Properties

Label 855.2.k.j.676.4
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 10 x^{9} + 44 x^{8} - 20 x^{7} + 119 x^{6} + 13 x^{5} + 83 x^{4} + 14 x^{3} + 46 x^{2} + 12 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.4
Root \(0.414953 - 0.718719i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.j.406.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0850473 + 0.147306i) q^{2} +(0.985534 + 1.70699i) q^{4} +(-0.500000 + 0.866025i) q^{5} -0.218469 q^{7} -0.675457 q^{8} +O(q^{10})\) \(q+(-0.0850473 + 0.147306i) q^{2} +(0.985534 + 1.70699i) q^{4} +(-0.500000 + 0.866025i) q^{5} -0.218469 q^{7} -0.675457 q^{8} +(-0.0850473 - 0.147306i) q^{10} -5.33261 q^{11} +(-3.01725 - 5.22603i) q^{13} +(0.0185802 - 0.0321818i) q^{14} +(-1.91362 + 3.31449i) q^{16} +(-3.27554 + 5.67340i) q^{17} +(1.50507 + 4.09082i) q^{19} -1.97107 q^{20} +(0.453524 - 0.785526i) q^{22} +(-1.90802 - 3.30478i) q^{23} +(-0.500000 - 0.866025i) q^{25} +1.02644 q^{26} +(-0.215309 - 0.372925i) q^{28} +(-0.525141 - 0.909571i) q^{29} +2.65981 q^{31} +(-1.00095 - 1.73370i) q^{32} +(-0.557151 - 0.965014i) q^{34} +(0.109234 - 0.189200i) q^{35} +3.10309 q^{37} +(-0.730604 - 0.126207i) q^{38} +(0.337729 - 0.584963i) q^{40} +(1.75010 - 3.03127i) q^{41} +(-1.39266 + 2.41216i) q^{43} +(-5.25546 - 9.10273i) q^{44} +0.649086 q^{46} +(-4.26432 - 7.38603i) q^{47} -6.95227 q^{49} +0.170095 q^{50} +(5.94720 - 10.3009i) q^{52} +(2.57461 + 4.45936i) q^{53} +(2.66630 - 4.61817i) q^{55} +0.147566 q^{56} +0.178647 q^{58} +(-5.95070 + 10.3069i) q^{59} +(2.25799 + 3.91096i) q^{61} +(-0.226210 + 0.391807i) q^{62} -7.31397 q^{64} +6.03450 q^{65} +(3.30165 + 5.71862i) q^{67} -12.9126 q^{68} +(0.0185802 + 0.0321818i) q^{70} +(-3.12329 + 5.40970i) q^{71} +(-3.31536 + 5.74237i) q^{73} +(-0.263909 + 0.457104i) q^{74} +(-5.49971 + 6.60078i) q^{76} +1.16501 q^{77} +(-1.80793 + 3.13143i) q^{79} +(-1.91362 - 3.31449i) q^{80} +(0.297683 + 0.515602i) q^{82} +8.39679 q^{83} +(-3.27554 - 5.67340i) q^{85} +(-0.236884 - 0.410296i) q^{86} +3.60195 q^{88} +(4.79182 + 8.29967i) q^{89} +(0.659175 + 1.14172i) q^{91} +(3.76083 - 6.51394i) q^{92} +1.45068 q^{94} +(-4.29528 - 0.741981i) q^{95} +(7.95622 - 13.7806i) q^{97} +(0.591272 - 1.02411i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 5 q^{4} - 6 q^{5} + 4 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} - 5 q^{4} - 6 q^{5} + 4 q^{7} + 12 q^{8} - 3 q^{10} - 8 q^{13} - 10 q^{14} - 3 q^{16} - 4 q^{17} - 6 q^{19} + 10 q^{20} + 2 q^{23} - 6 q^{25} + 40 q^{26} - 26 q^{28} - 4 q^{29} + 24 q^{31} - 15 q^{32} + 7 q^{34} - 2 q^{35} + 29 q^{38} - 6 q^{40} - 12 q^{41} - 4 q^{43} - 6 q^{44} + 48 q^{46} - 6 q^{47} + 32 q^{49} + 6 q^{50} - 20 q^{52} - 26 q^{53} + 44 q^{56} - 20 q^{58} - 16 q^{59} + 20 q^{61} + 25 q^{62} + 28 q^{64} + 16 q^{65} - 12 q^{67} - 54 q^{68} - 10 q^{70} + 8 q^{71} - 4 q^{73} + 16 q^{74} - 66 q^{76} - 48 q^{77} - 12 q^{79} - 3 q^{80} + 26 q^{82} + 44 q^{83} - 4 q^{85} + 44 q^{86} - 32 q^{88} + 8 q^{89} + 2 q^{91} - 36 q^{92} - 14 q^{94} + 6 q^{95} + 30 q^{97} - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0850473 + 0.147306i −0.0601375 + 0.104161i −0.894527 0.447014i \(-0.852487\pi\)
0.834389 + 0.551176i \(0.185821\pi\)
\(3\) 0 0
\(4\) 0.985534 + 1.70699i 0.492767 + 0.853497i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.218469 −0.0825735 −0.0412867 0.999147i \(-0.513146\pi\)
−0.0412867 + 0.999147i \(0.513146\pi\)
\(8\) −0.675457 −0.238810
\(9\) 0 0
\(10\) −0.0850473 0.147306i −0.0268943 0.0465823i
\(11\) −5.33261 −1.60784 −0.803921 0.594737i \(-0.797256\pi\)
−0.803921 + 0.594737i \(0.797256\pi\)
\(12\) 0 0
\(13\) −3.01725 5.22603i −0.836834 1.44944i −0.892528 0.450992i \(-0.851070\pi\)
0.0556936 0.998448i \(-0.482263\pi\)
\(14\) 0.0185802 0.0321818i 0.00496576 0.00860095i
\(15\) 0 0
\(16\) −1.91362 + 3.31449i −0.478406 + 0.828623i
\(17\) −3.27554 + 5.67340i −0.794435 + 1.37600i 0.128763 + 0.991675i \(0.458899\pi\)
−0.923198 + 0.384326i \(0.874434\pi\)
\(18\) 0 0
\(19\) 1.50507 + 4.09082i 0.345286 + 0.938497i
\(20\) −1.97107 −0.440744
\(21\) 0 0
\(22\) 0.453524 0.785526i 0.0966916 0.167475i
\(23\) −1.90802 3.30478i −0.397849 0.689094i 0.595612 0.803273i \(-0.296910\pi\)
−0.993460 + 0.114178i \(0.963576\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.02644 0.201301
\(27\) 0 0
\(28\) −0.215309 0.372925i −0.0406895 0.0704763i
\(29\) −0.525141 0.909571i −0.0975162 0.168903i 0.813140 0.582068i \(-0.197756\pi\)
−0.910656 + 0.413165i \(0.864423\pi\)
\(30\) 0 0
\(31\) 2.65981 0.477716 0.238858 0.971054i \(-0.423227\pi\)
0.238858 + 0.971054i \(0.423227\pi\)
\(32\) −1.00095 1.73370i −0.176945 0.306478i
\(33\) 0 0
\(34\) −0.557151 0.965014i −0.0955506 0.165499i
\(35\) 0.109234 0.189200i 0.0184640 0.0319806i
\(36\) 0 0
\(37\) 3.10309 0.510145 0.255072 0.966922i \(-0.417901\pi\)
0.255072 + 0.966922i \(0.417901\pi\)
\(38\) −0.730604 0.126207i −0.118520 0.0204735i
\(39\) 0 0
\(40\) 0.337729 0.584963i 0.0533996 0.0924908i
\(41\) 1.75010 3.03127i 0.273320 0.473404i −0.696390 0.717664i \(-0.745212\pi\)
0.969710 + 0.244259i \(0.0785449\pi\)
\(42\) 0 0
\(43\) −1.39266 + 2.41216i −0.212379 + 0.367852i −0.952459 0.304668i \(-0.901455\pi\)
0.740079 + 0.672519i \(0.234788\pi\)
\(44\) −5.25546 9.10273i −0.792291 1.37229i
\(45\) 0 0
\(46\) 0.649086 0.0957025
\(47\) −4.26432 7.38603i −0.622016 1.07736i −0.989110 0.147179i \(-0.952981\pi\)
0.367094 0.930184i \(-0.380353\pi\)
\(48\) 0 0
\(49\) −6.95227 −0.993182
\(50\) 0.170095 0.0240550
\(51\) 0 0
\(52\) 5.94720 10.3009i 0.824729 1.42847i
\(53\) 2.57461 + 4.45936i 0.353650 + 0.612540i 0.986886 0.161419i \(-0.0516070\pi\)
−0.633236 + 0.773959i \(0.718274\pi\)
\(54\) 0 0
\(55\) 2.66630 4.61817i 0.359524 0.622714i
\(56\) 0.147566 0.0197194
\(57\) 0 0
\(58\) 0.178647 0.0234575
\(59\) −5.95070 + 10.3069i −0.774715 + 1.34185i 0.160239 + 0.987078i \(0.448773\pi\)
−0.934954 + 0.354768i \(0.884560\pi\)
\(60\) 0 0
\(61\) 2.25799 + 3.91096i 0.289106 + 0.500747i 0.973597 0.228275i \(-0.0733085\pi\)
−0.684490 + 0.729022i \(0.739975\pi\)
\(62\) −0.226210 + 0.391807i −0.0287287 + 0.0497595i
\(63\) 0 0
\(64\) −7.31397 −0.914247
\(65\) 6.03450 0.748487
\(66\) 0 0
\(67\) 3.30165 + 5.71862i 0.403360 + 0.698641i 0.994129 0.108200i \(-0.0345088\pi\)
−0.590769 + 0.806841i \(0.701175\pi\)
\(68\) −12.9126 −1.56588
\(69\) 0 0
\(70\) 0.0185802 + 0.0321818i 0.00222076 + 0.00384646i
\(71\) −3.12329 + 5.40970i −0.370666 + 0.642013i −0.989668 0.143376i \(-0.954204\pi\)
0.619002 + 0.785390i \(0.287537\pi\)
\(72\) 0 0
\(73\) −3.31536 + 5.74237i −0.388033 + 0.672093i −0.992185 0.124776i \(-0.960179\pi\)
0.604152 + 0.796869i \(0.293512\pi\)
\(74\) −0.263909 + 0.457104i −0.0306788 + 0.0531373i
\(75\) 0 0
\(76\) −5.49971 + 6.60078i −0.630859 + 0.757161i
\(77\) 1.16501 0.132765
\(78\) 0 0
\(79\) −1.80793 + 3.13143i −0.203409 + 0.352314i −0.949624 0.313390i \(-0.898535\pi\)
0.746216 + 0.665704i \(0.231869\pi\)
\(80\) −1.91362 3.31449i −0.213949 0.370571i
\(81\) 0 0
\(82\) 0.297683 + 0.515602i 0.0328736 + 0.0569387i
\(83\) 8.39679 0.921668 0.460834 0.887486i \(-0.347550\pi\)
0.460834 + 0.887486i \(0.347550\pi\)
\(84\) 0 0
\(85\) −3.27554 5.67340i −0.355282 0.615366i
\(86\) −0.236884 0.410296i −0.0255439 0.0442434i
\(87\) 0 0
\(88\) 3.60195 0.383969
\(89\) 4.79182 + 8.29967i 0.507932 + 0.879764i 0.999958 + 0.00918326i \(0.00292317\pi\)
−0.492026 + 0.870581i \(0.663744\pi\)
\(90\) 0 0
\(91\) 0.659175 + 1.14172i 0.0691003 + 0.119685i
\(92\) 3.76083 6.51394i 0.392093 0.679126i
\(93\) 0 0
\(94\) 1.45068 0.149626
\(95\) −4.29528 0.741981i −0.440687 0.0761256i
\(96\) 0 0
\(97\) 7.95622 13.7806i 0.807832 1.39921i −0.106530 0.994309i \(-0.533974\pi\)
0.914362 0.404897i \(-0.132693\pi\)
\(98\) 0.591272 1.02411i 0.0597275 0.103451i
\(99\) 0 0
\(100\) 0.985534 1.70699i 0.0985534 0.170699i
\(101\) −2.74154 4.74848i −0.272793 0.472492i 0.696783 0.717282i \(-0.254614\pi\)
−0.969576 + 0.244791i \(0.921281\pi\)
\(102\) 0 0
\(103\) −7.51533 −0.740508 −0.370254 0.928931i \(-0.620729\pi\)
−0.370254 + 0.928931i \(0.620729\pi\)
\(104\) 2.03802 + 3.52996i 0.199845 + 0.346141i
\(105\) 0 0
\(106\) −0.875855 −0.0850706
\(107\) 11.2010 1.08284 0.541421 0.840751i \(-0.317886\pi\)
0.541421 + 0.840751i \(0.317886\pi\)
\(108\) 0 0
\(109\) −4.11443 + 7.12641i −0.394091 + 0.682586i −0.992985 0.118243i \(-0.962274\pi\)
0.598894 + 0.800829i \(0.295607\pi\)
\(110\) 0.453524 + 0.785526i 0.0432418 + 0.0748970i
\(111\) 0 0
\(112\) 0.418067 0.724113i 0.0395036 0.0684223i
\(113\) −11.2410 −1.05746 −0.528731 0.848789i \(-0.677332\pi\)
−0.528731 + 0.848789i \(0.677332\pi\)
\(114\) 0 0
\(115\) 3.81603 0.355847
\(116\) 1.03509 1.79283i 0.0961055 0.166460i
\(117\) 0 0
\(118\) −1.01218 1.75315i −0.0931789 0.161391i
\(119\) 0.715603 1.23946i 0.0655992 0.113621i
\(120\) 0 0
\(121\) 17.4367 1.58515
\(122\) −0.768145 −0.0695446
\(123\) 0 0
\(124\) 2.62133 + 4.54028i 0.235403 + 0.407729i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.99890 8.65834i −0.443580 0.768304i 0.554372 0.832269i \(-0.312959\pi\)
−0.997952 + 0.0639656i \(0.979625\pi\)
\(128\) 2.62394 4.54480i 0.231926 0.401707i
\(129\) 0 0
\(130\) −0.513218 + 0.888919i −0.0450122 + 0.0779634i
\(131\) −8.74252 + 15.1425i −0.763837 + 1.32301i 0.177022 + 0.984207i \(0.443354\pi\)
−0.940859 + 0.338798i \(0.889980\pi\)
\(132\) 0 0
\(133\) −0.328811 0.893716i −0.0285115 0.0774950i
\(134\) −1.12318 −0.0970283
\(135\) 0 0
\(136\) 2.21248 3.83214i 0.189719 0.328603i
\(137\) 6.68642 + 11.5812i 0.571259 + 0.989450i 0.996437 + 0.0843402i \(0.0268783\pi\)
−0.425178 + 0.905110i \(0.639788\pi\)
\(138\) 0 0
\(139\) 4.46095 + 7.72659i 0.378373 + 0.655360i 0.990826 0.135146i \(-0.0431505\pi\)
−0.612453 + 0.790507i \(0.709817\pi\)
\(140\) 0.430617 0.0363938
\(141\) 0 0
\(142\) −0.531255 0.920160i −0.0445819 0.0772181i
\(143\) 16.0898 + 27.8684i 1.34550 + 2.33047i
\(144\) 0 0
\(145\) 1.05028 0.0872212
\(146\) −0.563924 0.976745i −0.0466707 0.0808360i
\(147\) 0 0
\(148\) 3.05820 + 5.29696i 0.251382 + 0.435407i
\(149\) 8.59072 14.8796i 0.703779 1.21898i −0.263351 0.964700i \(-0.584828\pi\)
0.967130 0.254281i \(-0.0818389\pi\)
\(150\) 0 0
\(151\) −20.4475 −1.66399 −0.831996 0.554781i \(-0.812802\pi\)
−0.831996 + 0.554781i \(0.812802\pi\)
\(152\) −1.01661 2.76317i −0.0824578 0.224123i
\(153\) 0 0
\(154\) −0.0990808 + 0.171613i −0.00798416 + 0.0138290i
\(155\) −1.32991 + 2.30346i −0.106821 + 0.185019i
\(156\) 0 0
\(157\) 3.15365 5.46228i 0.251689 0.435937i −0.712302 0.701873i \(-0.752347\pi\)
0.963991 + 0.265935i \(0.0856808\pi\)
\(158\) −0.307520 0.532640i −0.0244650 0.0423746i
\(159\) 0 0
\(160\) 2.00191 0.158265
\(161\) 0.416842 + 0.721991i 0.0328517 + 0.0569009i
\(162\) 0 0
\(163\) −4.20330 −0.329228 −0.164614 0.986358i \(-0.552638\pi\)
−0.164614 + 0.986358i \(0.552638\pi\)
\(164\) 6.89914 0.538732
\(165\) 0 0
\(166\) −0.714124 + 1.23690i −0.0554268 + 0.0960020i
\(167\) 2.32721 + 4.03085i 0.180085 + 0.311916i 0.941909 0.335867i \(-0.109029\pi\)
−0.761824 + 0.647784i \(0.775696\pi\)
\(168\) 0 0
\(169\) −11.7076 + 20.2781i −0.900584 + 1.55986i
\(170\) 1.11430 0.0854631
\(171\) 0 0
\(172\) −5.49007 −0.418614
\(173\) 11.8837 20.5831i 0.903500 1.56491i 0.0805809 0.996748i \(-0.474322\pi\)
0.822919 0.568159i \(-0.192344\pi\)
\(174\) 0 0
\(175\) 0.109234 + 0.189200i 0.00825735 + 0.0143021i
\(176\) 10.2046 17.6749i 0.769200 1.33229i
\(177\) 0 0
\(178\) −1.63012 −0.122183
\(179\) 13.7265 1.02597 0.512984 0.858398i \(-0.328540\pi\)
0.512984 + 0.858398i \(0.328540\pi\)
\(180\) 0 0
\(181\) −10.9708 19.0020i −0.815454 1.41241i −0.909001 0.416793i \(-0.863154\pi\)
0.0935470 0.995615i \(-0.470179\pi\)
\(182\) −0.224244 −0.0166221
\(183\) 0 0
\(184\) 1.28878 + 2.23224i 0.0950103 + 0.164563i
\(185\) −1.55154 + 2.68735i −0.114072 + 0.197578i
\(186\) 0 0
\(187\) 17.4672 30.2540i 1.27732 2.21239i
\(188\) 8.40527 14.5584i 0.613017 1.06178i
\(189\) 0 0
\(190\) 0.474601 0.569619i 0.0344311 0.0413245i
\(191\) 11.9978 0.868132 0.434066 0.900881i \(-0.357079\pi\)
0.434066 + 0.900881i \(0.357079\pi\)
\(192\) 0 0
\(193\) −5.83782 + 10.1114i −0.420216 + 0.727835i −0.995960 0.0897947i \(-0.971379\pi\)
0.575745 + 0.817630i \(0.304712\pi\)
\(194\) 1.35331 + 2.34400i 0.0971620 + 0.168290i
\(195\) 0 0
\(196\) −6.85170 11.8675i −0.489407 0.847678i
\(197\) 10.3275 0.735801 0.367901 0.929865i \(-0.380077\pi\)
0.367901 + 0.929865i \(0.380077\pi\)
\(198\) 0 0
\(199\) 4.63560 + 8.02910i 0.328609 + 0.569168i 0.982236 0.187649i \(-0.0600868\pi\)
−0.653627 + 0.756817i \(0.726753\pi\)
\(200\) 0.337729 + 0.584963i 0.0238810 + 0.0413631i
\(201\) 0 0
\(202\) 0.932641 0.0656204
\(203\) 0.114727 + 0.198713i 0.00805225 + 0.0139469i
\(204\) 0 0
\(205\) 1.75010 + 3.03127i 0.122232 + 0.211713i
\(206\) 0.639159 1.10706i 0.0445323 0.0771322i
\(207\) 0 0
\(208\) 23.0955 1.60138
\(209\) −8.02593 21.8147i −0.555166 1.50895i
\(210\) 0 0
\(211\) 0.526860 0.912548i 0.0362705 0.0628224i −0.847320 0.531082i \(-0.821786\pi\)
0.883591 + 0.468260i \(0.155119\pi\)
\(212\) −5.07474 + 8.78970i −0.348534 + 0.603679i
\(213\) 0 0
\(214\) −0.952615 + 1.64998i −0.0651195 + 0.112790i
\(215\) −1.39266 2.41216i −0.0949789 0.164508i
\(216\) 0 0
\(217\) −0.581086 −0.0394467
\(218\) −0.699843 1.21216i −0.0473993 0.0820980i
\(219\) 0 0
\(220\) 10.5109 0.708647
\(221\) 39.5325 2.65924
\(222\) 0 0
\(223\) −13.0822 + 22.6591i −0.876052 + 1.51737i −0.0204133 + 0.999792i \(0.506498\pi\)
−0.855638 + 0.517574i \(0.826835\pi\)
\(224\) 0.218677 + 0.378760i 0.0146110 + 0.0253070i
\(225\) 0 0
\(226\) 0.956015 1.65587i 0.0635932 0.110147i
\(227\) −15.2808 −1.01422 −0.507111 0.861881i \(-0.669287\pi\)
−0.507111 + 0.861881i \(0.669287\pi\)
\(228\) 0 0
\(229\) −13.5223 −0.893581 −0.446791 0.894639i \(-0.647433\pi\)
−0.446791 + 0.894639i \(0.647433\pi\)
\(230\) −0.324543 + 0.562125i −0.0213997 + 0.0370654i
\(231\) 0 0
\(232\) 0.354710 + 0.614376i 0.0232879 + 0.0403358i
\(233\) −2.45230 + 4.24751i −0.160656 + 0.278264i −0.935104 0.354373i \(-0.884694\pi\)
0.774448 + 0.632637i \(0.218028\pi\)
\(234\) 0 0
\(235\) 8.52865 0.556348
\(236\) −23.4585 −1.52702
\(237\) 0 0
\(238\) 0.121720 + 0.210826i 0.00788995 + 0.0136658i
\(239\) 18.0191 1.16556 0.582780 0.812630i \(-0.301965\pi\)
0.582780 + 0.812630i \(0.301965\pi\)
\(240\) 0 0
\(241\) 14.5193 + 25.1482i 0.935273 + 1.61994i 0.774147 + 0.633006i \(0.218179\pi\)
0.161125 + 0.986934i \(0.448488\pi\)
\(242\) −1.48294 + 2.56853i −0.0953272 + 0.165112i
\(243\) 0 0
\(244\) −4.45066 + 7.70877i −0.284924 + 0.493503i
\(245\) 3.47614 6.02084i 0.222082 0.384658i
\(246\) 0 0
\(247\) 16.8376 20.2085i 1.07135 1.28584i
\(248\) −1.79659 −0.114083
\(249\) 0 0
\(250\) −0.0850473 + 0.147306i −0.00537886 + 0.00931646i
\(251\) 14.4094 + 24.9578i 0.909514 + 1.57532i 0.814741 + 0.579826i \(0.196879\pi\)
0.0947735 + 0.995499i \(0.469787\pi\)
\(252\) 0 0
\(253\) 10.1747 + 17.6231i 0.639678 + 1.10795i
\(254\) 1.70057 0.106703
\(255\) 0 0
\(256\) −6.86766 11.8951i −0.429229 0.743446i
\(257\) 5.87925 + 10.1832i 0.366737 + 0.635208i 0.989053 0.147558i \(-0.0471414\pi\)
−0.622316 + 0.782766i \(0.713808\pi\)
\(258\) 0 0
\(259\) −0.677928 −0.0421244
\(260\) 5.94720 + 10.3009i 0.368830 + 0.638832i
\(261\) 0 0
\(262\) −1.48706 2.57565i −0.0918706 0.159124i
\(263\) −4.42603 + 7.66611i −0.272921 + 0.472713i −0.969608 0.244662i \(-0.921323\pi\)
0.696688 + 0.717375i \(0.254656\pi\)
\(264\) 0 0
\(265\) −5.14923 −0.316314
\(266\) 0.159614 + 0.0275723i 0.00978658 + 0.00169056i
\(267\) 0 0
\(268\) −6.50777 + 11.2718i −0.397525 + 0.688534i
\(269\) −9.01236 + 15.6099i −0.549493 + 0.951750i 0.448816 + 0.893624i \(0.351846\pi\)
−0.998309 + 0.0581261i \(0.981487\pi\)
\(270\) 0 0
\(271\) −0.0833046 + 0.144288i −0.00506040 + 0.00876486i −0.868545 0.495611i \(-0.834944\pi\)
0.863484 + 0.504376i \(0.168277\pi\)
\(272\) −12.5363 21.7135i −0.760124 1.31657i
\(273\) 0 0
\(274\) −2.27465 −0.137416
\(275\) 2.66630 + 4.61817i 0.160784 + 0.278486i
\(276\) 0 0
\(277\) 18.4262 1.10712 0.553560 0.832809i \(-0.313269\pi\)
0.553560 + 0.832809i \(0.313269\pi\)
\(278\) −1.51757 −0.0910175
\(279\) 0 0
\(280\) −0.0737832 + 0.127796i −0.00440939 + 0.00763728i
\(281\) −15.0338 26.0394i −0.896844 1.55338i −0.831506 0.555516i \(-0.812521\pi\)
−0.0653383 0.997863i \(-0.520813\pi\)
\(282\) 0 0
\(283\) 3.37959 5.85362i 0.200896 0.347962i −0.747922 0.663787i \(-0.768948\pi\)
0.948817 + 0.315826i \(0.102281\pi\)
\(284\) −12.3124 −0.730609
\(285\) 0 0
\(286\) −5.47358 −0.323659
\(287\) −0.382343 + 0.662237i −0.0225690 + 0.0390906i
\(288\) 0 0
\(289\) −12.9583 22.4444i −0.762253 1.32026i
\(290\) −0.0893236 + 0.154713i −0.00524526 + 0.00908506i
\(291\) 0 0
\(292\) −13.0696 −0.764840
\(293\) 26.0167 1.51991 0.759957 0.649973i \(-0.225220\pi\)
0.759957 + 0.649973i \(0.225220\pi\)
\(294\) 0 0
\(295\) −5.95070 10.3069i −0.346463 0.600092i
\(296\) −2.09600 −0.121828
\(297\) 0 0
\(298\) 1.46123 + 2.53093i 0.0846471 + 0.146613i
\(299\) −11.5139 + 19.9427i −0.665867 + 1.15332i
\(300\) 0 0
\(301\) 0.304254 0.526983i 0.0175369 0.0303748i
\(302\) 1.73900 3.01204i 0.100068 0.173323i
\(303\) 0 0
\(304\) −16.4391 2.83974i −0.942847 0.162870i
\(305\) −4.51599 −0.258585
\(306\) 0 0
\(307\) −6.57544 + 11.3890i −0.375280 + 0.650004i −0.990369 0.138454i \(-0.955787\pi\)
0.615089 + 0.788458i \(0.289120\pi\)
\(308\) 1.14816 + 1.98866i 0.0654222 + 0.113315i
\(309\) 0 0
\(310\) −0.226210 0.391807i −0.0128478 0.0222531i
\(311\) −3.98871 −0.226179 −0.113089 0.993585i \(-0.536075\pi\)
−0.113089 + 0.993585i \(0.536075\pi\)
\(312\) 0 0
\(313\) 0.659360 + 1.14205i 0.0372692 + 0.0645522i 0.884058 0.467377i \(-0.154801\pi\)
−0.846789 + 0.531929i \(0.821467\pi\)
\(314\) 0.536418 + 0.929104i 0.0302718 + 0.0524324i
\(315\) 0 0
\(316\) −7.12712 −0.400932
\(317\) 0.370562 + 0.641833i 0.0208129 + 0.0360489i 0.876244 0.481867i \(-0.160041\pi\)
−0.855431 + 0.517916i \(0.826708\pi\)
\(318\) 0 0
\(319\) 2.80037 + 4.85038i 0.156791 + 0.271569i
\(320\) 3.65699 6.33409i 0.204432 0.354086i
\(321\) 0 0
\(322\) −0.141805 −0.00790249
\(323\) −28.1387 4.86077i −1.56568 0.270461i
\(324\) 0 0
\(325\) −3.01725 + 5.22603i −0.167367 + 0.289888i
\(326\) 0.357480 0.619173i 0.0197990 0.0342928i
\(327\) 0 0
\(328\) −1.18212 + 2.04749i −0.0652716 + 0.113054i
\(329\) 0.931622 + 1.61362i 0.0513620 + 0.0889616i
\(330\) 0 0
\(331\) 11.3519 0.623958 0.311979 0.950089i \(-0.399008\pi\)
0.311979 + 0.950089i \(0.399008\pi\)
\(332\) 8.27532 + 14.3333i 0.454167 + 0.786641i
\(333\) 0 0
\(334\) −0.791692 −0.0433195
\(335\) −6.60329 −0.360776
\(336\) 0 0
\(337\) 12.3960 21.4705i 0.675253 1.16957i −0.301142 0.953579i \(-0.597368\pi\)
0.976395 0.215993i \(-0.0692988\pi\)
\(338\) −1.99140 3.44920i −0.108318 0.187612i
\(339\) 0 0
\(340\) 6.45631 11.1827i 0.350142 0.606464i
\(341\) −14.1837 −0.768092
\(342\) 0 0
\(343\) 3.04814 0.164584
\(344\) 0.940684 1.62931i 0.0507183 0.0878467i
\(345\) 0 0
\(346\) 2.02135 + 3.50108i 0.108668 + 0.188219i
\(347\) 15.6066 27.0315i 0.837807 1.45112i −0.0539174 0.998545i \(-0.517171\pi\)
0.891724 0.452579i \(-0.149496\pi\)
\(348\) 0 0
\(349\) 2.67972 0.143442 0.0717212 0.997425i \(-0.477151\pi\)
0.0717212 + 0.997425i \(0.477151\pi\)
\(350\) −0.0371604 −0.00198631
\(351\) 0 0
\(352\) 5.33769 + 9.24515i 0.284500 + 0.492768i
\(353\) −29.6238 −1.57671 −0.788357 0.615218i \(-0.789068\pi\)
−0.788357 + 0.615218i \(0.789068\pi\)
\(354\) 0 0
\(355\) −3.12329 5.40970i −0.165767 0.287117i
\(356\) −9.44500 + 16.3592i −0.500584 + 0.867037i
\(357\) 0 0
\(358\) −1.16740 + 2.02200i −0.0616992 + 0.106866i
\(359\) −10.9641 + 18.9904i −0.578664 + 1.00228i 0.416969 + 0.908921i \(0.363092\pi\)
−0.995633 + 0.0933549i \(0.970241\pi\)
\(360\) 0 0
\(361\) −14.4695 + 12.3139i −0.761555 + 0.648100i
\(362\) 3.73215 0.196158
\(363\) 0 0
\(364\) −1.29928 + 2.25042i −0.0681007 + 0.117954i
\(365\) −3.31536 5.74237i −0.173534 0.300569i
\(366\) 0 0
\(367\) −6.87305 11.9045i −0.358770 0.621408i 0.628985 0.777417i \(-0.283470\pi\)
−0.987756 + 0.156009i \(0.950137\pi\)
\(368\) 14.6049 0.761332
\(369\) 0 0
\(370\) −0.263909 0.457104i −0.0137200 0.0237637i
\(371\) −0.562473 0.974232i −0.0292021 0.0505796i
\(372\) 0 0
\(373\) −22.8295 −1.18207 −0.591034 0.806646i \(-0.701280\pi\)
−0.591034 + 0.806646i \(0.701280\pi\)
\(374\) 2.97107 + 5.14604i 0.153630 + 0.266095i
\(375\) 0 0
\(376\) 2.88037 + 4.98894i 0.148544 + 0.257285i
\(377\) −3.16896 + 5.48880i −0.163210 + 0.282688i
\(378\) 0 0
\(379\) 28.9938 1.48931 0.744656 0.667449i \(-0.232614\pi\)
0.744656 + 0.667449i \(0.232614\pi\)
\(380\) −2.96659 8.06327i −0.152183 0.413637i
\(381\) 0 0
\(382\) −1.02038 + 1.76735i −0.0522073 + 0.0904257i
\(383\) −13.0687 + 22.6357i −0.667781 + 1.15663i 0.310742 + 0.950494i \(0.399422\pi\)
−0.978523 + 0.206137i \(0.933911\pi\)
\(384\) 0 0
\(385\) −0.582504 + 1.00893i −0.0296872 + 0.0514197i
\(386\) −0.992982 1.71989i −0.0505414 0.0875403i
\(387\) 0 0
\(388\) 31.3645 1.59229
\(389\) −11.7728 20.3911i −0.596906 1.03387i −0.993275 0.115780i \(-0.963063\pi\)
0.396369 0.918091i \(-0.370270\pi\)
\(390\) 0 0
\(391\) 24.9991 1.26426
\(392\) 4.69596 0.237182
\(393\) 0 0
\(394\) −0.878323 + 1.52130i −0.0442493 + 0.0766420i
\(395\) −1.80793 3.13143i −0.0909670 0.157560i
\(396\) 0 0
\(397\) −7.95863 + 13.7847i −0.399432 + 0.691837i −0.993656 0.112463i \(-0.964126\pi\)
0.594224 + 0.804300i \(0.297459\pi\)
\(398\) −1.57698 −0.0790470
\(399\) 0 0
\(400\) 3.82724 0.191362
\(401\) −11.1575 + 19.3254i −0.557179 + 0.965063i 0.440551 + 0.897728i \(0.354783\pi\)
−0.997730 + 0.0673353i \(0.978550\pi\)
\(402\) 0 0
\(403\) −8.02531 13.9003i −0.399769 0.692421i
\(404\) 5.40376 9.35958i 0.268847 0.465657i
\(405\) 0 0
\(406\) −0.0390289 −0.00193697
\(407\) −16.5475 −0.820232
\(408\) 0 0
\(409\) 0.356179 + 0.616920i 0.0176119 + 0.0305047i 0.874697 0.484670i \(-0.161060\pi\)
−0.857085 + 0.515175i \(0.827727\pi\)
\(410\) −0.595366 −0.0294030
\(411\) 0 0
\(412\) −7.40662 12.8286i −0.364898 0.632022i
\(413\) 1.30004 2.25174i 0.0639709 0.110801i
\(414\) 0 0
\(415\) −4.19840 + 7.27183i −0.206091 + 0.356960i
\(416\) −6.04025 + 10.4620i −0.296148 + 0.512943i
\(417\) 0 0
\(418\) 3.89603 + 0.673012i 0.190561 + 0.0329181i
\(419\) −30.0670 −1.46887 −0.734434 0.678681i \(-0.762552\pi\)
−0.734434 + 0.678681i \(0.762552\pi\)
\(420\) 0 0
\(421\) 11.4858 19.8939i 0.559781 0.969570i −0.437733 0.899105i \(-0.644218\pi\)
0.997514 0.0704646i \(-0.0224482\pi\)
\(422\) 0.0896160 + 0.155220i 0.00436244 + 0.00755597i
\(423\) 0 0
\(424\) −1.73904 3.01211i −0.0844553 0.146281i
\(425\) 6.55108 0.317774
\(426\) 0 0
\(427\) −0.493301 0.854423i −0.0238725 0.0413484i
\(428\) 11.0390 + 19.1201i 0.533589 + 0.924203i
\(429\) 0 0
\(430\) 0.473769 0.0228472
\(431\) −11.6935 20.2538i −0.563258 0.975592i −0.997209 0.0746557i \(-0.976214\pi\)
0.433951 0.900937i \(-0.357119\pi\)
\(432\) 0 0
\(433\) −16.7300 28.9773i −0.803994 1.39256i −0.916968 0.398961i \(-0.869371\pi\)
0.112974 0.993598i \(-0.463962\pi\)
\(434\) 0.0494198 0.0855976i 0.00237223 0.00410881i
\(435\) 0 0
\(436\) −16.2197 −0.776780
\(437\) 10.6475 12.7793i 0.509341 0.611315i
\(438\) 0 0
\(439\) −8.72611 + 15.1141i −0.416474 + 0.721355i −0.995582 0.0938963i \(-0.970068\pi\)
0.579108 + 0.815251i \(0.303401\pi\)
\(440\) −1.80097 + 3.11938i −0.0858580 + 0.148710i
\(441\) 0 0
\(442\) −3.36213 + 5.82338i −0.159920 + 0.276990i
\(443\) −7.57846 13.1263i −0.360063 0.623648i 0.627908 0.778288i \(-0.283912\pi\)
−0.987971 + 0.154640i \(0.950578\pi\)
\(444\) 0 0
\(445\) −9.58364 −0.454308
\(446\) −2.22522 3.85419i −0.105367 0.182501i
\(447\) 0 0
\(448\) 1.59788 0.0754925
\(449\) 13.1961 0.622762 0.311381 0.950285i \(-0.399208\pi\)
0.311381 + 0.950285i \(0.399208\pi\)
\(450\) 0 0
\(451\) −9.33261 + 16.1645i −0.439455 + 0.761159i
\(452\) −11.0784 19.1883i −0.521083 0.902542i
\(453\) 0 0
\(454\) 1.29959 2.25096i 0.0609928 0.105643i
\(455\) −1.31835 −0.0618052
\(456\) 0 0
\(457\) −4.20019 −0.196477 −0.0982383 0.995163i \(-0.531321\pi\)
−0.0982383 + 0.995163i \(0.531321\pi\)
\(458\) 1.15004 1.99192i 0.0537377 0.0930765i
\(459\) 0 0
\(460\) 3.76083 + 6.51394i 0.175349 + 0.303714i
\(461\) 10.0039 17.3273i 0.465928 0.807011i −0.533315 0.845917i \(-0.679054\pi\)
0.999243 + 0.0389056i \(0.0123872\pi\)
\(462\) 0 0
\(463\) −20.4670 −0.951183 −0.475591 0.879666i \(-0.657766\pi\)
−0.475591 + 0.879666i \(0.657766\pi\)
\(464\) 4.01968 0.186609
\(465\) 0 0
\(466\) −0.417123 0.722479i −0.0193229 0.0334682i
\(467\) −39.2577 −1.81663 −0.908314 0.418288i \(-0.862630\pi\)
−0.908314 + 0.418288i \(0.862630\pi\)
\(468\) 0 0
\(469\) −0.721307 1.24934i −0.0333069 0.0576892i
\(470\) −0.725338 + 1.25632i −0.0334574 + 0.0579498i
\(471\) 0 0
\(472\) 4.01944 6.96188i 0.185010 0.320446i
\(473\) 7.42653 12.8631i 0.341472 0.591447i
\(474\) 0 0
\(475\) 2.79022 3.34883i 0.128024 0.153655i
\(476\) 2.82100 0.129301
\(477\) 0 0
\(478\) −1.53248 + 2.65433i −0.0700939 + 0.121406i
\(479\) −3.62557 6.27967i −0.165656 0.286925i 0.771232 0.636554i \(-0.219641\pi\)
−0.936888 + 0.349629i \(0.886308\pi\)
\(480\) 0 0
\(481\) −9.36279 16.2168i −0.426907 0.739424i
\(482\) −4.93932 −0.224980
\(483\) 0 0
\(484\) 17.1845 + 29.7643i 0.781111 + 1.35292i
\(485\) 7.95622 + 13.7806i 0.361274 + 0.625744i
\(486\) 0 0
\(487\) −4.16094 −0.188550 −0.0942751 0.995546i \(-0.530053\pi\)
−0.0942751 + 0.995546i \(0.530053\pi\)
\(488\) −1.52518 2.64169i −0.0690415 0.119583i
\(489\) 0 0
\(490\) 0.591272 + 1.02411i 0.0267109 + 0.0462647i
\(491\) 2.96842 5.14145i 0.133963 0.232030i −0.791238 0.611508i \(-0.790563\pi\)
0.925201 + 0.379478i \(0.123896\pi\)
\(492\) 0 0
\(493\) 6.88048 0.309881
\(494\) 1.54485 + 4.19896i 0.0695063 + 0.188920i
\(495\) 0 0
\(496\) −5.08987 + 8.81592i −0.228542 + 0.395846i
\(497\) 0.682342 1.18185i 0.0306072 0.0530133i
\(498\) 0 0
\(499\) 1.19537 2.07045i 0.0535123 0.0926860i −0.838028 0.545627i \(-0.816292\pi\)
0.891541 + 0.452941i \(0.149625\pi\)
\(500\) 0.985534 + 1.70699i 0.0440744 + 0.0763391i
\(501\) 0 0
\(502\) −4.90193 −0.218784
\(503\) −10.0317 17.3754i −0.447290 0.774729i 0.550918 0.834559i \(-0.314278\pi\)
−0.998209 + 0.0598298i \(0.980944\pi\)
\(504\) 0 0
\(505\) 5.48308 0.243994
\(506\) −3.46132 −0.153874
\(507\) 0 0
\(508\) 9.85316 17.0662i 0.437163 0.757189i
\(509\) −12.9575 22.4430i −0.574329 0.994767i −0.996114 0.0880712i \(-0.971930\pi\)
0.421785 0.906696i \(-0.361404\pi\)
\(510\) 0 0
\(511\) 0.724302 1.25453i 0.0320413 0.0554971i
\(512\) 12.8321 0.567103
\(513\) 0 0
\(514\) −2.00006 −0.0882187
\(515\) 3.75767 6.50847i 0.165583 0.286797i
\(516\) 0 0
\(517\) 22.7400 + 39.3868i 1.00010 + 1.73223i
\(518\) 0.0576560 0.0998630i 0.00253326 0.00438773i
\(519\) 0 0
\(520\) −4.07604 −0.178746
\(521\) 21.0579 0.922562 0.461281 0.887254i \(-0.347390\pi\)
0.461281 + 0.887254i \(0.347390\pi\)
\(522\) 0 0
\(523\) −9.57494 16.5843i −0.418683 0.725180i 0.577124 0.816656i \(-0.304175\pi\)
−0.995807 + 0.0914762i \(0.970841\pi\)
\(524\) −34.4642 −1.50558
\(525\) 0 0
\(526\) −0.752844 1.30396i −0.0328256 0.0568555i
\(527\) −8.71231 + 15.0902i −0.379514 + 0.657338i
\(528\) 0 0
\(529\) 4.21896 7.30745i 0.183433 0.317715i
\(530\) 0.437928 0.758513i 0.0190224 0.0329477i
\(531\) 0 0
\(532\) 1.20151 1.44207i 0.0520923 0.0625215i
\(533\) −21.1220 −0.914895
\(534\) 0 0
\(535\) −5.60051 + 9.70036i −0.242131 + 0.419383i
\(536\) −2.23012 3.86268i −0.0963265 0.166842i
\(537\) 0 0
\(538\) −1.53295 2.65515i −0.0660903 0.114472i
\(539\) 37.0737 1.59688
\(540\) 0 0
\(541\) 6.84592 + 11.8575i 0.294329 + 0.509793i 0.974829 0.222956i \(-0.0715705\pi\)
−0.680499 + 0.732749i \(0.738237\pi\)
\(542\) −0.0141697 0.0245426i −0.000608639 0.00105419i
\(543\) 0 0
\(544\) 13.1146 0.562286
\(545\) −4.11443 7.12641i −0.176243 0.305262i
\(546\) 0 0
\(547\) 12.7556 + 22.0934i 0.545391 + 0.944645i 0.998582 + 0.0532318i \(0.0169522\pi\)
−0.453191 + 0.891413i \(0.649714\pi\)
\(548\) −13.1794 + 22.8274i −0.562995 + 0.975137i
\(549\) 0 0
\(550\) −0.907047 −0.0386766
\(551\) 2.93051 3.51722i 0.124844 0.149839i
\(552\) 0 0
\(553\) 0.394977 0.684121i 0.0167961 0.0290918i
\(554\) −1.56710 + 2.71429i −0.0665795 + 0.115319i
\(555\) 0 0
\(556\) −8.79283 + 15.2296i −0.372899 + 0.645880i
\(557\) 5.49373 + 9.51541i 0.232777 + 0.403181i 0.958624 0.284675i \(-0.0918856\pi\)
−0.725848 + 0.687856i \(0.758552\pi\)
\(558\) 0 0
\(559\) 16.8081 0.710905
\(560\) 0.418067 + 0.724113i 0.0176666 + 0.0305994i
\(561\) 0 0
\(562\) 5.11435 0.215736
\(563\) 5.57158 0.234814 0.117407 0.993084i \(-0.462542\pi\)
0.117407 + 0.993084i \(0.462542\pi\)
\(564\) 0 0
\(565\) 5.62049 9.73498i 0.236456 0.409553i
\(566\) 0.574850 + 0.995669i 0.0241627 + 0.0418511i
\(567\) 0 0
\(568\) 2.10965 3.65402i 0.0885189 0.153319i
\(569\) 21.9856 0.921685 0.460843 0.887482i \(-0.347547\pi\)
0.460843 + 0.887482i \(0.347547\pi\)
\(570\) 0 0
\(571\) 36.1104 1.51117 0.755586 0.655050i \(-0.227352\pi\)
0.755586 + 0.655050i \(0.227352\pi\)
\(572\) −31.7141 + 54.9304i −1.32603 + 2.29676i
\(573\) 0 0
\(574\) −0.0650344 0.112643i −0.00271449 0.00470163i
\(575\) −1.90802 + 3.30478i −0.0795697 + 0.137819i
\(576\) 0 0
\(577\) −15.0931 −0.628333 −0.314166 0.949368i \(-0.601725\pi\)
−0.314166 + 0.949368i \(0.601725\pi\)
\(578\) 4.40827 0.183360
\(579\) 0 0
\(580\) 1.03509 + 1.79283i 0.0429797 + 0.0744430i
\(581\) −1.83444 −0.0761053
\(582\) 0 0
\(583\) −13.7294 23.7800i −0.568614 0.984868i
\(584\) 2.23938 3.87872i 0.0926663 0.160503i
\(585\) 0 0
\(586\) −2.21265 + 3.83243i −0.0914039 + 0.158316i
\(587\) −16.1610 + 27.9916i −0.667034 + 1.15534i 0.311695 + 0.950182i \(0.399103\pi\)
−0.978729 + 0.205155i \(0.934230\pi\)
\(588\) 0 0
\(589\) 4.00320 + 10.8808i 0.164949 + 0.448335i
\(590\) 2.02436 0.0833417
\(591\) 0 0
\(592\) −5.93814 + 10.2852i −0.244056 + 0.422717i
\(593\) −9.82932 17.0249i −0.403642 0.699128i 0.590520 0.807023i \(-0.298923\pi\)
−0.994162 + 0.107894i \(0.965589\pi\)
\(594\) 0 0
\(595\) 0.715603 + 1.23946i 0.0293369 + 0.0508129i
\(596\) 33.8658 1.38720
\(597\) 0 0
\(598\) −1.95845 3.39214i −0.0800872 0.138715i
\(599\) 0.491006 + 0.850447i 0.0200620 + 0.0347483i 0.875882 0.482525i \(-0.160280\pi\)
−0.855820 + 0.517274i \(0.826947\pi\)
\(600\) 0 0
\(601\) 36.2561 1.47892 0.739458 0.673203i \(-0.235082\pi\)
0.739458 + 0.673203i \(0.235082\pi\)
\(602\) 0.0517519 + 0.0896369i 0.00210925 + 0.00365333i
\(603\) 0 0
\(604\) −20.1517 34.9037i −0.819961 1.42021i
\(605\) −8.71835 + 15.1006i −0.354451 + 0.613927i
\(606\) 0 0
\(607\) −34.5216 −1.40119 −0.700595 0.713559i \(-0.747082\pi\)
−0.700595 + 0.713559i \(0.747082\pi\)
\(608\) 5.58575 6.70406i 0.226532 0.271885i
\(609\) 0 0
\(610\) 0.384072 0.665233i 0.0155506 0.0269345i
\(611\) −25.7331 + 44.5710i −1.04105 + 1.80315i
\(612\) 0 0
\(613\) 17.5283 30.3599i 0.707962 1.22623i −0.257650 0.966238i \(-0.582948\pi\)
0.965612 0.259988i \(-0.0837186\pi\)
\(614\) −1.11845 1.93721i −0.0451368 0.0781793i
\(615\) 0 0
\(616\) −0.786913 −0.0317056
\(617\) −20.0581 34.7417i −0.807510 1.39865i −0.914583 0.404398i \(-0.867481\pi\)
0.107073 0.994251i \(-0.465852\pi\)
\(618\) 0 0
\(619\) −39.4071 −1.58390 −0.791952 0.610583i \(-0.790935\pi\)
−0.791952 + 0.610583i \(0.790935\pi\)
\(620\) −5.24267 −0.210551
\(621\) 0 0
\(622\) 0.339229 0.587561i 0.0136018 0.0235591i
\(623\) −1.04686 1.81322i −0.0419417 0.0726452i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −0.224307 −0.00896512
\(627\) 0 0
\(628\) 12.4321 0.496095
\(629\) −10.1643 + 17.6051i −0.405276 + 0.701959i
\(630\) 0 0
\(631\) −4.19428 7.26471i −0.166972 0.289204i 0.770382 0.637583i \(-0.220066\pi\)
−0.937354 + 0.348379i \(0.886732\pi\)
\(632\) 1.22118 2.11515i 0.0485760 0.0841361i
\(633\) 0 0
\(634\) −0.126061 −0.00500653
\(635\) 9.99779 0.396750
\(636\) 0 0
\(637\) 20.9767 + 36.3328i 0.831129 + 1.43956i
\(638\) −0.952655 −0.0377160
\(639\) 0 0
\(640\) 2.62394 + 4.54480i 0.103720 + 0.179649i
\(641\) 1.14214 1.97825i 0.0451120 0.0781363i −0.842588 0.538559i \(-0.818969\pi\)
0.887700 + 0.460423i \(0.152302\pi\)
\(642\) 0 0
\(643\) −20.6063 + 35.6912i −0.812635 + 1.40752i 0.0983795 + 0.995149i \(0.468634\pi\)
−0.911014 + 0.412375i \(0.864699\pi\)
\(644\) −0.821624 + 1.42309i −0.0323765 + 0.0560778i
\(645\) 0 0
\(646\) 3.10914 3.73161i 0.122328 0.146818i
\(647\) −2.66299 −0.104693 −0.0523465 0.998629i \(-0.516670\pi\)
−0.0523465 + 0.998629i \(0.516670\pi\)
\(648\) 0 0
\(649\) 31.7327 54.9627i 1.24562 2.15748i
\(650\) −0.513218 0.888919i −0.0201301 0.0348663i
\(651\) 0 0
\(652\) −4.14250 7.17502i −0.162233 0.280995i
\(653\) 45.2522 1.77086 0.885428 0.464777i \(-0.153865\pi\)
0.885428 + 0.464777i \(0.153865\pi\)
\(654\) 0 0
\(655\) −8.74252 15.1425i −0.341599 0.591666i
\(656\) 6.69807 + 11.6014i 0.261516 + 0.452958i
\(657\) 0 0
\(658\) −0.316928 −0.0123551
\(659\) −11.6414 20.1634i −0.453483 0.785456i 0.545116 0.838360i \(-0.316485\pi\)
−0.998600 + 0.0529044i \(0.983152\pi\)
\(660\) 0 0
\(661\) 15.0278 + 26.0289i 0.584514 + 1.01241i 0.994936 + 0.100513i \(0.0320483\pi\)
−0.410421 + 0.911896i \(0.634618\pi\)
\(662\) −0.965449 + 1.67221i −0.0375233 + 0.0649922i
\(663\) 0 0
\(664\) −5.67167 −0.220104
\(665\) 0.938386 + 0.162100i 0.0363890 + 0.00628596i
\(666\) 0 0
\(667\) −2.00395 + 3.47095i −0.0775934 + 0.134396i
\(668\) −4.58709 + 7.94508i −0.177480 + 0.307404i
\(669\) 0 0
\(670\) 0.561592 0.972706i 0.0216962 0.0375789i
\(671\) −12.0410 20.8556i −0.464837 0.805122i
\(672\) 0 0
\(673\) −30.4843 −1.17508 −0.587542 0.809194i \(-0.699904\pi\)
−0.587542 + 0.809194i \(0.699904\pi\)
\(674\) 2.10849 + 3.65201i 0.0812160 + 0.140670i
\(675\) 0 0
\(676\) −46.1529 −1.77511
\(677\) 16.7595 0.644118 0.322059 0.946720i \(-0.395625\pi\)
0.322059 + 0.946720i \(0.395625\pi\)
\(678\) 0 0
\(679\) −1.73819 + 3.01063i −0.0667055 + 0.115537i
\(680\) 2.21248 + 3.83214i 0.0848449 + 0.146956i
\(681\) 0 0
\(682\) 1.20629 2.08935i 0.0461911 0.0800054i
\(683\) 28.1537 1.07727 0.538636 0.842538i \(-0.318940\pi\)
0.538636 + 0.842538i \(0.318940\pi\)
\(684\) 0 0
\(685\) −13.3728 −0.510950
\(686\) −0.259236 + 0.449010i −0.00989767 + 0.0171433i
\(687\) 0 0
\(688\) −5.33006 9.23194i −0.203207 0.351964i
\(689\) 15.5365 26.9100i 0.591894 1.02519i
\(690\) 0 0
\(691\) −3.71714 −0.141407 −0.0707034 0.997497i \(-0.522524\pi\)
−0.0707034 + 0.997497i \(0.522524\pi\)
\(692\) 46.8471 1.78086
\(693\) 0 0
\(694\) 2.65460 + 4.59790i 0.100767 + 0.174534i
\(695\) −8.92189 −0.338427
\(696\) 0 0
\(697\) 11.4651 + 19.8581i 0.434270 + 0.752177i
\(698\) −0.227903 + 0.394740i −0.00862627 + 0.0149411i
\(699\) 0 0
\(700\) −0.215309 + 0.372925i −0.00813790 + 0.0140953i
\(701\) 14.6085 25.3026i 0.551754 0.955667i −0.446394 0.894837i \(-0.647292\pi\)
0.998148 0.0608301i \(-0.0193748\pi\)
\(702\) 0 0
\(703\) 4.67036 + 12.6942i 0.176146 + 0.478769i
\(704\) 39.0025 1.46996
\(705\) 0 0
\(706\) 2.51942 4.36377i 0.0948197 0.164232i
\(707\) 0.598941 + 1.03740i 0.0225255 + 0.0390153i
\(708\) 0 0
\(709\) 0.863639 + 1.49587i 0.0324346 + 0.0561784i 0.881787 0.471648i \(-0.156341\pi\)
−0.849352 + 0.527826i \(0.823007\pi\)
\(710\) 1.06251 0.0398753
\(711\) 0 0
\(712\) −3.23667 5.60607i −0.121299 0.210096i
\(713\) −5.07496 8.79009i −0.190059 0.329191i
\(714\) 0 0
\(715\) −32.1796 −1.20345
\(716\) 13.5279 + 23.4311i 0.505563 + 0.875661i
\(717\) 0 0
\(718\) −1.86494 3.23017i −0.0695988 0.120549i
\(719\) −10.6641 + 18.4708i −0.397704 + 0.688843i −0.993442 0.114336i \(-0.963526\pi\)
0.595739 + 0.803178i \(0.296859\pi\)
\(720\) 0 0
\(721\) 1.64187 0.0611463
\(722\) −0.583320 3.17872i −0.0217089 0.118300i
\(723\) 0 0
\(724\) 21.6242 37.4543i 0.803658 1.39198i
\(725\) −0.525141 + 0.909571i −0.0195032 + 0.0337806i
\(726\) 0 0
\(727\) −9.58913 + 16.6089i −0.355641 + 0.615989i −0.987227 0.159317i \(-0.949071\pi\)
0.631586 + 0.775306i \(0.282404\pi\)
\(728\) −0.445245 0.771186i −0.0165019 0.0285821i
\(729\) 0 0
\(730\) 1.12785 0.0417435
\(731\) −9.12344 15.8023i −0.337443 0.584468i
\(732\) 0 0
\(733\) 2.72949 0.100816 0.0504079 0.998729i \(-0.483948\pi\)
0.0504079 + 0.998729i \(0.483948\pi\)
\(734\) 2.33814 0.0863022
\(735\) 0 0
\(736\) −3.81967 + 6.61586i −0.140795 + 0.243864i
\(737\) −17.6064 30.4951i −0.648539 1.12330i
\(738\) 0 0
\(739\) −3.87026 + 6.70348i −0.142370 + 0.246591i −0.928389 0.371611i \(-0.878806\pi\)
0.786019 + 0.618203i \(0.212139\pi\)
\(740\) −6.11640 −0.224843
\(741\) 0 0
\(742\) 0.191347 0.00702458
\(743\) −21.6349 + 37.4727i −0.793707 + 1.37474i 0.129951 + 0.991520i \(0.458518\pi\)
−0.923657 + 0.383220i \(0.874815\pi\)
\(744\) 0 0
\(745\) 8.59072 + 14.8796i 0.314740 + 0.545145i
\(746\) 1.94159 3.36293i 0.0710867 0.123126i
\(747\) 0 0
\(748\) 68.8579 2.51769
\(749\) −2.44707 −0.0894141
\(750\) 0 0
\(751\) 19.9050 + 34.4766i 0.726346 + 1.25807i 0.958418 + 0.285369i \(0.0921161\pi\)
−0.232072 + 0.972699i \(0.574551\pi\)
\(752\) 32.6412 1.19030
\(753\) 0 0
\(754\) −0.539023 0.933616i −0.0196301 0.0340003i
\(755\) 10.2237 17.7080i 0.372080 0.644462i
\(756\) 0 0
\(757\) −13.9025 + 24.0798i −0.505294 + 0.875196i 0.494687 + 0.869071i \(0.335283\pi\)
−0.999981 + 0.00612436i \(0.998051\pi\)
\(758\) −2.46584 + 4.27097i −0.0895635 + 0.155129i
\(759\) 0 0
\(760\) 2.90128 + 0.501176i 0.105240 + 0.0181796i
\(761\) −34.2239 −1.24061 −0.620307 0.784359i \(-0.712992\pi\)
−0.620307 + 0.784359i \(0.712992\pi\)
\(762\) 0 0
\(763\) 0.898876 1.55690i 0.0325415 0.0563635i
\(764\) 11.8243 + 20.4802i 0.427787 + 0.740948i
\(765\) 0 0
\(766\) −2.22292 3.85021i −0.0803174 0.139114i
\(767\) 71.8190 2.59323
\(768\) 0 0
\(769\) −18.2857 31.6718i −0.659401 1.14212i −0.980771 0.195162i \(-0.937477\pi\)
0.321371 0.946954i \(-0.395856\pi\)
\(770\) −0.0990808 0.171613i −0.00357063 0.00618450i
\(771\) 0 0
\(772\) −23.0135 −0.828274
\(773\) 16.0664 + 27.8278i 0.577868 + 1.00090i 0.995724 + 0.0923831i \(0.0294485\pi\)
−0.417856 + 0.908513i \(0.637218\pi\)
\(774\) 0 0
\(775\) −1.32991 2.30346i −0.0477716 0.0827429i
\(776\) −5.37409 + 9.30819i −0.192919 + 0.334145i
\(777\) 0 0
\(778\) 4.00499 0.143586
\(779\) 15.0344 + 2.59708i 0.538662 + 0.0930502i
\(780\) 0 0
\(781\) 16.6553 28.8478i 0.595973 1.03226i
\(782\) −2.12611 + 3.68252i −0.0760294 + 0.131687i
\(783\)