.00920110 + 0.0159368i −0.000934230 + 0.00161813i −0.866492 0.499191i \(-0.833631\pi\)
0.865558 + 0.500809i \(0.166964\pi\)
\(98\) −4.25983 + 7.37824i −0.430308 + 0.745315i
\(99\) 0 0
\(100\) −1.02944 + 1.78305i −0.102944 + 0.178305i
\(101\) 7.93725 + 13.7477i 0.789786 + 1.36795i 0.926098 + 0.377284i \(0.123142\pi\)
−0.136312 + 0.990666i \(0.543525\pi\)
\(102\) 0 0
\(103\) −8.55819 −0.843264 −0.421632 0.906767i \(-0.638543\pi\)
−0.421632 + 0.906767i \(0.638543\pi\)
\(104\) −0.0320110 0.0554448i −0.00313894 0.00543681i
\(105\) 0 0
\(106\) −15.5137 −1.50682
\(107\) −11.6508 −1.12632 −0.563162 0.826347i \(-0.690415\pi\)
−0.563162 + 0.826347i \(0.690415\pi\)
\(108\) 0 0
\(109\) 1.12075 1.94119i 0.107348 0.185932i −0.807347 0.590077i \(-0.799097\pi\)
0.914695 + 0.404145i \(0.132431\pi\)
\(110\) 0.750913 + 1.30062i 0.0715968 + 0.124009i
\(111\) 0 0
\(112\) 3.22846 5.59185i 0.305061 0.528380i
\(113\) 8.94383 0.841364 0.420682 0.907208i \(-0.361791\pi\)
0.420682 + 0.907208i \(0.361791\pi\)
\(114\) 0 0
\(115\) −0.874942 −0.0815888
\(116\) −7.61960 + 13.1975i −0.707462 + 1.22536i
\(117\) 0 0
\(118\) 4.94311 + 8.56172i 0.455050 + 0.788170i
\(119\) 1.17372 2.03294i 0.107594 0.186359i
\(120\) 0 0
\(121\) −10.4443 −0.949483
\(122\) 10.4954 0.950205
\(123\) 0 0
\(124\) −7.23631 12.5337i −0.649840 1.12556i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 9.91270 + 17.1693i 0.879609 + 1.52353i 0.851770 + 0.523916i \(0.175529\pi\)
0.0278395 + 0.999612i \(0.491137\pi\)
\(128\) −0.474357 + 0.821611i −0.0419276 + 0.0726208i
\(129\) 0 0
\(130\) −0.543588 + 0.941522i −0.0476758 + 0.0825769i
\(131\) −0.917977 + 1.58998i −0.0802040 + 0.138917i −0.903337 0.428931i \(-0.858891\pi\)
0.823133 + 0.567848i \(0.192224\pi\)
\(132\) 0 0
\(133\) 6.94723 2.09486i 0.602402 0.181648i
\(134\) −1.78714 −0.154385
\(135\) 0 0
\(136\) −0.0836496 + 0.144885i −0.00717290 + 0.0124238i
\(137\) −1.98094 3.43109i −0.169243 0.293138i 0.768911 0.639356i \(-0.220799\pi\)
−0.938154 + 0.346218i \(0.887466\pi\)
\(138\) 0 0
\(139\) 0.889046 + 1.53987i 0.0754079 + 0.130610i 0.901264 0.433271i \(-0.142641\pi\)
−0.825856 + 0.563882i \(0.809307\pi\)
\(140\) 3.42741 0.289669
\(141\) 0 0
\(142\) 2.84190 + 4.92232i 0.238487 + 0.413072i
\(143\) 0.201133 + 0.348372i 0.0168196 + 0.0291323i
\(144\) 0 0
\(145\) 7.40167 0.614675
\(146\) 1.05643 + 1.82979i 0.0874307 + 0.151434i
\(147\) 0 0
\(148\) −8.07575 13.9876i −0.663822 1.14977i
\(149\) −9.55320 + 16.5466i −0.782629 + 1.35555i 0.147777 + 0.989021i \(0.452788\pi\)
−0.930405 + 0.366532i \(0.880545\pi\)
\(150\) 0 0
\(151\) 2.44644 0.199088 0.0995442 0.995033i \(-0.468262\pi\)
0.0995442 + 0.995033i \(0.468262\pi\)
\(152\) −0.495123 + 0.149299i −0.0401598 + 0.0121097i
\(153\) 0 0
\(154\) 1.25004 2.16513i 0.100731 0.174471i
\(155\) −3.51467 + 6.08758i −0.282305 + 0.488967i
\(156\) 0 0
\(157\) −4.60586 + 7.97759i −0.367588 + 0.636681i −0.989188 0.146654i \(-0.953150\pi\)
0.621600 + 0.783335i \(0.286483\pi\)
\(158\) 5.81481 + 10.0715i 0.462601 + 0.801249i
\(159\) 0 0
\(160\) 8.05169 0.636542
\(161\) 0.728253 + 1.26137i 0.0573944 + 0.0994100i
\(162\) 0 0
\(163\) 1.09691 0.0859164 0.0429582 0.999077i \(-0.486322\pi\)
0.0429582 + 0.999077i \(0.486322\pi\)
\(164\) 17.9779 1.40383
\(165\) 0 0
\(166\) 3.64207 6.30824i 0.282679 0.489615i
\(167\) −6.24438 10.8156i −0.483205 0.836935i 0.516609 0.856221i \(-0.327194\pi\)
−0.999814 + 0.0192861i \(0.993861\pi\)
\(168\) 0 0
\(169\) 6.35440 11.0061i 0.488800 0.846626i
\(170\) 2.84095 0.217891
\(171\) 0 0
\(172\) 12.0784 0.920971
\(173\) −2.15558 + 3.73357i −0.163886 + 0.283858i −0.936259 0.351310i \(-0.885736\pi\)
0.772373 + 0.635169i \(0.219069\pi\)
\(174\) 0 0
\(175\) −0.832344 1.44166i −0.0629193 0.108979i
\(176\) 1.44570 2.50403i 0.108974 0.188748i
\(177\) 0 0
\(178\) 1.87129 0.140259
\(179\) −12.6038 −0.942052 −0.471026 0.882119i \(-0.656116\pi\)
−0.471026 + 0.882119i \(0.656116\pi\)
\(180\) 0 0
\(181\) −1.84534 3.19623i −0.137163 0.237574i 0.789259 0.614061i \(-0.210465\pi\)
−0.926422 + 0.376487i \(0.877132\pi\)
\(182\) 1.80981 0.134152
\(183\) 0 0
\(184\) −0.0519019 0.0898967i −0.00382626 0.00662727i
\(185\) −3.92238 + 6.79377i −0.288379 + 0.499488i
\(186\) 0 0
\(187\) 0.525589 0.910348i 0.0384349 0.0665712i
\(188\) −6.79175 + 11.7637i −0.495339 + 0.857953i
\(189\) 0 0
\(190\) 6.39952 + 6.01373i 0.464270 + 0.436282i
\(191\) −6.23634 −0.451246 −0.225623 0.974215i \(-0.572442\pi\)
−0.225623 + 0.974215i \(0.572442\pi\)
\(192\) 0 0
\(193\) 9.46275 16.3900i 0.681143 1.17978i −0.293489 0.955963i \(-0.594816\pi\)
0.974632 0.223813i \(-0.0718503\pi\)
\(194\) 0.0185372 + 0.0321073i 0.00133089 + 0.00230517i
\(195\) 0 0
\(196\) 4.35333 + 7.54019i 0.310952 + 0.538585i
\(197\) 6.85139 0.488141 0.244071 0.969757i \(-0.421517\pi\)
0.244071 + 0.969757i \(0.421517\pi\)
\(198\) 0 0
\(199\) −9.99420 17.3105i −0.708470 1.22711i −0.965424 0.260683i \(-0.916052\pi\)
0.256954 0.966424i \(-0.417281\pi\)
\(200\) 0.0593204 + 0.102746i 0.00419458 + 0.00726523i
\(201\) 0 0
\(202\) 31.9819 2.25024
\(203\) −6.16073 10.6707i −0.432399 0.748936i
\(204\) 0 0
\(205\) −4.36591 7.56198i −0.304929 0.528152i
\(206\) −8.62096 + 14.9319i −0.600651 + 1.04036i
\(207\) 0 0
\(208\) 2.09309 0.145130
\(209\) 3.11097 0.938079i 0.215190 0.0648883i
\(210\) 0 0
\(211\) −7.41451 + 12.8423i −0.510436 + 0.884101i 0.489491 + 0.872008i \(0.337183\pi\)
−0.999927 + 0.0120925i \(0.996151\pi\)
\(212\) −7.92709 + 13.7301i −0.544435 + 0.942989i
\(213\) 0 0
\(214\) −11.7362 + 20.3278i −0.802272 + 1.38958i
\(215\) −2.93324 5.08052i −0.200045 0.346488i
\(216\) 0 0
\(217\) 11.7017 0.794360
\(218\) −2.25793 3.91085i −0.152926 0.264876i
\(219\) 0 0
\(220\) 1.53479 0.103476
\(221\) 0.760951 0.0511871
\(222\) 0 0
\(223\) 9.44388 16.3573i 0.632409 1.09536i −0.354649 0.934999i \(-0.615400\pi\)
0.987058 0.160365i \(-0.0512670\pi\)
\(224\) −6.70177 11.6078i −0.447781 0.775579i
\(225\) 0 0
\(226\) 9.00942 15.6048i 0.599298 1.03801i
\(227\) 15.7322 1.04418 0.522090 0.852890i \(-0.325152\pi\)
0.522090 + 0.852890i \(0.325152\pi\)
\(228\) 0 0
\(229\) −19.0417 −1.25831 −0.629157 0.777278i \(-0.716600\pi\)
−0.629157 + 0.777278i \(0.716600\pi\)
\(230\) −0.881359 + 1.52656i −0.0581151 + 0.100658i
\(231\) 0 0
\(232\) 0.439070 + 0.760491i 0.0288263 + 0.0499287i
\(233\) −0.594442 + 1.02960i −0.0389432 + 0.0674515i −0.884840 0.465895i \(-0.845732\pi\)
0.845897 + 0.533346i \(0.179066\pi\)
\(234\) 0 0
\(235\) 6.59749 0.430373
\(236\) 10.1032 0.657663
\(237\) 0 0
\(238\) −2.36465 4.09569i −0.153277 0.265484i
\(239\) −25.9446 −1.67822 −0.839108 0.543965i \(-0.816922\pi\)
−0.839108 + 0.543965i \(0.816922\pi\)
\(240\) 0 0
\(241\) 4.52815 + 7.84299i 0.291684 + 0.505211i 0.974208 0.225652i \(-0.0724512\pi\)
−0.682524 + 0.730863i \(0.739118\pi\)
\(242\) −10.5209 + 18.2228i −0.676310 + 1.17140i
\(243\) 0 0
\(244\) 5.36286 9.28874i 0.343322 0.594651i
\(245\) 2.11441 3.66226i 0.135085 0.233973i
\(246\) 0 0
\(247\) 1.71412 + 1.61078i 0.109067 + 0.102492i
\(248\) −0.833966 −0.0529569
\(249\) 0 0
\(250\) 1.00733 1.74475i 0.0637094 0.110348i
\(251\) 1.46528 + 2.53794i 0.0924876 + 0.160193i 0.908557 0.417760i \(-0.137185\pi\)
−0.816070 + 0.577954i \(0.803851\pi\)
\(252\) 0 0
\(253\) 0.326111 + 0.564841i 0.0205024 + 0.0355113i
\(254\) 39.9416 2.50616
\(255\) 0 0
\(256\) −7.50830 13.0047i −0.469268 0.812797i
\(257\) 5.42535 + 9.39698i 0.338424 + 0.586168i 0.984136 0.177413i \(-0.0567728\pi\)
−0.645712 + 0.763581i \(0.723439\pi\)
\(258\) 0 0
\(259\) 13.0591 0.811452
\(260\) 0.555519 + 0.962187i 0.0344518 + 0.0596723i
\(261\) 0 0
\(262\) 1.84942 + 3.20329i 0.114257 + 0.197900i
\(263\) −8.42898 + 14.5994i −0.519753 + 0.900239i 0.479983 + 0.877278i \(0.340643\pi\)
−0.999736 + 0.0229610i \(0.992691\pi\)
\(264\) 0 0
\(265\) 7.70036 0.473029
\(266\) 3.34317 14.2314i 0.204983 0.872586i
\(267\) 0 0
\(268\) −0.913181 + 1.58168i −0.0557814 + 0.0966163i
\(269\) −14.7731 + 25.5878i −0.900733 + 1.56012i −0.0741891 + 0.997244i \(0.523637\pi\)
−0.826544 + 0.562872i \(0.809696\pi\)
\(270\) 0 0
\(271\) −10.6224 + 18.3985i −0.645262 + 1.11763i 0.338979 + 0.940794i \(0.389919\pi\)
−0.984241 + 0.176833i \(0.943415\pi\)
\(272\) −2.73478 4.73678i −0.165821 0.287210i
\(273\) 0 0
\(274\) −7.98188 −0.482203
\(275\) −0.372723 0.645575i −0.0224760 0.0389297i
\(276\) 0 0
\(277\) −28.3656 −1.70432 −0.852161 0.523279i \(-0.824708\pi\)
−0.852161 + 0.523279i \(0.824708\pi\)
\(278\) 3.58226 0.214850
\(279\) 0 0
\(280\) 0.0987499 0.171040i 0.00590143 0.0102216i
\(281\) −8.80909 15.2578i −0.525506 0.910204i −0.999559 0.0297069i \(-0.990543\pi\)
0.474052 0.880497i \(-0.342791\pi\)
\(282\) 0 0
\(283\) 8.54552 14.8013i 0.507978 0.879844i −0.491979 0.870607i \(-0.663726\pi\)
0.999957 0.00923712i \(-0.00294031\pi\)
\(284\) 5.80856 0.344675
\(285\) 0 0
\(286\) 0.810431 0.0479218
\(287\) −7.26788 + 12.5883i −0.429010 + 0.743066i
\(288\) 0 0
\(289\) 7.50576 + 13.0004i 0.441515 + 0.764727i
\(290\) 7.45595 12.9141i 0.437829 0.758341i
\(291\) 0 0
\(292\) 2.15923 0.126360
\(293\) 22.2555 1.30018 0.650089 0.759858i \(-0.274732\pi\)
0.650089 + 0.759858i \(0.274732\pi\)
\(294\) 0 0
\(295\) −2.45356 4.24969i −0.142852 0.247427i
\(296\) −0.930708 −0.0540963
\(297\) 0 0
\(298\) 19.2465 + 33.3360i 1.11492 + 1.93110i
\(299\) −0.236073 + 0.408890i −0.0136524 + 0.0236467i
\(300\) 0 0
\(301\) −4.88293 + 8.45747i −0.281447 + 0.487481i
\(302\) 2.46438 4.26843i 0.141809 0.245621i
\(303\) 0 0
\(304\) 3.86646 16.4591i 0.221757 0.943992i
\(305\) −5.20947 −0.298293
\(306\) 0 0
\(307\) 13.2964 23.0300i 0.758863 1.31439i −0.184568 0.982820i \(-0.559088\pi\)
0.943431 0.331570i \(-0.107578\pi\)
\(308\) −1.27747 2.21265i −0.0727908 0.126077i
\(309\) 0 0
\(310\) 7.08089 + 12.2645i 0.402168 + 0.696575i
\(311\) 11.1894 0.634493 0.317247 0.948343i \(-0.397242\pi\)
0.317247 + 0.948343i \(0.397242\pi\)
\(312\) 0 0
\(313\) −10.2321 17.7225i −0.578351 1.00173i −0.995669 0.0929730i \(-0.970363\pi\)
0.417317 0.908761i \(-0.362970\pi\)
\(314\) 9.27928 + 16.0722i 0.523660 + 0.907006i
\(315\) 0 0
\(316\) 11.8849 0.668577
\(317\) 7.76650 + 13.4520i 0.436210 + 0.755538i 0.997394 0.0721532i \(-0.0229870\pi\)
−0.561183 + 0.827692i \(0.689654\pi\)
\(318\) 0 0
\(319\) −2.75877 4.77833i −0.154462 0.267535i
\(320\) 4.23198 7.33001i 0.236575 0.409760i
\(321\) 0 0
\(322\) 2.93438 0.163526
\(323\) 1.40567 5.98374i 0.0782133 0.332944i
\(324\) 0 0
\(325\) 0.269815 0.467333i 0.0149666 0.0259230i
\(326\) 1.10495 1.91383i 0.0611976 0.105997i
\(327\) 0 0
\(328\) 0.517975 0.897159i 0.0286004 0.0495373i
\(329\) −5.49138 9.51135i −0.302750 0.524378i
\(330\) 0 0
\(331\) −16.3063 −0.896278 −0.448139 0.893964i \(-0.647913\pi\)
−0.448139 + 0.893964i \(0.647913\pi\)
\(332\) −3.72201 6.44670i −0.204272 0.353809i
\(333\) 0 0
\(334\) −25.1607 −1.37673
\(335\) 0.887063 0.0484654
\(336\) 0 0
\(337\) −14.5604 + 25.2193i −0.793155 + 1.37378i 0.130849 + 0.991402i \(0.458230\pi\)
−0.924004 + 0.382382i \(0.875104\pi\)
\(338\) −12.8020 22.1737i −0.696337 1.20609i
\(339\) 0 0
\(340\) 1.45165 2.51434i 0.0787270 0.136359i
\(341\) 5.23999 0.283761
\(342\) 0 0
\(343\) −18.6925 −1.00930
\(344\) 0.348001 0.602756i 0.0187630 0.0324984i
\(345\) 0 0
\(346\) 4.34278 + 7.52191i 0.233469 + 0.404381i
\(347\) −1.36152 + 2.35823i −0.0730904 + 0.126596i −0.900254 0.435364i \(-0.856620\pi\)
0.827164 + 0.561961i \(0.189953\pi\)
\(348\) 0 0
\(349\) −5.70995 −0.305647 −0.152823 0.988254i \(-0.548837\pi\)
−0.152823 + 0.988254i \(0.548837\pi\)
\(350\) −3.35379 −0.179268
\(351\) 0 0
\(352\) −3.00105 5.19797i −0.159956 0.277053i
\(353\) 27.6435 1.47131 0.735657 0.677354i \(-0.236874\pi\)
0.735657 + 0.677354i \(0.236874\pi\)
\(354\) 0 0
\(355\) −1.41061 2.44324i −0.0748672 0.129674i
\(356\) 0.956181 1.65615i 0.0506775 0.0877760i
\(357\) 0 0
\(358\) −12.6962 + 21.9905i −0.671017 + 1.16224i
\(359\) −2.11633 + 3.66559i −0.111696 + 0.193463i −0.916454 0.400140i \(-0.868962\pi\)
0.804758 + 0.593603i \(0.202295\pi\)
\(360\) 0 0
\(361\) 15.8328 10.5035i 0.833305 0.552813i
\(362\) −7.43550 −0.390801
\(363\) 0 0
\(364\) 0.924766 1.60174i 0.0484709 0.0839540i
\(365\) −0.524369 0.908233i −0.0274467 0.0475391i
\(366\) 0 0
\(367\) −0.769642 1.33306i −0.0401750 0.0695852i 0.845239 0.534389i \(-0.179458\pi\)
−0.885414 + 0.464804i \(0.846125\pi\)
\(368\) 3.39369 0.176908
\(369\) 0 0
\(370\) 7.90230 + 13.6872i 0.410821 + 0.711563i
\(371\) −6.40935 11.1013i −0.332757 0.576352i
\(372\) 0 0
\(373\) 0.490289 0.0253862 0.0126931 0.999919i \(-0.495960\pi\)
0.0126931 + 0.999919i \(0.495960\pi\)
\(374\) −1.05889 1.83405i −0.0547538 0.0948364i
\(375\) 0 0
\(376\) 0.391366 + 0.677865i 0.0201831 + 0.0349582i
\(377\) 1.99708 3.45905i 0.102855 0.178150i
\(378\) 0 0
\(379\) −34.6250 −1.77857 −0.889283 0.457358i \(-0.848796\pi\)
−0.889283 + 0.457358i \(0.848796\pi\)
\(380\) 8.59235 2.59093i 0.440778 0.132912i
\(381\) 0 0
\(382\) −6.28208 + 10.8809i −0.321419 + 0.556714i
\(383\) 11.9762 20.7433i 0.611953 1.05993i −0.378958 0.925414i \(-0.623717\pi\)
0.990911 0.134520i \(-0.0429492\pi\)
\(384\) 0 0
\(385\) −0.620468 + 1.07468i −0.0316220 + 0.0547708i
\(386\) −19.0643 33.0203i −0.970347 1.68069i
\(387\) 0 0
\(388\) 0.0378881 0.00192348
\(389\) 8.75864 + 15.1704i 0.444081 + 0.769171i 0.997988 0.0634081i \(-0.0201970\pi\)
−0.553907 + 0.832579i \(0.686864\pi\)
\(390\) 0 0
\(391\) 1.23379 0.0623952
\(392\) 0.501710 0.0253402
\(393\) 0 0
\(394\) 6.90164 11.9540i 0.347699 0.602233i
\(395\) −2.88624 4.99911i −0.145222 0.251532i
\(396\) 0 0
\(397\) −4.44472 + 7.69848i −0.223074 + 0.386376i −0.955740 0.294213i \(-0.904943\pi\)
0.732666 + 0.680589i \(0.238276\pi\)
\(398\) −40.2700 −2.01855
\(399\) 0 0
\(400\) −3.87876 −0.193938
\(401\) 18.1428 31.4242i 0.906007 1.56925i 0.0864475 0.996256i \(-0.472449\pi\)
0.819560 0.572994i \(-0.194218\pi\)
\(402\) 0 0
\(403\) 1.89662 + 3.28504i 0.0944774 + 0.163640i
\(404\) 16.3419 28.3050i 0.813041 1.40823i
\(405\) 0 0
\(406\) −24.8237 −1.23198
\(407\) 5.84785 0.289867
\(408\) 0 0
\(409\) 8.69791 + 15.0652i 0.430084 + 0.744928i 0.996880 0.0789306i \(-0.0251505\pi\)
−0.566796 + 0.823858i \(0.691817\pi\)
\(410\) −17.5917 −0.868794
\(411\) 0 0
\(412\) 8.81018 + 15.2597i 0.434046 + 0.751790i
\(413\) −4.08441 + 7.07441i −0.200981 + 0.348109i
\(414\) 0 0
\(415\) −1.80777 + 3.13116i −0.0887402 + 0.153702i
\(416\) 2.17247 3.76282i 0.106514 0.184487i
\(417\) 0 0
\(418\) 1.49707 6.37283i 0.0732240 0.311705i
\(419\) −30.9259 −1.51083 −0.755414 0.655248i \(-0.772564\pi\)
−0.755414 + 0.655248i \(0.772564\pi\)
\(420\) 0 0
\(421\) 5.81345 10.0692i 0.283330 0.490742i −0.688873 0.724882i \(-0.741894\pi\)
0.972203 + 0.234140i \(0.0752275\pi\)
\(422\) 14.9378 + 25.8730i 0.727160 + 1.25948i
\(423\) 0 0
\(424\) 0.456788 + 0.791180i 0.0221836 + 0.0384231i
\(425\) −1.41013 −0.0684015
\(426\) 0 0
\(427\) 4.33607 + 7.51029i 0.209837 + 0.363449i
\(428\) 11.9938 + 20.7739i 0.579744 + 1.00415i
\(429\) 0 0
\(430\) −11.8190 −0.569963
\(431\) −12.2150 21.1569i −0.588374 1.01909i −0.994446 0.105252i \(-0.966435\pi\)
0.406072 0.913841i \(-0.366898\pi\)
\(432\) 0 0
\(433\) −10.4503 18.1004i −0.502208 0.869851i −0.999997 0.00255203i \(-0.999188\pi\)
0.497788 0.867299i \(-0.334146\pi\)
\(434\) 11.7875 20.4165i 0.565817 0.980023i
\(435\) 0 0
\(436\) −4.61498 −0.221017
\(437\) 2.77922 + 2.61168i 0.132948 + 0.124934i
\(438\) 0 0
\(439\) −8.21019 + 14.2205i −0.391851 + 0.678706i −0.992694 0.120661i \(-0.961498\pi\)
0.600843 + 0.799367i \(0.294832\pi\)
\(440\) 0.0442201 0.0765915i 0.00210811 0.00365136i
\(441\) 0 0
\(442\) 0.766531 1.32767i 0.0364602 0.0631509i
\(443\) −1.32291 2.29135i −0.0628533 0.108865i 0.832886 0.553444i \(-0.186687\pi\)
−0.895740 + 0.444579i \(0.853353\pi\)
\(444\) 0 0
\(445\) −0.928832 −0.0440309
\(446\) −19.0263 32.9545i −0.900920 1.56044i
\(447\) 0 0
\(448\) −14.0899 −0.665683
\(449\) 8.17261 0.385689 0.192845 0.981229i \(-0.438229\pi\)
0.192845 + 0.981229i \(0.438229\pi\)
\(450\) 0 0
\(451\) −3.25455 + 5.63705i −0.153251 + 0.265438i
\(452\) −9.20717 15.9473i −0.433069 0.750097i
\(453\) 0 0
\(454\) 15.8476 27.4488i 0.743763 1.28823i
\(455\) −0.898315 −0.0421137
\(456\) 0 0
\(457\) −8.94164 −0.418272 −0.209136 0.977887i \(-0.567065\pi\)
−0.209136 + 0.977887i \(0.567065\pi\)
\(458\) −19.1814 + 33.2232i −0.896288 + 1.55242i
\(459\) 0 0
\(460\) 0.900704 + 1.56007i 0.0419956 + 0.0727384i
\(461\) 8.82526 15.2858i 0.411033 0.711930i −0.583970 0.811775i \(-0.698501\pi\)
0.995003 + 0.0998450i \(0.0318347\pi\)
\(462\) 0 0
\(463\) −20.8670 −0.969771 −0.484885 0.874578i \(-0.661139\pi\)
−0.484885 + 0.874578i \(0.661139\pi\)
\(464\) −28.7093 −1.33279
\(465\) 0 0
\(466\) 1.19760 + 2.07431i 0.0554779 + 0.0960905i
\(467\) −24.4820 −1.13289 −0.566445 0.824099i \(-0.691682\pi\)
−0.566445 + 0.824099i \(0.691682\pi\)
\(468\) 0 0
\(469\) −0.738341 1.27884i −0.0340934 0.0590515i
\(470\) 6.64588 11.5110i 0.306552 0.530963i
\(471\) 0 0
\(472\) 0.291092 0.504186i 0.0133986 0.0232071i
\(473\) −2.18657 + 3.78725i −0.100539 + 0.174138i
\(474\) 0 0
\(475\) −3.17646 2.98497i −0.145746 0.136960i
\(476\) −4.83310 −0.221525
\(477\) 0 0
\(478\) −26.1349 + 45.2669i −1.19538 + 2.07046i
\(479\) −1.65218 2.86165i −0.0754898 0.130752i 0.825809 0.563949i \(-0.190719\pi\)
−0.901299 + 0.433197i \(0.857385\pi\)
\(480\) 0 0
\(481\) 2.11664 + 3.66612i 0.0965103 + 0.167161i
\(482\) 18.2454 0.831057
\(483\) 0 0
\(484\) 10.7518 + 18.6227i 0.488720 + 0.846487i
\(485\) −0.00920110 0.0159368i −0.000417800 0.000723652i
\(486\) 0 0
\(487\) 32.6648 1.48019 0.740093 0.672505i \(-0.234782\pi\)
0.740093 + 0.672505i \(0.234782\pi\)
\(488\) −0.309028 0.535252i −0.0139890 0.0242297i
\(489\) 0 0
\(490\) −4.25983 7.37824i −0.192439 0.333315i
\(491\) 6.51626 11.2865i 0.294075 0.509352i −0.680694 0.732567i \(-0.738322\pi\)
0.974769 + 0.223215i \(0.0716552\pi\)
\(492\) 0 0
\(493\) −10.4373 −0.470074
\(494\) 4.53710 1.36811i 0.204134 0.0615544i
\(495\) 0 0
\(496\) 13.6325 23.6122i 0.612119 1.06022i
\(497\) −2.34822 + 4.06723i −0.105332 + 0.182440i
\(498\) 0 0
\(499\) −15.1552 + 26.2496i −0.678441 + 1.17509i 0.297009 + 0.954875i \(0.404011\pi\)
−0.975450 + 0.220220i \(0.929323\pi\)
\(500\) −1.02944 1.78305i −0.0460381 0.0797404i
\(501\) 0 0
\(502\) 5.90411 0.263513
\(503\) −19.0259 32.9539i −0.848324 1.46934i −0.882703 0.469931i \(-0.844279\pi\)
0.0343796 0.999409i \(-0.489054\pi\)
\(504\) 0 0
\(505\) −15.8745 −0.706406
\(506\) 1.31401 0.0584150
\(507\) 0 0
\(508\) 20.4091 35.3497i 0.905509 1.56839i
\(509\) 11.8719 + 20.5627i 0.526212 + 0.911427i 0.999534 + 0.0305368i \(0.00972167\pi\)
−0.473321 + 0.880890i \(0.656945\pi\)
\(510\) 0 0
\(511\) −0.872910 + 1.51192i −0.0386153 + 0.0668836i
\(512\) −32.1509 −1.42088
\(513\) 0 0
\(514\) 21.8606 0.964228
\(515\) 4.27910 7.41161i 0.188559 0.326595i
\(516\) 0 0
\(517\) −2.45904 4.25918i −0.108148 0.187318i
\(518\) 13.1549 22.7849i 0.577991 1.00111i
\(519\) 0 0
\(520\) 0.0640221 0.00280755
\(521\) 29.8052 1.30579 0.652896 0.757448i \(-0.273554\pi\)
0.652896 + 0.757448i \(0.273554\pi\)
\(522\) 0 0
\(523\) −2.97546 5.15365i −0.130108 0.225353i 0.793610 0.608427i \(-0.208199\pi\)
−0.923718 + 0.383073i \(0.874866\pi\)
\(524\) 3.78002 0.165131
\(525\) 0 0
\(526\) 16.9816 + 29.4130i 0.740433 + 1.28247i
\(527\) 4.95615 8.58431i 0.215893 0.373938i
\(528\) 0 0
\(529\) 11.1172 19.2556i 0.483358 0.837201i
\(530\) 7.75684 13.4352i 0.336936 0.583589i
\(531\) 0 0
\(532\) −10.8870 10.2307i −0.472013 0.443558i
\(533\) −4.71196 −0.204097
\(534\) 0 0
\(535\) 5.82539 10.0899i 0.251854 0.436223i
\(536\) 0.0526209 + 0.0911420i 0.00227288 + 0.00393674i
\(537\) 0 0
\(538\) 29.7629 + 51.5509i 1.28317 + 2.22252i
\(539\) −3.15235 −0.135781
\(540\) 0 0
\(541\) −2.20614 3.82115i −0.0948496 0.164284i 0.814696 0.579888i \(-0.196904\pi\)
−0.909546 + 0.415604i \(0.863570\pi\)
\(542\) 21.4005 + 37.0668i 0.919231 + 1.59216i
\(543\) 0 0
\(544\) −11.3540 −0.486797
\(545\) 1.12075 + 1.94119i 0.0480075 + 0.0831514i
\(546\) 0 0
\(547\) −22.2986 38.6224i −0.953421 1.65137i −0.737942 0.674865i \(-0.764202\pi\)
−0.215479 0.976508i \(-0.569131\pi\)
\(548\) −4.07854 + 7.06424i −0.174227 + 0.301769i
\(549\) 0 0
\(550\) −1.50183 −0.0640381
\(551\) −23.5111 22.0938i −1.00161 0.941227i
\(552\) 0 0
\(553\) −4.80468 + 8.32195i −0.204316 + 0.353885i
\(554\) −28.5736 + 49.4910i −1.21398 + 2.10267i
\(555\) 0 0
\(556\) 1.83045 3.17043i 0.0776282 0.134456i
\(557\) 6.46476 + 11.1973i 0.273921 + 0.474444i 0.969862 0.243654i \(-0.0783461\pi\)
−0.695942 + 0.718098i \(0.745013\pi\)
\(558\) 0 0
\(559\) −3.16573 −0.133896
\(560\) 3.22846 + 5.59185i 0.136427 + 0.236299i
\(561\) 0 0
\(562\) −35.4948 −1.49726
\(563\) 31.7105 1.33644 0.668219 0.743964i \(-0.267057\pi\)
0.668219 + 0.743964i \(0.267057\pi\)
\(564\) 0 0
\(565\) −4.47191 + 7.74558i −0.188135 + 0.325859i
\(566\) −17.2164 29.8196i −0.723659 1.25341i
\(567\) 0 0
\(568\) 0.167355 0.289868i 0.00702207 0.0121626i
\(569\) 28.4382 1.19219 0.596095 0.802914i \(-0.296718\pi\)
0.596095 + 0.802914i \(0.296718\pi\)
\(570\) 0 0
\(571\) −7.32088 −0.306369 −0.153185 0.988198i \(-0.548953\pi\)
−0.153185 + 0.988198i \(0.548953\pi\)
\(572\) 0.414110 0.717259i 0.0173148 0.0299901i
\(573\) 0 0
\(574\) 14.6424 + 25.3613i 0.611161 + 1.05856i
\(575\) 0.437471 0.757722i 0.0182438 0.0315992i
\(576\) 0 0
\(577\) −13.8157 −0.575156 −0.287578 0.957757i \(-0.592850\pi\)
−0.287578 + 0.957757i \(0.592850\pi\)
\(578\) 30.2432 1.25795
\(579\) 0 0
\(580\) −7.61960 13.1975i −0.316387 0.547998i
\(581\) 6.01876 0.249700
\(582\) 0 0
\(583\) −2.87010 4.97116i −0.118868 0.205885i
\(584\) 0.0622115 0.107753i 0.00257433 0.00445887i
\(585\) 0 0
\(586\) 22.4187 38.8303i 0.926108 1.60407i
\(587\) −9.94338 + 17.2224i −0.410407 + 0.710846i −0.994934 0.100528i \(-0.967947\pi\)
0.584527 + 0.811374i \(0.301280\pi\)
\(588\) 0 0
\(589\) 29.3355 8.84580i 1.20875 0.364485i
\(590\) −9.88622 −0.407009
\(591\) 0 0
\(592\) 15.2140 26.3514i 0.625290 1.08303i
\(593\) 4.92452 + 8.52952i 0.202226 + 0.350266i 0.949245 0.314537i \(-0.101849\pi\)
−0.747019 + 0.664802i \(0.768516\pi\)
\(594\) 0 0
\(595\) 1.17372 + 2.03294i 0.0481177 + 0.0833423i
\(596\) 39.3380 1.61135
\(597\) 0 0
\(598\) 0.475608 + 0.823777i 0.0194491 + 0.0336867i
\(599\) 3.58661 + 6.21220i 0.146545 + 0.253823i 0.929948 0.367690i \(-0.119851\pi\)
−0.783403 + 0.621514i \(0.786518\pi\)
\(600\) 0 0
\(601\) 39.2040 1.59916 0.799582 0.600557i \(-0.205054\pi\)
0.799582 + 0.600557i \(0.205054\pi\)
\(602\) 9.83747 + 17.0390i 0.400946 + 0.694458i
\(603\) 0 0
\(604\) −2.51847 4.36212i −0.102475 0.177492i
\(605\) 5.22215 9.04504i 0.212311 0.367733i
\(606\) 0 0
\(607\) 44.1741 1.79297 0.896485 0.443074i \(-0.146112\pi\)
0.896485 + 0.443074i \(0.146112\pi\)
\(608\) −25.5759 24.0341i −1.03724 0.974711i
\(609\) 0 0
\(610\) −5.24768 + 9.08924i −0.212472 + 0.368013i
\(611\) 1.78010 3.08323i 0.0720152 0.124734i
\(612\) 0 0
\(613\) 3.75407 6.50224i 0.151625 0.262623i −0.780200 0.625531i \(-0.784883\pi\)
0.931825 + 0.362907i \(0.118216\pi\)
\(614\) −26.7877 46.3977i −1.08107 1.87246i
\(615\) 0 0
\(616\) −0.147225 −0.00593188
\(617\) −7.53673 13.0540i −0.303417 0.525534i 0.673490 0.739196i \(-0.264794\pi\)
−0.976908 + 0.213662i \(0.931461\pi\)
\(618\) 0 0
\(619\) 43.5536 1.75057 0.875283 0.483610i \(-0.160675\pi\)
0.875283 + 0.483610i \(0.160675\pi\)
\(620\) 14.4726 0.581234
\(621\) 0 0
\(622\) 11.2715 19.5228i 0.451945 0.782792i
\(623\) 0.773108 + 1.33906i 0.0309739 + 0.0536484i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −41.2285 −1.64782
\(627\) 0 0
\(628\) 18.9659 0.756822
\(629\) 5.53108 9.58012i 0.220539 0.381984i
\(630\) 0 0
\(631\) −13.9200 24.1101i −0.554146 0.959809i −0.997969 0.0636948i \(-0.979712\pi\)
0.443823 0.896114i \(-0.353622\pi\)
\(632\) 0.342425 0.593098i 0.0136209 0.0235922i
\(633\) 0 0
\(634\) 31.2939 1.24284
\(635\) −19.8254 −0.786747
\(636\) 0 0
\(637\) −1.14100 1.97627i −0.0452080 0.0783025i
\(638\) −11.1160 −0.440088
\(639\) 0 0
\(640\) −0.474357 0.821611i −0.0187506 0.0324770i
\(641\) −2.21833 + 3.84226i −0.0876187 + 0.151760i −0.906504 0.422197i \(-0.861259\pi\)
0.818885 + 0.573957i \(0.194592\pi\)
\(642\) 0 0
\(643\) 3.32952 5.76690i 0.131304 0.227425i −0.792876 0.609383i \(-0.791417\pi\)
0.924179 + 0.381959i \(0.124750\pi\)
\(644\) 1.49939 2.59702i 0.0590843 0.102337i
\(645\) 0 0
\(646\) −9.02418 8.48017i −0.355052 0.333648i
\(647\) 1.27795 0.0502415 0.0251208 0.999684i \(-0.492003\pi\)
0.0251208 + 0.999684i \(0.492003\pi\)
\(648\) 0 0
\(649\) −1.82900 + 3.16792i −0.0717944 + 0.124352i
\(650\) −0.543588 0.941522i −0.0213213 0.0369295i
\(651\) 0 0
\(652\) −1.12920 1.95584i −0.0442231 0.0765966i
\(653\) 45.2709 1.77159 0.885795 0.464078i \(-0.153614\pi\)
0.885795 + 0.464078i \(0.153614\pi\)
\(654\) 0 0
\(655\) −0.917977 1.58998i −0.0358683 0.0621257i
\(656\) 16.9343 + 29.3311i 0.661174 + 1.14519i
\(657\) 0 0
\(658\) −22.1266 −0.862586
\(659\) 6.80538 + 11.7873i 0.265100 + 0.459167i 0.967590 0.252527i \(-0.0812617\pi\)
−0.702490 + 0.711694i \(0.747928\pi\)
\(660\) 0 0
\(661\) 14.5259 + 25.1596i 0.564991 + 0.978594i 0.997050 + 0.0767486i \(0.0244539\pi\)
−0.432059 + 0.901845i \(0.642213\pi\)
\(662\) −16.4259 + 28.4506i −0.638412 + 1.10576i
\(663\) 0 0
\(664\) −0.428951 −0.0166465
\(665\) −1.65941 + 7.06391i −0.0643493 + 0.273927i
\(666\) 0 0
\(667\) 3.23802 5.60841i 0.125376 0.217158i
\(668\) −12.8565 + 22.2681i −0.497432 + 0.861578i
\(669\) 0 0
\(670\) 0.893568 1.54771i 0.0345216 0.0597931i
\(671\) 1.94169 + 3.36311i 0.0749581 + 0.129831i
\(672\) 0 0
\(673\) −13.4534 −0.518591 −0.259296 0.965798i \(-0.583490\pi\)
−0.259296 + 0.965798i \(0.583490\pi\)
\(674\) 29.3344 + 50.8086i 1.12992 + 1.95707i
\(675\) 0 0
\(676\) −26.1660 −1.00638
\(677\) 48.1048 1.84882 0.924409 0.381404i \(-0.124559\pi\)
0.924409 + 0.381404i \(0.124559\pi\)
\(678\) 0 0
\(679\) −0.0153170 + 0.0265298i −0.000587811 + 0.00101812i
\(680\) −0.0836496 0.144885i −0.00320782 0.00555610i
\(681\) 0 0
\(682\) 5.27842 9.14250i 0.202121 0.350084i
\(683\) −31.7434 −1.21463 −0.607314 0.794462i \(-0.707753\pi\)
−0.607314 + 0.794462i \(0.707753\pi\)
\(684\) 0 0
\(685\) 3.96188 0.151376
\(686\) −18.8296 + 32.6138i −0.718916 + 1.24520i
\(687\) 0 0
\(688\) 11.3773 + 19.7061i 0.433756 + 0.751287i
\(689\) 2.07767 3.59864i 0.0791530 0.137097i
\(690\) 0 0
\(691\) 5.63348 0.214308 0.107154 0.994242i \(-0.465826\pi\)
0.107154 + 0.994242i \(0.465826\pi\)
\(692\) 8.87620 0.337422
\(693\) 0 0
\(694\) 2.74302 + 4.75105i 0.104124 + 0.180347i
\(695\) −1.77809 −0.0674469
\(696\) 0 0
\(697\) 6.15652 + 10.6634i 0.233195 + 0.403905i
\(698\) −5.75183 + 9.96246i −0.217710 + 0.377085i
\(699\) 0 0
\(700\) −1.71370 + 2.96822i −0.0647719 + 0.112188i
\(701\) −14.9878 + 25.9596i −0.566080 + 0.980480i 0.430868 + 0.902415i \(0.358207\pi\)
−0.996948 + 0.0780649i \(0.975126\pi\)
\(702\) 0 0
\(703\) 32.7385 9.87195i 1.23476 0.372328i
\(704\) −6.30943 −0.237796
\(705\) 0 0
\(706\) 27.8462 48.2311i 1.04801 1.81520i
\(707\) 13.2130 + 22.8857i 0.496928 + 0.860704i
\(708\) 0 0
\(709\) −1.14344 1.98050i −0.0429429 0.0743793i 0.843755 0.536728i \(-0.180340\pi\)
−0.886698 + 0.462349i \(0.847007\pi\)
\(710\) −5.68380 −0.213309
\(711\) 0 0
\(712\) −0.0550987 0.0954337i −0.00206491 0.00357653i
\(713\) 3.07513 + 5.32628i 0.115165 + 0.199471i
\(714\) 0 0
\(715\) −0.402265 −0.0150439
\(716\) 12.9749 + 22.4732i 0.484895 + 0.839863i
\(717\) 0 0
\(718\) 4.26370 + 7.38495i 0.159120 + 0.275604i
\(719\) 22.1981 38.4483i 0.827850 1.43388i −0.0718716 0.997414i \(-0.522897\pi\)
0.899722 0.436464i \(-0.143769\pi\)
\(720\) 0 0
\(721\) −14.2467 −0.530575
\(722\) −2.37702 38.2048i −0.0884636 1.42184i
\(723\) 0 0
\(724\) −3.79935 + 6.58067i −0.141202 + 0.244569i
\(725\) −3.70083 + 6.41003i −0.137446 + 0.238063i
\(726\) 0 0
\(727\) 4.39956 7.62026i 0.163171 0.282620i −0.772834 0.634609i \(-0.781161\pi\)
0.936004 + 0.351989i \(0.114495\pi\)
\(728\) −0.0532884 0.0922982i −0.00197500 0.00342080i
\(729\) 0 0
\(730\) −2.11286 −0.0782004
\(731\) 4.13626 + 7.16421i 0.152985 + 0.264978i
\(732\) 0 0
\(733\) 28.5385 1.05409 0.527047 0.849836i \(-0.323299\pi\)
0.527047 + 0.849836i \(0.323299\pi\)
\(734\) −3.10115 −0.114465
\(735\) 0 0
\(736\) 3.52238 6.10094i 0.129837 0.224884i
\(737\) −0.330629 0.572666i −0.0121789 0.0210944i
\(738\) 0 0
\(739\) 5.16208 8.94099i 0.189890 0.328900i −0.755323 0.655352i \(-0.772520\pi\)
0.945213 + 0.326453i \(0.105853\pi\)
\(740\) 16.1515 0.593741
\(741\) 0 0
\(742\) −25.8254 −0.948081
\(743\) 13.5295 23.4339i 0.496351 0.859705i −0.503640 0.863914i \(-0.668006\pi\)
0.999991 + 0.00420839i \(0.00133958\pi\)
\(744\) 0 0
\(745\) −9.55320 16.5466i −0.350002 0.606222i
\(746\) 0.493885 0.855434i 0.0180824 0.0313196i
\(747\) 0 0
\(748\) −2.16426 −0.0791332
\(749\) −19.3949 −0.708675
\(750\) 0 0
\(751\) 25.9995 + 45.0325i 0.948735 + 1.64326i 0.748093 + 0.663593i \(0.230969\pi\)
0.200642 + 0.979665i \(0.435697\pi\)
\(752\) −25.5901 −0.933173
\(753\) 0 0
\(754\) −4.02346 6.96883i −0.146526 0.253790i
\(755\) −1.22322 + 2.11868i −0.0445175 + 0.0771066i
\(756\) 0 0
\(757\) −26.7487 + 46.3301i −0.972199 + 1.68390i −0.283313 + 0.959028i \(0.591433\pi\)
−0.688886 + 0.724870i \(0.741900\pi\)
\(758\) −34.8789 + 60.4121i −1.26686 + 2.19427i
\(759\) 0 0
\(760\) 0.118265 0.503438i 0.00428991 0.0182616i
\(761\) 33.8123 1.22569 0.612847 0.790201i \(-0.290024\pi\)
0.612847 + 0.790201i \(0.290024\pi\)
\(762\) 0 0
\(763\) 1.86569 3.23147i 0.0675426 0.116987i
\(764\) 6.41996 + 11.1197i 0.232266 + 0.402297i
\(765\) 0 0
\(766\) −24.1280 41.7909i −0.871780 1.50997i
\(767\) −2.64803 −0.0956148
\(768\) 0 0
\(769\) 3.09718 + 5.36447i 0.111687 + 0.193448i 0.916451 0.400148i \(-0.131041\pi\)
−0.804763 + 0.593596i \(0.797708\pi\)
\(770\) 1.25004 + 2.16513i 0.0450482 + 0.0780257i
\(771\) 0 0
\(772\) −38.9655 −1.40240
\(773\) 4.36013 + 7.55197i 0.156823 + 0.271626i 0.933721 0.358001i \(-0.116541\pi\)
−0.776898 + 0.629626i \(0.783208\pi\)
\(774\) 0 0
\(775\) −3.51467 6.08758i −0.126251 0.218672i
\(776\) 0.00109163 0.00189075i 3.91871e−5 6.78740e-5i
\(777\) 0 0
\(778\) 35.2915 1.26526
\(779\) −8.70416 + 37.0525i −0.311859 + 1.32754i
\(780\) 0 0
\(781\) −1.05153 + 1.82130i −0.0376267 + 0.0651714i
\(782\) 1.24283 2.15265i 0.0444437 0.0769787i
\(783\) 0