Properties

Label 855.2.k.j.406.5
Level $855$
Weight $2$
Character 855.406
Analytic conductor $6.827$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 10 x^{9} + 44 x^{8} - 20 x^{7} + 119 x^{6} + 13 x^{5} + 83 x^{4} + 14 x^{3} + 46 x^{2} + 12 x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 406.5
Root \(0.964458 + 1.67049i\) of defining polynomial
Character \(\chi\) \(=\) 855.406
Dual form 855.2.k.j.676.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.464458 + 0.804466i) q^{2} +(0.568557 - 0.984769i) q^{4} +(-0.500000 - 0.866025i) q^{5} -3.66299 q^{7} +2.91412 q^{8} +O(q^{10})\) \(q+(0.464458 + 0.804466i) q^{2} +(0.568557 - 0.984769i) q^{4} +(-0.500000 - 0.866025i) q^{5} -3.66299 q^{7} +2.91412 q^{8} +(0.464458 - 0.804466i) q^{10} +1.41795 q^{11} +(1.38214 - 2.39394i) q^{13} +(-1.70131 - 2.94675i) q^{14} +(0.216373 + 0.374768i) q^{16} +(-1.62252 - 2.81029i) q^{17} +(-4.34588 + 0.336682i) q^{19} -1.13711 q^{20} +(0.658577 + 1.14069i) q^{22} +(4.21364 - 7.29823i) q^{23} +(-0.500000 + 0.866025i) q^{25} +2.56778 q^{26} +(-2.08262 + 3.60720i) q^{28} +(0.917170 - 1.58858i) q^{29} +4.85783 q^{31} +(2.71313 - 4.69927i) q^{32} +(1.50719 - 2.61053i) q^{34} +(1.83150 + 3.17225i) q^{35} -9.00891 q^{37} +(-2.28933 - 3.33973i) q^{38} +(-1.45706 - 2.52370i) q^{40} +(-1.82098 - 3.15403i) q^{41} +(-4.41899 - 7.65392i) q^{43} +(0.806183 - 1.39635i) q^{44} +7.82823 q^{46} +(5.37200 - 9.30458i) q^{47} +6.41753 q^{49} -0.928917 q^{50} +(-1.57165 - 2.72218i) q^{52} +(-3.56193 + 6.16945i) q^{53} +(-0.708973 - 1.22798i) q^{55} -10.6744 q^{56} +1.70395 q^{58} +(2.65227 + 4.59387i) q^{59} +(1.64399 - 2.84747i) q^{61} +(2.25626 + 3.90796i) q^{62} +5.90603 q^{64} -2.76428 q^{65} +(-6.32544 + 10.9560i) q^{67} -3.68999 q^{68} +(-1.70131 + 2.94675i) q^{70} +(7.28608 + 12.6199i) q^{71} +(-0.964193 - 1.67003i) q^{73} +(-4.18426 - 7.24736i) q^{74} +(-2.13932 + 4.47111i) q^{76} -5.19393 q^{77} +(6.25028 + 10.8258i) q^{79} +(0.216373 - 0.374768i) q^{80} +(1.69154 - 2.92983i) q^{82} +6.46857 q^{83} +(-1.62252 + 2.81029i) q^{85} +(4.10487 - 7.10985i) q^{86} +4.13206 q^{88} +(5.27117 - 9.12994i) q^{89} +(-5.06277 + 8.76897i) q^{91} +(-4.79138 - 8.29892i) q^{92} +9.98029 q^{94} +(2.46451 + 3.59530i) q^{95} +(0.311714 + 0.539905i) q^{97} +(2.98067 + 5.16268i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 5 q^{4} - 6 q^{5} + 4 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} - 5 q^{4} - 6 q^{5} + 4 q^{7} + 12 q^{8} - 3 q^{10} - 8 q^{13} - 10 q^{14} - 3 q^{16} - 4 q^{17} - 6 q^{19} + 10 q^{20} + 2 q^{23} - 6 q^{25} + 40 q^{26} - 26 q^{28} - 4 q^{29} + 24 q^{31} - 15 q^{32} + 7 q^{34} - 2 q^{35} + 29 q^{38} - 6 q^{40} - 12 q^{41} - 4 q^{43} - 6 q^{44} + 48 q^{46} - 6 q^{47} + 32 q^{49} + 6 q^{50} - 20 q^{52} - 26 q^{53} + 44 q^{56} - 20 q^{58} - 16 q^{59} + 20 q^{61} + 25 q^{62} + 28 q^{64} + 16 q^{65} - 12 q^{67} - 54 q^{68} - 10 q^{70} + 8 q^{71} - 4 q^{73} + 16 q^{74} - 66 q^{76} - 48 q^{77} - 12 q^{79} - 3 q^{80} + 26 q^{82} + 44 q^{83} - 4 q^{85} + 44 q^{86} - 32 q^{88} + 8 q^{89} + 2 q^{91} - 36 q^{92} - 14 q^{94} + 6 q^{95} + 30 q^{97} - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.464458 + 0.804466i 0.328422 + 0.568843i 0.982199 0.187844i \(-0.0601500\pi\)
−0.653777 + 0.756687i \(0.726817\pi\)
\(3\) 0 0
\(4\) 0.568557 0.984769i 0.284278 0.492385i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −3.66299 −1.38448 −0.692241 0.721667i \(-0.743376\pi\)
−0.692241 + 0.721667i \(0.743376\pi\)
\(8\) 2.91412 1.03030
\(9\) 0 0
\(10\) 0.464458 0.804466i 0.146875 0.254394i
\(11\) 1.41795 0.427527 0.213763 0.976885i \(-0.431428\pi\)
0.213763 + 0.976885i \(0.431428\pi\)
\(12\) 0 0
\(13\) 1.38214 2.39394i 0.383336 0.663958i −0.608200 0.793784i \(-0.708108\pi\)
0.991537 + 0.129825i \(0.0414416\pi\)
\(14\) −1.70131 2.94675i −0.454694 0.787553i
\(15\) 0 0
\(16\) 0.216373 + 0.374768i 0.0540931 + 0.0936921i
\(17\) −1.62252 2.81029i −0.393520 0.681596i 0.599391 0.800456i \(-0.295409\pi\)
−0.992911 + 0.118860i \(0.962076\pi\)
\(18\) 0 0
\(19\) −4.34588 + 0.336682i −0.997013 + 0.0772401i
\(20\) −1.13711 −0.254266
\(21\) 0 0
\(22\) 0.658577 + 1.14069i 0.140409 + 0.243196i
\(23\) 4.21364 7.29823i 0.878604 1.52179i 0.0257305 0.999669i \(-0.491809\pi\)
0.852873 0.522118i \(-0.174858\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 2.56778 0.503584
\(27\) 0 0
\(28\) −2.08262 + 3.60720i −0.393578 + 0.681698i
\(29\) 0.917170 1.58858i 0.170314 0.294993i −0.768216 0.640191i \(-0.778855\pi\)
0.938530 + 0.345199i \(0.112188\pi\)
\(30\) 0 0
\(31\) 4.85783 0.872493 0.436246 0.899827i \(-0.356308\pi\)
0.436246 + 0.899827i \(0.356308\pi\)
\(32\) 2.71313 4.69927i 0.479617 0.830722i
\(33\) 0 0
\(34\) 1.50719 2.61053i 0.258481 0.447702i
\(35\) 1.83150 + 3.17225i 0.309580 + 0.536207i
\(36\) 0 0
\(37\) −9.00891 −1.48106 −0.740528 0.672026i \(-0.765424\pi\)
−0.740528 + 0.672026i \(0.765424\pi\)
\(38\) −2.28933 3.33973i −0.371378 0.541776i
\(39\) 0 0
\(40\) −1.45706 2.52370i −0.230381 0.399032i
\(41\) −1.82098 3.15403i −0.284390 0.492577i 0.688071 0.725643i \(-0.258458\pi\)
−0.972461 + 0.233066i \(0.925124\pi\)
\(42\) 0 0
\(43\) −4.41899 7.65392i −0.673890 1.16721i −0.976792 0.214190i \(-0.931289\pi\)
0.302902 0.953022i \(-0.402044\pi\)
\(44\) 0.806183 1.39635i 0.121537 0.210508i
\(45\) 0 0
\(46\) 7.82823 1.15421
\(47\) 5.37200 9.30458i 0.783587 1.35721i −0.146252 0.989247i \(-0.546721\pi\)
0.929839 0.367966i \(-0.119946\pi\)
\(48\) 0 0
\(49\) 6.41753 0.916789
\(50\) −0.928917 −0.131369
\(51\) 0 0
\(52\) −1.57165 2.72218i −0.217949 0.377498i
\(53\) −3.56193 + 6.16945i −0.489269 + 0.847439i −0.999924 0.0123469i \(-0.996070\pi\)
0.510655 + 0.859786i \(0.329403\pi\)
\(54\) 0 0
\(55\) −0.708973 1.22798i −0.0955979 0.165580i
\(56\) −10.6744 −1.42643
\(57\) 0 0
\(58\) 1.70395 0.223739
\(59\) 2.65227 + 4.59387i 0.345296 + 0.598070i 0.985408 0.170212i \(-0.0544452\pi\)
−0.640111 + 0.768282i \(0.721112\pi\)
\(60\) 0 0
\(61\) 1.64399 2.84747i 0.210491 0.364581i −0.741377 0.671088i \(-0.765827\pi\)
0.951868 + 0.306507i \(0.0991604\pi\)
\(62\) 2.25626 + 3.90796i 0.286545 + 0.496311i
\(63\) 0 0
\(64\) 5.90603 0.738253
\(65\) −2.76428 −0.342867
\(66\) 0 0
\(67\) −6.32544 + 10.9560i −0.772775 + 1.33849i 0.163262 + 0.986583i \(0.447799\pi\)
−0.936037 + 0.351903i \(0.885535\pi\)
\(68\) −3.68999 −0.447477
\(69\) 0 0
\(70\) −1.70131 + 2.94675i −0.203345 + 0.352204i
\(71\) 7.28608 + 12.6199i 0.864699 + 1.49770i 0.867346 + 0.497706i \(0.165824\pi\)
−0.00264644 + 0.999996i \(0.500842\pi\)
\(72\) 0 0
\(73\) −0.964193 1.67003i −0.112850 0.195462i 0.804068 0.594537i \(-0.202665\pi\)
−0.916918 + 0.399075i \(0.869331\pi\)
\(74\) −4.18426 7.24736i −0.486411 0.842488i
\(75\) 0 0
\(76\) −2.13932 + 4.47111i −0.245397 + 0.512871i
\(77\) −5.19393 −0.591903
\(78\) 0 0
\(79\) 6.25028 + 10.8258i 0.703211 + 1.21800i 0.967333 + 0.253508i \(0.0815845\pi\)
−0.264122 + 0.964489i \(0.585082\pi\)
\(80\) 0.216373 0.374768i 0.0241912 0.0419004i
\(81\) 0 0
\(82\) 1.69154 2.92983i 0.186799 0.323546i
\(83\) 6.46857 0.710018 0.355009 0.934863i \(-0.384478\pi\)
0.355009 + 0.934863i \(0.384478\pi\)
\(84\) 0 0
\(85\) −1.62252 + 2.81029i −0.175987 + 0.304819i
\(86\) 4.10487 7.10985i 0.442640 0.766675i
\(87\) 0 0
\(88\) 4.13206 0.440479
\(89\) 5.27117 9.12994i 0.558743 0.967772i −0.438858 0.898556i \(-0.644617\pi\)
0.997602 0.0692157i \(-0.0220497\pi\)
\(90\) 0 0
\(91\) −5.06277 + 8.76897i −0.530722 + 0.919238i
\(92\) −4.79138 8.29892i −0.499536 0.865222i
\(93\) 0 0
\(94\) 9.98029 1.02939
\(95\) 2.46451 + 3.59530i 0.252854 + 0.368870i
\(96\) 0 0
\(97\) 0.311714 + 0.539905i 0.0316498 + 0.0548190i 0.881416 0.472340i \(-0.156591\pi\)
−0.849767 + 0.527159i \(0.823257\pi\)
\(98\) 2.98067 + 5.16268i 0.301094 + 0.521509i
\(99\) 0 0
\(100\) 0.568557 + 0.984769i 0.0568557 + 0.0984769i
\(101\) −6.10551 + 10.5751i −0.607521 + 1.05226i 0.384126 + 0.923281i \(0.374503\pi\)
−0.991648 + 0.128977i \(0.958831\pi\)
\(102\) 0 0
\(103\) 12.7435 1.25566 0.627828 0.778352i \(-0.283944\pi\)
0.627828 + 0.778352i \(0.283944\pi\)
\(104\) 4.02772 6.97621i 0.394950 0.684074i
\(105\) 0 0
\(106\) −6.61748 −0.642746
\(107\) 16.3829 1.58379 0.791896 0.610656i \(-0.209094\pi\)
0.791896 + 0.610656i \(0.209094\pi\)
\(108\) 0 0
\(109\) 2.72026 + 4.71164i 0.260554 + 0.451293i 0.966389 0.257083i \(-0.0827615\pi\)
−0.705835 + 0.708376i \(0.749428\pi\)
\(110\) 0.658577 1.14069i 0.0627928 0.108760i
\(111\) 0 0
\(112\) −0.792572 1.37277i −0.0748910 0.129715i
\(113\) −9.46975 −0.890839 −0.445420 0.895322i \(-0.646946\pi\)
−0.445420 + 0.895322i \(0.646946\pi\)
\(114\) 0 0
\(115\) −8.42727 −0.785847
\(116\) −1.04293 1.80640i −0.0968333 0.167720i
\(117\) 0 0
\(118\) −2.46374 + 4.26732i −0.226805 + 0.392839i
\(119\) 5.94330 + 10.2941i 0.544821 + 0.943658i
\(120\) 0 0
\(121\) −8.98943 −0.817221
\(122\) 3.05425 0.276519
\(123\) 0 0
\(124\) 2.76195 4.78385i 0.248031 0.429602i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.171100 0.296354i 0.0151827 0.0262971i −0.858334 0.513091i \(-0.828500\pi\)
0.873517 + 0.486794i \(0.161834\pi\)
\(128\) −2.68315 4.64735i −0.237159 0.410771i
\(129\) 0 0
\(130\) −1.28389 2.22377i −0.112605 0.195037i
\(131\) −0.618905 1.07198i −0.0540740 0.0936590i 0.837721 0.546098i \(-0.183887\pi\)
−0.891795 + 0.452439i \(0.850554\pi\)
\(132\) 0 0
\(133\) 15.9189 1.23326i 1.38035 0.106938i
\(134\) −11.7516 −1.01518
\(135\) 0 0
\(136\) −4.72823 8.18953i −0.405442 0.702246i
\(137\) −2.87141 + 4.97344i −0.245322 + 0.424909i −0.962222 0.272266i \(-0.912227\pi\)
0.716900 + 0.697176i \(0.245560\pi\)
\(138\) 0 0
\(139\) 10.3730 17.9666i 0.879830 1.52391i 0.0283041 0.999599i \(-0.490989\pi\)
0.851526 0.524312i \(-0.175677\pi\)
\(140\) 4.16524 0.352027
\(141\) 0 0
\(142\) −6.76817 + 11.7228i −0.567972 + 0.983756i
\(143\) 1.95980 3.39447i 0.163887 0.283860i
\(144\) 0 0
\(145\) −1.83434 −0.152334
\(146\) 0.895655 1.55132i 0.0741250 0.128388i
\(147\) 0 0
\(148\) −5.12208 + 8.87170i −0.421032 + 0.729249i
\(149\) 10.6969 + 18.5276i 0.876324 + 1.51784i 0.855346 + 0.518057i \(0.173345\pi\)
0.0209780 + 0.999780i \(0.493322\pi\)
\(150\) 0 0
\(151\) −1.35031 −0.109886 −0.0549432 0.998489i \(-0.517498\pi\)
−0.0549432 + 0.998489i \(0.517498\pi\)
\(152\) −12.6644 + 0.981131i −1.02722 + 0.0795802i
\(153\) 0 0
\(154\) −2.41236 4.17834i −0.194394 0.336700i
\(155\) −2.42892 4.20701i −0.195095 0.337915i
\(156\) 0 0
\(157\) −6.14413 10.6419i −0.490355 0.849319i 0.509584 0.860421i \(-0.329799\pi\)
−0.999938 + 0.0111018i \(0.996466\pi\)
\(158\) −5.80599 + 10.0563i −0.461900 + 0.800034i
\(159\) 0 0
\(160\) −5.42625 −0.428983
\(161\) −15.4345 + 26.7334i −1.21641 + 2.10689i
\(162\) 0 0
\(163\) 1.45723 0.114139 0.0570696 0.998370i \(-0.481824\pi\)
0.0570696 + 0.998370i \(0.481824\pi\)
\(164\) −4.14133 −0.323383
\(165\) 0 0
\(166\) 3.00438 + 5.20375i 0.233185 + 0.403889i
\(167\) −8.08781 + 14.0085i −0.625854 + 1.08401i 0.362521 + 0.931975i \(0.381916\pi\)
−0.988375 + 0.152035i \(0.951417\pi\)
\(168\) 0 0
\(169\) 2.67938 + 4.64083i 0.206106 + 0.356987i
\(170\) −3.01438 −0.231192
\(171\) 0 0
\(172\) −10.0498 −0.766289
\(173\) 1.82710 + 3.16463i 0.138912 + 0.240603i 0.927085 0.374851i \(-0.122306\pi\)
−0.788173 + 0.615454i \(0.788973\pi\)
\(174\) 0 0
\(175\) 1.83150 3.17225i 0.138448 0.239799i
\(176\) 0.306805 + 0.531401i 0.0231263 + 0.0400559i
\(177\) 0 0
\(178\) 9.79297 0.734014
\(179\) 9.16937 0.685351 0.342676 0.939454i \(-0.388667\pi\)
0.342676 + 0.939454i \(0.388667\pi\)
\(180\) 0 0
\(181\) 3.81471 6.60727i 0.283545 0.491115i −0.688710 0.725037i \(-0.741823\pi\)
0.972255 + 0.233922i \(0.0751561\pi\)
\(182\) −9.40578 −0.697203
\(183\) 0 0
\(184\) 12.2790 21.2679i 0.905222 1.56789i
\(185\) 4.50445 + 7.80194i 0.331174 + 0.573610i
\(186\) 0 0
\(187\) −2.30065 3.98485i −0.168240 0.291401i
\(188\) −6.10858 10.5804i −0.445514 0.771653i
\(189\) 0 0
\(190\) −1.74763 + 3.65248i −0.126786 + 0.264979i
\(191\) −8.25384 −0.597227 −0.298613 0.954374i \(-0.596524\pi\)
−0.298613 + 0.954374i \(0.596524\pi\)
\(192\) 0 0
\(193\) −1.64118 2.84261i −0.118135 0.204615i 0.800894 0.598806i \(-0.204358\pi\)
−0.919029 + 0.394191i \(0.871025\pi\)
\(194\) −0.289557 + 0.501527i −0.0207889 + 0.0360075i
\(195\) 0 0
\(196\) 3.64873 6.31978i 0.260623 0.451413i
\(197\) 13.8640 0.987770 0.493885 0.869527i \(-0.335576\pi\)
0.493885 + 0.869527i \(0.335576\pi\)
\(198\) 0 0
\(199\) −7.02823 + 12.1733i −0.498218 + 0.862939i −0.999998 0.00205634i \(-0.999345\pi\)
0.501780 + 0.864995i \(0.332679\pi\)
\(200\) −1.45706 + 2.52370i −0.103030 + 0.178453i
\(201\) 0 0
\(202\) −11.3430 −0.798093
\(203\) −3.35959 + 5.81898i −0.235797 + 0.408412i
\(204\) 0 0
\(205\) −1.82098 + 3.15403i −0.127183 + 0.220287i
\(206\) 5.91883 + 10.2517i 0.412385 + 0.714271i
\(207\) 0 0
\(208\) 1.19623 0.0829435
\(209\) −6.16222 + 0.477397i −0.426250 + 0.0330222i
\(210\) 0 0
\(211\) 2.72258 + 4.71564i 0.187430 + 0.324638i 0.944393 0.328820i \(-0.106651\pi\)
−0.756963 + 0.653458i \(0.773318\pi\)
\(212\) 4.05032 + 7.01537i 0.278177 + 0.481817i
\(213\) 0 0
\(214\) 7.60916 + 13.1795i 0.520151 + 0.900929i
\(215\) −4.41899 + 7.65392i −0.301373 + 0.521993i
\(216\) 0 0
\(217\) −17.7942 −1.20795
\(218\) −2.52690 + 4.37672i −0.171143 + 0.296429i
\(219\) 0 0
\(220\) −1.61237 −0.108706
\(221\) −8.97022 −0.603402
\(222\) 0 0
\(223\) −5.51057 9.54459i −0.369015 0.639153i 0.620397 0.784288i \(-0.286972\pi\)
−0.989412 + 0.145135i \(0.953638\pi\)
\(224\) −9.93816 + 17.2134i −0.664021 + 1.15012i
\(225\) 0 0
\(226\) −4.39831 7.61809i −0.292571 0.506748i
\(227\) −10.1940 −0.676603 −0.338301 0.941038i \(-0.609852\pi\)
−0.338301 + 0.941038i \(0.609852\pi\)
\(228\) 0 0
\(229\) −5.53708 −0.365901 −0.182950 0.983122i \(-0.558565\pi\)
−0.182950 + 0.983122i \(0.558565\pi\)
\(230\) −3.91412 6.77945i −0.258089 0.447024i
\(231\) 0 0
\(232\) 2.67274 4.62932i 0.175474 0.303930i
\(233\) 4.76246 + 8.24882i 0.311999 + 0.540398i 0.978795 0.204842i \(-0.0656681\pi\)
−0.666796 + 0.745240i \(0.732335\pi\)
\(234\) 0 0
\(235\) −10.7440 −0.700862
\(236\) 6.03186 0.392641
\(237\) 0 0
\(238\) −5.52083 + 9.56235i −0.357862 + 0.619835i
\(239\) −10.9781 −0.710117 −0.355059 0.934844i \(-0.615539\pi\)
−0.355059 + 0.934844i \(0.615539\pi\)
\(240\) 0 0
\(241\) −3.38450 + 5.86213i −0.218015 + 0.377613i −0.954201 0.299166i \(-0.903292\pi\)
0.736186 + 0.676779i \(0.236625\pi\)
\(242\) −4.17522 7.23169i −0.268393 0.464870i
\(243\) 0 0
\(244\) −1.86940 3.23790i −0.119676 0.207285i
\(245\) −3.20876 5.55774i −0.205000 0.355071i
\(246\) 0 0
\(247\) −5.20061 + 10.8691i −0.330907 + 0.691584i
\(248\) 14.1563 0.898926
\(249\) 0 0
\(250\) 0.464458 + 0.804466i 0.0293749 + 0.0508789i
\(251\) 9.63128 16.6819i 0.607921 1.05295i −0.383661 0.923474i \(-0.625337\pi\)
0.991582 0.129477i \(-0.0413297\pi\)
\(252\) 0 0
\(253\) 5.97471 10.3485i 0.375627 0.650605i
\(254\) 0.317875 0.0199452
\(255\) 0 0
\(256\) 8.39845 14.5465i 0.524903 0.909158i
\(257\) 4.99004 8.64300i 0.311270 0.539135i −0.667368 0.744728i \(-0.732579\pi\)
0.978638 + 0.205593i \(0.0659123\pi\)
\(258\) 0 0
\(259\) 32.9996 2.05049
\(260\) −1.57165 + 2.72218i −0.0974696 + 0.168822i
\(261\) 0 0
\(262\) 0.574912 0.995776i 0.0355182 0.0615193i
\(263\) −1.73632 3.00739i −0.107066 0.185444i 0.807514 0.589848i \(-0.200812\pi\)
−0.914580 + 0.404404i \(0.867479\pi\)
\(264\) 0 0
\(265\) 7.12387 0.437616
\(266\) 8.38579 + 12.2334i 0.514166 + 0.750079i
\(267\) 0 0
\(268\) 7.19274 + 12.4582i 0.439366 + 0.761005i
\(269\) −11.5745 20.0476i −0.705708 1.22232i −0.966435 0.256910i \(-0.917296\pi\)
0.260727 0.965413i \(-0.416038\pi\)
\(270\) 0 0
\(271\) −10.8902 18.8624i −0.661532 1.14581i −0.980213 0.197946i \(-0.936573\pi\)
0.318681 0.947862i \(-0.396760\pi\)
\(272\) 0.702140 1.21614i 0.0425735 0.0737394i
\(273\) 0 0
\(274\) −5.33461 −0.322276
\(275\) −0.708973 + 1.22798i −0.0427527 + 0.0740498i
\(276\) 0 0
\(277\) −20.7409 −1.24620 −0.623101 0.782141i \(-0.714127\pi\)
−0.623101 + 0.782141i \(0.714127\pi\)
\(278\) 19.2714 1.15582
\(279\) 0 0
\(280\) 5.33720 + 9.24430i 0.318959 + 0.552452i
\(281\) 12.7958 22.1629i 0.763332 1.32213i −0.177793 0.984068i \(-0.556896\pi\)
0.941124 0.338061i \(-0.109771\pi\)
\(282\) 0 0
\(283\) 7.04996 + 12.2109i 0.419077 + 0.725862i 0.995847 0.0910442i \(-0.0290205\pi\)
−0.576770 + 0.816907i \(0.695687\pi\)
\(284\) 16.5702 0.983261
\(285\) 0 0
\(286\) 3.64098 0.215296
\(287\) 6.67025 + 11.5532i 0.393732 + 0.681964i
\(288\) 0 0
\(289\) 3.23483 5.60289i 0.190284 0.329582i
\(290\) −0.851974 1.47566i −0.0500297 0.0866539i
\(291\) 0 0
\(292\) −2.19280 −0.128324
\(293\) 2.14559 0.125347 0.0626733 0.998034i \(-0.480037\pi\)
0.0626733 + 0.998034i \(0.480037\pi\)
\(294\) 0 0
\(295\) 2.65227 4.59387i 0.154421 0.267465i
\(296\) −26.2530 −1.52593
\(297\) 0 0
\(298\) −9.93653 + 17.2106i −0.575607 + 0.996981i
\(299\) −11.6477 20.1743i −0.673602 1.16671i
\(300\) 0 0
\(301\) 16.1867 + 28.0363i 0.932988 + 1.61598i
\(302\) −0.627161 1.08627i −0.0360891 0.0625081i
\(303\) 0 0
\(304\) −1.06651 1.55585i −0.0611683 0.0892340i
\(305\) −3.28797 −0.188269
\(306\) 0 0
\(307\) −6.17252 10.6911i −0.352285 0.610175i 0.634365 0.773034i \(-0.281262\pi\)
−0.986649 + 0.162859i \(0.947928\pi\)
\(308\) −2.95304 + 5.11482i −0.168265 + 0.291444i
\(309\) 0 0
\(310\) 2.25626 3.90796i 0.128147 0.221957i
\(311\) 31.2434 1.77165 0.885825 0.464020i \(-0.153593\pi\)
0.885825 + 0.464020i \(0.153593\pi\)
\(312\) 0 0
\(313\) 16.7182 28.9568i 0.944970 1.63674i 0.189158 0.981947i \(-0.439424\pi\)
0.755812 0.654789i \(-0.227243\pi\)
\(314\) 5.70738 9.88548i 0.322086 0.557870i
\(315\) 0 0
\(316\) 14.2146 0.799631
\(317\) −3.05432 + 5.29024i −0.171548 + 0.297129i −0.938961 0.344023i \(-0.888210\pi\)
0.767413 + 0.641153i \(0.221543\pi\)
\(318\) 0 0
\(319\) 1.30050 2.25253i 0.0728139 0.126117i
\(320\) −2.95301 5.11477i −0.165078 0.285924i
\(321\) 0 0
\(322\) −28.6748 −1.59798
\(323\) 7.99747 + 11.6669i 0.444991 + 0.649165i
\(324\) 0 0
\(325\) 1.38214 + 2.39394i 0.0766673 + 0.132792i
\(326\) 0.676823 + 1.17229i 0.0374858 + 0.0649272i
\(327\) 0 0
\(328\) −5.30656 9.19122i −0.293006 0.507500i
\(329\) −19.6776 + 34.0826i −1.08486 + 1.87904i
\(330\) 0 0
\(331\) −3.39081 −0.186376 −0.0931879 0.995649i \(-0.529706\pi\)
−0.0931879 + 0.995649i \(0.529706\pi\)
\(332\) 3.67775 6.37005i 0.201843 0.349602i
\(333\) 0 0
\(334\) −15.0258 −0.822176
\(335\) 12.6509 0.691191
\(336\) 0 0
\(337\) 1.08496 + 1.87920i 0.0591013 + 0.102366i 0.894062 0.447943i \(-0.147843\pi\)
−0.834961 + 0.550309i \(0.814510\pi\)
\(338\) −2.48892 + 4.31094i −0.135380 + 0.234484i
\(339\) 0 0
\(340\) 1.84499 + 3.19562i 0.100059 + 0.173307i
\(341\) 6.88815 0.373014
\(342\) 0 0
\(343\) 2.13360 0.115203
\(344\) −12.8775 22.3044i −0.694306 1.20257i
\(345\) 0 0
\(346\) −1.69723 + 2.93968i −0.0912434 + 0.158038i
\(347\) 1.37869 + 2.38796i 0.0740118 + 0.128192i 0.900656 0.434533i \(-0.143086\pi\)
−0.826644 + 0.562725i \(0.809753\pi\)
\(348\) 0 0
\(349\) −20.7472 −1.11057 −0.555285 0.831660i \(-0.687391\pi\)
−0.555285 + 0.831660i \(0.687391\pi\)
\(350\) 3.40262 0.181878
\(351\) 0 0
\(352\) 3.84706 6.66331i 0.205049 0.355156i
\(353\) −10.5842 −0.563341 −0.281670 0.959511i \(-0.590888\pi\)
−0.281670 + 0.959511i \(0.590888\pi\)
\(354\) 0 0
\(355\) 7.28608 12.6199i 0.386705 0.669793i
\(356\) −5.99393 10.3818i −0.317677 0.550233i
\(357\) 0 0
\(358\) 4.25879 + 7.37645i 0.225084 + 0.389857i
\(359\) 17.6905 + 30.6408i 0.933666 + 1.61716i 0.776995 + 0.629507i \(0.216743\pi\)
0.156671 + 0.987651i \(0.449924\pi\)
\(360\) 0 0
\(361\) 18.7733 2.92636i 0.988068 0.154019i
\(362\) 7.08710 0.372490
\(363\) 0 0
\(364\) 5.75694 + 9.97132i 0.301746 + 0.522639i
\(365\) −0.964193 + 1.67003i −0.0504682 + 0.0874135i
\(366\) 0 0
\(367\) −12.3001 + 21.3045i −0.642062 + 1.11208i 0.342909 + 0.939368i \(0.388588\pi\)
−0.984972 + 0.172716i \(0.944746\pi\)
\(368\) 3.64686 0.190106
\(369\) 0 0
\(370\) −4.18426 + 7.24736i −0.217529 + 0.376772i
\(371\) 13.0473 22.5987i 0.677384 1.17326i
\(372\) 0 0
\(373\) 6.14967 0.318418 0.159209 0.987245i \(-0.449106\pi\)
0.159209 + 0.987245i \(0.449106\pi\)
\(374\) 2.13711 3.70159i 0.110508 0.191405i
\(375\) 0 0
\(376\) 15.6546 27.1146i 0.807327 1.39833i
\(377\) −2.53531 4.39129i −0.130575 0.226163i
\(378\) 0 0
\(379\) 26.9469 1.38417 0.692084 0.721817i \(-0.256693\pi\)
0.692084 + 0.721817i \(0.256693\pi\)
\(380\) 4.94176 0.382846i 0.253507 0.0196396i
\(381\) 0 0
\(382\) −3.83356 6.63993i −0.196142 0.339728i
\(383\) −10.9735 19.0067i −0.560721 0.971197i −0.997434 0.0715958i \(-0.977191\pi\)
0.436713 0.899601i \(-0.356143\pi\)
\(384\) 0 0
\(385\) 2.59696 + 4.49807i 0.132354 + 0.229243i
\(386\) 1.52452 2.64055i 0.0775960 0.134400i
\(387\) 0 0
\(388\) 0.708909 0.0359894
\(389\) −3.56161 + 6.16889i −0.180581 + 0.312775i −0.942079 0.335392i \(-0.891131\pi\)
0.761498 + 0.648168i \(0.224464\pi\)
\(390\) 0 0
\(391\) −27.3469 −1.38299
\(392\) 18.7014 0.944565
\(393\) 0 0
\(394\) 6.43926 + 11.1531i 0.324405 + 0.561886i
\(395\) 6.25028 10.8258i 0.314486 0.544705i
\(396\) 0 0
\(397\) 15.4994 + 26.8457i 0.777891 + 1.34735i 0.933155 + 0.359474i \(0.117044\pi\)
−0.155264 + 0.987873i \(0.549623\pi\)
\(398\) −13.0573 −0.654502
\(399\) 0 0
\(400\) −0.432745 −0.0216373
\(401\) −16.4801 28.5444i −0.822978 1.42544i −0.903455 0.428684i \(-0.858977\pi\)
0.0804761 0.996757i \(-0.474356\pi\)
\(402\) 0 0
\(403\) 6.71420 11.6293i 0.334458 0.579299i
\(404\) 6.94266 + 12.0250i 0.345410 + 0.598268i
\(405\) 0 0
\(406\) −6.24155 −0.309763
\(407\) −12.7741 −0.633191
\(408\) 0 0
\(409\) −0.452483 + 0.783723i −0.0223738 + 0.0387526i −0.876996 0.480499i \(-0.840456\pi\)
0.854622 + 0.519251i \(0.173789\pi\)
\(410\) −3.38308 −0.167078
\(411\) 0 0
\(412\) 7.24541 12.5494i 0.356956 0.618266i
\(413\) −9.71525 16.8273i −0.478056 0.828017i
\(414\) 0 0
\(415\) −3.23429 5.60195i −0.158765 0.274989i
\(416\) −7.49983 12.9901i −0.367710 0.636892i
\(417\) 0 0
\(418\) −3.24614 4.73556i −0.158774 0.231624i
\(419\) 8.99889 0.439625 0.219812 0.975542i \(-0.429456\pi\)
0.219812 + 0.975542i \(0.429456\pi\)
\(420\) 0 0
\(421\) 18.6169 + 32.2454i 0.907331 + 1.57154i 0.817758 + 0.575563i \(0.195217\pi\)
0.0895733 + 0.995980i \(0.471450\pi\)
\(422\) −2.52905 + 4.38044i −0.123112 + 0.213236i
\(423\) 0 0
\(424\) −10.3799 + 17.9785i −0.504092 + 0.873113i
\(425\) 3.24505 0.157408
\(426\) 0 0
\(427\) −6.02192 + 10.4303i −0.291421 + 0.504756i
\(428\) 9.31459 16.1333i 0.450238 0.779835i
\(429\) 0 0
\(430\) −8.20975 −0.395909
\(431\) −7.09976 + 12.2971i −0.341983 + 0.592332i −0.984801 0.173687i \(-0.944432\pi\)
0.642818 + 0.766019i \(0.277765\pi\)
\(432\) 0 0
\(433\) −15.9712 + 27.6630i −0.767528 + 1.32940i 0.171371 + 0.985207i \(0.445180\pi\)
−0.938899 + 0.344192i \(0.888153\pi\)
\(434\) −8.26467 14.3148i −0.396717 0.687134i
\(435\) 0 0
\(436\) 6.18650 0.296280
\(437\) −15.8548 + 33.1359i −0.758436 + 1.58510i
\(438\) 0 0
\(439\) −1.17614 2.03713i −0.0561340 0.0972270i 0.836593 0.547825i \(-0.184544\pi\)
−0.892727 + 0.450598i \(0.851211\pi\)
\(440\) −2.06603 3.57847i −0.0984941 0.170597i
\(441\) 0 0
\(442\) −4.16629 7.21623i −0.198170 0.343241i
\(443\) 19.0498 32.9952i 0.905082 1.56765i 0.0842740 0.996443i \(-0.473143\pi\)
0.820808 0.571205i \(-0.193524\pi\)
\(444\) 0 0
\(445\) −10.5423 −0.499755
\(446\) 5.11886 8.86613i 0.242385 0.419824i
\(447\) 0 0
\(448\) −21.6337 −1.02210
\(449\) 37.3376 1.76207 0.881034 0.473053i \(-0.156848\pi\)
0.881034 + 0.473053i \(0.156848\pi\)
\(450\) 0 0
\(451\) −2.58205 4.47225i −0.121584 0.210590i
\(452\) −5.38409 + 9.32552i −0.253246 + 0.438636i
\(453\) 0 0
\(454\) −4.73471 8.20076i −0.222211 0.384881i
\(455\) 10.1255 0.474692
\(456\) 0 0
\(457\) 1.83835 0.0859946 0.0429973 0.999075i \(-0.486309\pi\)
0.0429973 + 0.999075i \(0.486309\pi\)
\(458\) −2.57175 4.45439i −0.120170 0.208140i
\(459\) 0 0
\(460\) −4.79138 + 8.29892i −0.223399 + 0.386939i
\(461\) −1.53672 2.66167i −0.0715720 0.123966i 0.828018 0.560701i \(-0.189468\pi\)
−0.899590 + 0.436735i \(0.856135\pi\)
\(462\) 0 0
\(463\) 19.8824 0.924013 0.462007 0.886876i \(-0.347130\pi\)
0.462007 + 0.886876i \(0.347130\pi\)
\(464\) 0.793802 0.0368513
\(465\) 0 0
\(466\) −4.42393 + 7.66247i −0.204934 + 0.354957i
\(467\) 23.0483 1.06655 0.533273 0.845943i \(-0.320962\pi\)
0.533273 + 0.845943i \(0.320962\pi\)
\(468\) 0 0
\(469\) 23.1700 40.1317i 1.06989 1.85311i
\(470\) −4.99014 8.64318i −0.230178 0.398680i
\(471\) 0 0
\(472\) 7.72902 + 13.3871i 0.355757 + 0.616190i
\(473\) −6.26589 10.8528i −0.288106 0.499014i
\(474\) 0 0
\(475\) 1.88136 3.93198i 0.0863229 0.180412i
\(476\) 13.5164 0.619524
\(477\) 0 0
\(478\) −5.09889 8.83154i −0.233218 0.403945i
\(479\) 15.2877 26.4791i 0.698515 1.20986i −0.270467 0.962729i \(-0.587178\pi\)
0.968981 0.247134i \(-0.0794886\pi\)
\(480\) 0 0
\(481\) −12.4516 + 21.5667i −0.567742 + 0.983359i
\(482\) −6.28784 −0.286403
\(483\) 0 0
\(484\) −5.11100 + 8.85251i −0.232318 + 0.402387i
\(485\) 0.311714 0.539905i 0.0141542 0.0245158i
\(486\) 0 0
\(487\) 35.0987 1.59047 0.795237 0.606299i \(-0.207347\pi\)
0.795237 + 0.606299i \(0.207347\pi\)
\(488\) 4.79077 8.29786i 0.216868 0.375627i
\(489\) 0 0
\(490\) 2.98067 5.16268i 0.134653 0.233226i
\(491\) −12.7839 22.1424i −0.576930 0.999272i −0.995829 0.0912390i \(-0.970917\pi\)
0.418899 0.908033i \(-0.362416\pi\)
\(492\) 0 0
\(493\) −5.95252 −0.268088
\(494\) −11.1593 + 0.864527i −0.502080 + 0.0388969i
\(495\) 0 0
\(496\) 1.05110 + 1.82056i 0.0471959 + 0.0817457i
\(497\) −26.6889 46.2265i −1.19716 2.07354i
\(498\) 0 0
\(499\) 19.2357 + 33.3171i 0.861106 + 1.49148i 0.870862 + 0.491527i \(0.163561\pi\)
−0.00975600 + 0.999952i \(0.503105\pi\)
\(500\) 0.568557 0.984769i 0.0254266 0.0440402i
\(501\) 0 0
\(502\) 17.8933 0.798618
\(503\) −19.0094 + 32.9252i −0.847587 + 1.46806i 0.0357690 + 0.999360i \(0.488612\pi\)
−0.883356 + 0.468703i \(0.844721\pi\)
\(504\) 0 0
\(505\) 12.2110 0.543384
\(506\) 11.1000 0.493456
\(507\) 0 0
\(508\) −0.194560 0.336988i −0.00863220 0.0149514i
\(509\) 6.63084 11.4850i 0.293907 0.509062i −0.680823 0.732448i \(-0.738378\pi\)
0.974730 + 0.223386i \(0.0717111\pi\)
\(510\) 0 0
\(511\) 3.53183 + 6.11732i 0.156239 + 0.270614i
\(512\) 4.87032 0.215240
\(513\) 0 0
\(514\) 9.27066 0.408911
\(515\) −6.37176 11.0362i −0.280773 0.486313i
\(516\) 0 0
\(517\) 7.61721 13.1934i 0.335005 0.580245i
\(518\) 15.3269 + 26.5470i 0.673427 + 1.16641i
\(519\) 0 0
\(520\) −8.05543 −0.353254
\(521\) 37.1676 1.62834 0.814171 0.580625i \(-0.197192\pi\)
0.814171 + 0.580625i \(0.197192\pi\)
\(522\) 0 0
\(523\) −12.9538 + 22.4367i −0.566431 + 0.981087i 0.430484 + 0.902598i \(0.358343\pi\)
−0.996915 + 0.0784886i \(0.974991\pi\)
\(524\) −1.40753 −0.0614883
\(525\) 0 0
\(526\) 1.61289 2.79362i 0.0703256 0.121807i
\(527\) −7.88195 13.6519i −0.343343 0.594688i
\(528\) 0 0
\(529\) −24.0095 41.5856i −1.04389 1.80807i
\(530\) 3.30874 + 5.73090i 0.143722 + 0.248935i
\(531\) 0 0
\(532\) 7.83633 16.3776i 0.339748 0.710061i
\(533\) −10.0674 −0.436068
\(534\) 0 0
\(535\) −8.19143 14.1880i −0.354147 0.613400i
\(536\) −18.4331 + 31.9270i −0.796187 + 1.37904i
\(537\) 0 0
\(538\) 10.7517 18.6225i 0.463540 0.802875i
\(539\) 9.09970 0.391952
\(540\) 0 0
\(541\) 1.08156 1.87332i 0.0465000 0.0805403i −0.841839 0.539729i \(-0.818527\pi\)
0.888339 + 0.459189i \(0.151860\pi\)
\(542\) 10.1161 17.5216i 0.434523 0.752616i
\(543\) 0 0
\(544\) −17.6084 −0.754956
\(545\) 2.72026 4.71164i 0.116523 0.201824i
\(546\) 0 0
\(547\) 2.95615 5.12020i 0.126396 0.218924i −0.795882 0.605452i \(-0.792992\pi\)
0.922278 + 0.386528i \(0.126326\pi\)
\(548\) 3.26512 + 5.65536i 0.139479 + 0.241585i
\(549\) 0 0
\(550\) −1.31715 −0.0561636
\(551\) −3.45106 + 7.21259i −0.147020 + 0.307267i
\(552\) 0 0
\(553\) −22.8947 39.6548i −0.973583 1.68630i
\(554\) −9.63330 16.6854i −0.409280 0.708893i
\(555\) 0 0
\(556\) −11.7953 20.4301i −0.500234 0.866430i
\(557\) −1.03098 + 1.78570i −0.0436839 + 0.0756627i −0.887041 0.461691i \(-0.847243\pi\)
0.843357 + 0.537354i \(0.180576\pi\)
\(558\) 0 0
\(559\) −24.4306 −1.03331
\(560\) −0.792572 + 1.37277i −0.0334923 + 0.0580103i
\(561\) 0 0
\(562\) 23.7724 1.00278
\(563\) −2.26488 −0.0954533 −0.0477267 0.998860i \(-0.515198\pi\)
−0.0477267 + 0.998860i \(0.515198\pi\)
\(564\) 0 0
\(565\) 4.73488 + 8.20105i 0.199198 + 0.345021i
\(566\) −6.54883 + 11.3429i −0.275268 + 0.476778i
\(567\) 0 0
\(568\) 21.2325 + 36.7758i 0.890896 + 1.54308i
\(569\) −23.5361 −0.986687 −0.493343 0.869835i \(-0.664225\pi\)
−0.493343 + 0.869835i \(0.664225\pi\)
\(570\) 0 0
\(571\) −22.3091 −0.933607 −0.466803 0.884361i \(-0.654594\pi\)
−0.466803 + 0.884361i \(0.654594\pi\)
\(572\) −2.22851 3.85990i −0.0931788 0.161390i
\(573\) 0 0
\(574\) −6.19610 + 10.7320i −0.258620 + 0.447944i
\(575\) 4.21364 + 7.29823i 0.175721 + 0.304357i
\(576\) 0 0
\(577\) 16.4111 0.683203 0.341601 0.939845i \(-0.389031\pi\)
0.341601 + 0.939845i \(0.389031\pi\)
\(578\) 6.00978 0.249974
\(579\) 0 0
\(580\) −1.04293 + 1.80640i −0.0433052 + 0.0750067i
\(581\) −23.6944 −0.983007
\(582\) 0 0
\(583\) −5.05063 + 8.74795i −0.209176 + 0.362303i
\(584\) −2.80977 4.86667i −0.116269 0.201384i
\(585\) 0 0
\(586\) 0.996536 + 1.72605i 0.0411665 + 0.0713025i
\(587\) 13.6467 + 23.6368i 0.563261 + 0.975596i 0.997209 + 0.0746585i \(0.0237867\pi\)
−0.433948 + 0.900938i \(0.642880\pi\)
\(588\) 0 0
\(589\) −21.1115 + 1.63554i −0.869886 + 0.0673915i
\(590\) 4.92748 0.202861
\(591\) 0 0
\(592\) −1.94928 3.37625i −0.0801149 0.138763i
\(593\) 15.1560 26.2510i 0.622383 1.07800i −0.366657 0.930356i \(-0.619498\pi\)
0.989041 0.147644i \(-0.0471689\pi\)
\(594\) 0 0
\(595\) 5.94330 10.2941i 0.243651 0.422017i
\(596\) 24.3272 0.996480
\(597\) 0 0
\(598\) 10.8197 18.7403i 0.442451 0.766347i
\(599\) −0.449215 + 0.778062i −0.0183544 + 0.0317908i −0.875057 0.484020i \(-0.839176\pi\)
0.856702 + 0.515811i \(0.172509\pi\)
\(600\) 0 0
\(601\) −0.853573 −0.0348180 −0.0174090 0.999848i \(-0.505542\pi\)
−0.0174090 + 0.999848i \(0.505542\pi\)
\(602\) −15.0361 + 26.0433i −0.612827 + 1.06145i
\(603\) 0 0
\(604\) −0.767726 + 1.32974i −0.0312383 + 0.0541064i
\(605\) 4.49471 + 7.78507i 0.182736 + 0.316508i
\(606\) 0 0
\(607\) 2.19123 0.0889392 0.0444696 0.999011i \(-0.485840\pi\)
0.0444696 + 0.999011i \(0.485840\pi\)
\(608\) −10.2087 + 21.3359i −0.414019 + 0.865286i
\(609\) 0 0
\(610\) −1.52713 2.64506i −0.0618316 0.107095i
\(611\) −14.8497 25.7205i −0.600755 1.04054i
\(612\) 0 0
\(613\) −13.8771 24.0359i −0.560492 0.970800i −0.997453 0.0713203i \(-0.977279\pi\)
0.436962 0.899480i \(-0.356055\pi\)
\(614\) 5.73376 9.93116i 0.231396 0.400789i
\(615\) 0 0
\(616\) −15.1357 −0.609835
\(617\) −6.78871 + 11.7584i −0.273303 + 0.473375i −0.969706 0.244277i \(-0.921450\pi\)
0.696403 + 0.717651i \(0.254783\pi\)
\(618\) 0 0
\(619\) 2.70380 0.108675 0.0543375 0.998523i \(-0.482695\pi\)
0.0543375 + 0.998523i \(0.482695\pi\)
\(620\) −5.52391 −0.221846
\(621\) 0 0
\(622\) 14.5113 + 25.1342i 0.581848 + 1.00779i
\(623\) −19.3083 + 33.4429i −0.773570 + 1.33986i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 31.0597 1.24139
\(627\) 0 0
\(628\) −13.9731 −0.557589
\(629\) 14.6172 + 25.3177i 0.582825 + 1.00948i
\(630\) 0 0
\(631\) −3.22888 + 5.59259i −0.128540 + 0.222638i −0.923111 0.384533i \(-0.874362\pi\)
0.794571 + 0.607171i \(0.207696\pi\)
\(632\) 18.2140 + 31.5476i 0.724516 + 1.25490i
\(633\) 0 0
\(634\) −5.67442 −0.225360
\(635\) −0.342200 −0.0135798
\(636\) 0 0
\(637\) 8.86992 15.3631i 0.351439 0.608710i
\(638\) 2.41611 0.0956546
\(639\) 0 0
\(640\) −2.68315 + 4.64735i −0.106061 + 0.183703i
\(641\) −12.2784 21.2668i −0.484968 0.839989i 0.514883 0.857261i \(-0.327835\pi\)
−0.999851 + 0.0172712i \(0.994502\pi\)
\(642\) 0 0
\(643\) −10.7699 18.6540i −0.424722 0.735641i 0.571672 0.820482i \(-0.306295\pi\)
−0.996394 + 0.0848414i \(0.972962\pi\)
\(644\) 17.5508 + 30.3989i 0.691599 + 1.19788i
\(645\) 0 0
\(646\) −5.67114 + 11.8525i −0.223128 + 0.466330i
\(647\) −17.5491 −0.689926 −0.344963 0.938616i \(-0.612109\pi\)
−0.344963 + 0.938616i \(0.612109\pi\)
\(648\) 0 0
\(649\) 3.76077 + 6.51385i 0.147623 + 0.255691i
\(650\) −1.28389 + 2.22377i −0.0503584 + 0.0872233i
\(651\) 0 0
\(652\) 0.828518 1.43504i 0.0324473 0.0562003i
\(653\) −13.6647 −0.534740 −0.267370 0.963594i \(-0.586155\pi\)
−0.267370 + 0.963594i \(0.586155\pi\)
\(654\) 0 0
\(655\) −0.618905 + 1.07198i −0.0241826 + 0.0418856i
\(656\) 0.788021 1.36489i 0.0307671 0.0532901i
\(657\) 0 0
\(658\) −36.5577 −1.42517
\(659\) −2.56623 + 4.44485i −0.0999662 + 0.173147i −0.911670 0.410922i \(-0.865207\pi\)
0.811704 + 0.584069i \(0.198540\pi\)
\(660\) 0 0
\(661\) −12.5958 + 21.8166i −0.489921 + 0.848569i −0.999933 0.0115990i \(-0.996308\pi\)
0.510011 + 0.860168i \(0.329641\pi\)
\(662\) −1.57489 2.72779i −0.0612099 0.106019i
\(663\) 0 0
\(664\) 18.8502 0.731529
\(665\) −9.02750 13.1696i −0.350071 0.510694i
\(666\) 0 0
\(667\) −7.72924 13.3874i −0.299277 0.518364i
\(668\) 9.19676 + 15.9293i 0.355833 + 0.616322i
\(669\) 0 0
\(670\) 5.87580 + 10.1772i 0.227002 + 0.393179i
\(671\) 2.33109 4.03756i 0.0899905 0.155868i
\(672\) 0 0
\(673\) 17.1038 0.659304 0.329652 0.944103i \(-0.393069\pi\)
0.329652 + 0.944103i \(0.393069\pi\)
\(674\) −1.00783 + 1.74562i −0.0388203 + 0.0672387i
\(675\) 0 0
\(676\) 6.09352 0.234366
\(677\) −0.430567 −0.0165480 −0.00827401 0.999966i \(-0.502634\pi\)
−0.00827401 + 0.999966i \(0.502634\pi\)
\(678\) 0 0
\(679\) −1.14181 1.97767i −0.0438185 0.0758959i
\(680\) −4.72823 + 8.18953i −0.181319 + 0.314054i
\(681\) 0 0
\(682\) 3.19926 + 5.54128i 0.122506 + 0.212186i
\(683\) 27.9032 1.06769 0.533843 0.845584i \(-0.320747\pi\)
0.533843 + 0.845584i \(0.320747\pi\)
\(684\) 0 0
\(685\) 5.74283 0.219422
\(686\) 0.990967 + 1.71641i 0.0378353 + 0.0655327i
\(687\) 0 0
\(688\) 1.91230 3.31220i 0.0729056 0.126276i
\(689\) 9.84618 + 17.0541i 0.375109 + 0.649709i
\(690\) 0 0
\(691\) 10.4084 0.395954 0.197977 0.980207i \(-0.436563\pi\)
0.197977 + 0.980207i \(0.436563\pi\)
\(692\) 4.15525 0.157959
\(693\) 0 0
\(694\) −1.28069 + 2.21821i −0.0486141 + 0.0842022i
\(695\) −20.7461 −0.786944
\(696\) 0 0
\(697\) −5.90917 + 10.2350i −0.223826 + 0.387678i
\(698\) −9.63619 16.6904i −0.364735 0.631740i
\(699\) 0 0
\(700\) −2.08262 3.60720i −0.0787157 0.136340i
\(701\) −10.8642 18.8173i −0.410335 0.710721i 0.584591 0.811328i \(-0.301255\pi\)
−0.994926 + 0.100607i \(0.967921\pi\)
\(702\) 0 0
\(703\) 39.1516 3.03314i 1.47663 0.114397i
\(704\) 8.37442 0.315623
\(705\) 0 0
\(706\) −4.91593 8.51464i −0.185013 0.320453i
\(707\) 22.3645 38.7364i 0.841102 1.45683i
\(708\) 0 0
\(709\) −12.0501 + 20.8713i −0.452550 + 0.783840i −0.998544 0.0539495i \(-0.982819\pi\)
0.545993 + 0.837789i \(0.316152\pi\)
\(710\) 13.5363 0.508009
\(711\) 0 0
\(712\) 15.3608 26.6057i 0.575671 0.997092i
\(713\) 20.4691 35.4536i 0.766575 1.32775i
\(714\) 0 0
\(715\) −3.91960 −0.146585
\(716\) 5.21331 9.02972i 0.194831 0.337456i
\(717\) 0 0
\(718\) −16.4330 + 28.4627i −0.613273 + 1.06222i
\(719\) 3.05117 + 5.28479i 0.113790 + 0.197089i 0.917295 0.398208i \(-0.130368\pi\)
−0.803506 + 0.595297i \(0.797034\pi\)
\(720\) 0 0
\(721\) −46.6794 −1.73843
\(722\) 11.0736 + 13.7433i 0.412115 + 0.511472i
\(723\) 0 0
\(724\) −4.33776 7.51322i −0.161212 0.279227i
\(725\) 0.917170 + 1.58858i 0.0340628 + 0.0589986i
\(726\) 0 0
\(727\) −5.35126 9.26866i −0.198467 0.343756i 0.749564 0.661932i \(-0.230263\pi\)
−0.948032 + 0.318176i \(0.896930\pi\)
\(728\) −14.7535 + 25.5538i −0.546801 + 0.947087i
\(729\) 0 0
\(730\) −1.79131 −0.0662994
\(731\) −14.3398 + 24.8373i −0.530378 + 0.918642i
\(732\) 0 0
\(733\) −12.7580 −0.471226 −0.235613 0.971847i \(-0.575710\pi\)
−0.235613 + 0.971847i \(0.575710\pi\)
\(734\) −22.8516 −0.843469
\(735\) 0 0
\(736\) −22.8642 39.6020i −0.842787 1.45975i
\(737\) −8.96913 + 15.5350i −0.330382 + 0.572238i
\(738\) 0 0
\(739\) −6.64437 11.5084i −0.244417 0.423343i 0.717551 0.696506i \(-0.245263\pi\)
−0.961968 + 0.273164i \(0.911930\pi\)
\(740\) 10.2442 0.376583
\(741\) 0 0
\(742\) 24.2398 0.889871
\(743\) −18.1671 31.4663i −0.666486 1.15439i −0.978880 0.204436i \(-0.934464\pi\)
0.312394 0.949953i \(-0.398869\pi\)
\(744\) 0 0
\(745\) 10.6969 18.5276i 0.391904 0.678798i
\(746\) 2.85627 + 4.94720i 0.104575 + 0.181130i
\(747\) 0 0
\(748\) −5.23220 −0.191308
\(749\) −60.0103 −2.19273
\(750\) 0 0
\(751\) 3.79143 6.56696i 0.138351 0.239632i −0.788521 0.615007i \(-0.789153\pi\)
0.926873 + 0.375376i \(0.122486\pi\)
\(752\) 4.64942 0.169547
\(753\) 0 0
\(754\) 2.35509 4.07914i 0.0857675 0.148554i
\(755\) 0.675153 + 1.16940i 0.0245713 + 0.0425588i
\(756\) 0 0
\(757\) 9.24433 + 16.0116i 0.335991 + 0.581953i 0.983675 0.179956i \(-0.0575956\pi\)
−0.647684 + 0.761909i \(0.724262\pi\)
\(758\) 12.5157 + 21.6778i 0.454591 + 0.787374i
\(759\) 0 0
\(760\) 7.18188 + 10.4771i 0.260514 + 0.380045i
\(761\) 6.84628 0.248177 0.124089 0.992271i \(-0.460399\pi\)
0.124089 + 0.992271i \(0.460399\pi\)
\(762\) 0 0
\(763\) −9.96431 17.2587i −0.360732 0.624807i
\(764\) −4.69278 + 8.12813i −0.169779 + 0.294065i
\(765\) 0 0
\(766\) 10.1935 17.6556i 0.368306 0.637924i
\(767\) 14.6632 0.529458
\(768\) 0 0
\(769\) −10.0541 + 17.4141i −0.362558 + 0.627970i −0.988381 0.151996i \(-0.951430\pi\)
0.625823 + 0.779965i \(0.284763\pi\)
\(770\) −2.41236 + 4.17834i −0.0869355 + 0.150577i
\(771\) 0 0
\(772\) −3.73242 −0.134333
\(773\) −27.0407 + 46.8359i −0.972587 + 1.68457i −0.284910 + 0.958554i \(0.591964\pi\)
−0.687677 + 0.726017i \(0.741369\pi\)
\(774\) 0 0
\(775\) −2.42892 + 4.20701i −0.0872493 + 0.151120i
\(776\) 0.908372 + 1.57335i 0.0326086 + 0.0564798i
\(777\) 0 0
\(778\) −6.61688 −0.237227
\(779\) 8.97567 + 13.0939i 0.321587 + 0.469139i
\(780\) 0 0
\(781\) 10.3313 + 17.8943i 0.369682 + 0.640308i
\(782\) −12.7015 21.9996i −0.454205 0.786706i
\(783\) 0 0