Properties

Label 855.2.k.i.676.5
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.5
Root \(-1.12375 - 1.94639i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.i.406.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12375 - 1.94639i) q^{2} +(-1.52562 - 2.64245i) q^{4} +(0.500000 - 0.866025i) q^{5} +3.16638 q^{7} -2.36264 q^{8} +(-1.12375 - 1.94639i) q^{10} -4.81770 q^{11} +(-0.583191 - 1.01012i) q^{13} +(3.55821 - 6.16301i) q^{14} +(0.396220 - 0.686273i) q^{16} +(2.92184 - 5.06077i) q^{17} +(3.21554 + 2.94284i) q^{19} -3.05123 q^{20} +(-5.41388 + 9.37711i) q^{22} +(-4.29873 - 7.44562i) q^{23} +(-0.500000 - 0.866025i) q^{25} -2.62144 q^{26} +(-4.83069 - 8.36699i) q^{28} +(3.65634 + 6.33297i) q^{29} -5.10247 q^{31} +(-3.25314 - 5.63461i) q^{32} +(-6.56681 - 11.3741i) q^{34} +(1.58319 - 2.74217i) q^{35} +7.26885 q^{37} +(9.34136 - 2.95167i) q^{38} +(-1.18132 + 2.04611i) q^{40} +(-1.24750 + 2.16072i) q^{41} +(-0.583191 + 1.01012i) q^{43} +(7.34996 + 12.7305i) q^{44} -19.3227 q^{46} +(4.68830 + 8.12038i) q^{47} +3.02597 q^{49} -2.24750 q^{50} +(-1.77945 + 3.08210i) q^{52} +(-1.37689 - 2.38485i) q^{53} +(-2.40885 + 4.17225i) q^{55} -7.48103 q^{56} +16.4352 q^{58} +(-5.05626 + 8.75770i) q^{59} +(2.55418 + 4.42398i) q^{61} +(-5.73389 + 9.93138i) q^{62} -13.0380 q^{64} -1.16638 q^{65} +(-0.519277 - 0.899414i) q^{67} -17.8304 q^{68} +(-3.55821 - 6.16301i) q^{70} +(-2.16135 + 3.74358i) q^{71} +(-1.81673 + 3.14666i) q^{73} +(8.16835 - 14.1480i) q^{74} +(2.87062 - 12.9865i) q^{76} -15.2547 q^{77} +(7.53826 - 13.0567i) q^{79} +(-0.396220 - 0.686273i) q^{80} +(2.80374 + 4.85622i) q^{82} +8.98408 q^{83} +(-2.92184 - 5.06077i) q^{85} +(1.31072 + 2.27023i) q^{86} +11.3825 q^{88} +(2.08614 + 3.61330i) q^{89} +(-1.84661 - 3.19841i) q^{91} +(-13.1164 + 22.7183i) q^{92} +21.0739 q^{94} +(4.15634 - 1.31332i) q^{95} +(-1.00000 + 1.73205i) q^{97} +(3.40043 - 5.88972i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - 7 q^{4} + 5 q^{5} + 4 q^{7} + 12 q^{8} + q^{10} - 10 q^{11} + 8 q^{13} - 4 q^{14} - 7 q^{16} + 10 q^{17} + 5 q^{19} - 14 q^{20} - 2 q^{22} - 2 q^{23} - 5 q^{25} + 4 q^{26} - 10 q^{28} - 7 q^{29}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12375 1.94639i 0.794609 1.37630i −0.128477 0.991712i \(-0.541009\pi\)
0.923087 0.384592i \(-0.125658\pi\)
\(3\) 0 0
\(4\) −1.52562 2.64245i −0.762808 1.32122i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 3.16638 1.19678 0.598390 0.801205i \(-0.295807\pi\)
0.598390 + 0.801205i \(0.295807\pi\)
\(8\) −2.36264 −0.835320
\(9\) 0 0
\(10\) −1.12375 1.94639i −0.355360 0.615502i
\(11\) −4.81770 −1.45259 −0.726295 0.687383i \(-0.758760\pi\)
−0.726295 + 0.687383i \(0.758760\pi\)
\(12\) 0 0
\(13\) −0.583191 1.01012i −0.161748 0.280156i 0.773748 0.633494i \(-0.218380\pi\)
−0.935496 + 0.353338i \(0.885047\pi\)
\(14\) 3.55821 6.16301i 0.950973 1.64713i
\(15\) 0 0
\(16\) 0.396220 0.686273i 0.0990549 0.171568i
\(17\) 2.92184 5.06077i 0.708649 1.22742i −0.256709 0.966489i \(-0.582638\pi\)
0.965358 0.260928i \(-0.0840286\pi\)
\(18\) 0 0
\(19\) 3.21554 + 2.94284i 0.737695 + 0.675134i
\(20\) −3.05123 −0.682277
\(21\) 0 0
\(22\) −5.41388 + 9.37711i −1.15424 + 1.99921i
\(23\) −4.29873 7.44562i −0.896347 1.55252i −0.832129 0.554583i \(-0.812878\pi\)
−0.0642183 0.997936i \(-0.520455\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −2.62144 −0.514106
\(27\) 0 0
\(28\) −4.83069 8.36699i −0.912914 1.58121i
\(29\) 3.65634 + 6.33297i 0.678966 + 1.17600i 0.975293 + 0.220917i \(0.0709050\pi\)
−0.296326 + 0.955087i \(0.595762\pi\)
\(30\) 0 0
\(31\) −5.10247 −0.916430 −0.458215 0.888841i \(-0.651511\pi\)
−0.458215 + 0.888841i \(0.651511\pi\)
\(32\) −3.25314 5.63461i −0.575080 0.996068i
\(33\) 0 0
\(34\) −6.56681 11.3741i −1.12620 1.95063i
\(35\) 1.58319 2.74217i 0.267608 0.463511i
\(36\) 0 0
\(37\) 7.26885 1.19499 0.597496 0.801872i \(-0.296162\pi\)
0.597496 + 0.801872i \(0.296162\pi\)
\(38\) 9.34136 2.95167i 1.51537 0.478825i
\(39\) 0 0
\(40\) −1.18132 + 2.04611i −0.186783 + 0.323518i
\(41\) −1.24750 + 2.16072i −0.194826 + 0.337449i −0.946843 0.321695i \(-0.895748\pi\)
0.752017 + 0.659143i \(0.229081\pi\)
\(42\) 0 0
\(43\) −0.583191 + 1.01012i −0.0889358 + 0.154041i −0.907062 0.420998i \(-0.861680\pi\)
0.818126 + 0.575039i \(0.195013\pi\)
\(44\) 7.34996 + 12.7305i 1.10805 + 1.91920i
\(45\) 0 0
\(46\) −19.3227 −2.84898
\(47\) 4.68830 + 8.12038i 0.683859 + 1.18448i 0.973794 + 0.227432i \(0.0730330\pi\)
−0.289935 + 0.957046i \(0.593634\pi\)
\(48\) 0 0
\(49\) 3.02597 0.432282
\(50\) −2.24750 −0.317844
\(51\) 0 0
\(52\) −1.77945 + 3.08210i −0.246766 + 0.427411i
\(53\) −1.37689 2.38485i −0.189131 0.327584i 0.755830 0.654768i \(-0.227234\pi\)
−0.944961 + 0.327184i \(0.893900\pi\)
\(54\) 0 0
\(55\) −2.40885 + 4.17225i −0.324809 + 0.562586i
\(56\) −7.48103 −0.999695
\(57\) 0 0
\(58\) 16.4352 2.15805
\(59\) −5.05626 + 8.75770i −0.658269 + 1.14016i 0.322794 + 0.946469i \(0.395378\pi\)
−0.981063 + 0.193687i \(0.937956\pi\)
\(60\) 0 0
\(61\) 2.55418 + 4.42398i 0.327030 + 0.566432i 0.981921 0.189291i \(-0.0606189\pi\)
−0.654891 + 0.755723i \(0.727286\pi\)
\(62\) −5.73389 + 9.93138i −0.728204 + 1.26129i
\(63\) 0 0
\(64\) −13.0380 −1.62975
\(65\) −1.16638 −0.144672
\(66\) 0 0
\(67\) −0.519277 0.899414i −0.0634398 0.109881i 0.832561 0.553933i \(-0.186874\pi\)
−0.896001 + 0.444052i \(0.853540\pi\)
\(68\) −17.8304 −2.16226
\(69\) 0 0
\(70\) −3.55821 6.16301i −0.425288 0.736620i
\(71\) −2.16135 + 3.74358i −0.256506 + 0.444281i −0.965303 0.261131i \(-0.915905\pi\)
0.708798 + 0.705412i \(0.249238\pi\)
\(72\) 0 0
\(73\) −1.81673 + 3.14666i −0.212632 + 0.368289i −0.952537 0.304422i \(-0.901537\pi\)
0.739906 + 0.672711i \(0.234870\pi\)
\(74\) 8.16835 14.1480i 0.949552 1.64467i
\(75\) 0 0
\(76\) 2.87062 12.9865i 0.329283 1.48966i
\(77\) −15.2547 −1.73843
\(78\) 0 0
\(79\) 7.53826 13.0567i 0.848121 1.46899i −0.0347620 0.999396i \(-0.511067\pi\)
0.882883 0.469593i \(-0.155599\pi\)
\(80\) −0.396220 0.686273i −0.0442987 0.0767276i
\(81\) 0 0
\(82\) 2.80374 + 4.85622i 0.309621 + 0.536280i
\(83\) 8.98408 0.986131 0.493065 0.869992i \(-0.335876\pi\)
0.493065 + 0.869992i \(0.335876\pi\)
\(84\) 0 0
\(85\) −2.92184 5.06077i −0.316918 0.548918i
\(86\) 1.31072 + 2.27023i 0.141338 + 0.244805i
\(87\) 0 0
\(88\) 11.3825 1.21338
\(89\) 2.08614 + 3.61330i 0.221130 + 0.383009i 0.955152 0.296118i \(-0.0956920\pi\)
−0.734021 + 0.679127i \(0.762359\pi\)
\(90\) 0 0
\(91\) −1.84661 3.19841i −0.193577 0.335285i
\(92\) −13.1164 + 22.7183i −1.36748 + 2.36855i
\(93\) 0 0
\(94\) 21.0739 2.17360
\(95\) 4.15634 1.31332i 0.426432 0.134743i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 3.40043 5.88972i 0.343495 0.594952i
\(99\) 0 0
\(100\) −1.52562 + 2.64245i −0.152562 + 0.264245i
\(101\) 5.46008 + 9.45714i 0.543299 + 0.941021i 0.998712 + 0.0507406i \(0.0161582\pi\)
−0.455413 + 0.890280i \(0.650508\pi\)
\(102\) 0 0
\(103\) −5.72113 −0.563720 −0.281860 0.959456i \(-0.590951\pi\)
−0.281860 + 0.959456i \(0.590951\pi\)
\(104\) 1.37787 + 2.38654i 0.135111 + 0.234020i
\(105\) 0 0
\(106\) −6.18912 −0.601140
\(107\) 2.98408 0.288482 0.144241 0.989543i \(-0.453926\pi\)
0.144241 + 0.989543i \(0.453926\pi\)
\(108\) 0 0
\(109\) −6.43315 + 11.1425i −0.616184 + 1.06726i 0.373991 + 0.927432i \(0.377989\pi\)
−0.990175 + 0.139830i \(0.955344\pi\)
\(110\) 5.41388 + 9.37711i 0.516193 + 0.894072i
\(111\) 0 0
\(112\) 1.25458 2.17300i 0.118547 0.205329i
\(113\) 16.7739 1.57796 0.788978 0.614422i \(-0.210611\pi\)
0.788978 + 0.614422i \(0.210611\pi\)
\(114\) 0 0
\(115\) −8.59746 −0.801717
\(116\) 11.1564 19.3234i 1.03584 1.79413i
\(117\) 0 0
\(118\) 11.3639 + 19.6829i 1.04613 + 1.81196i
\(119\) 9.25165 16.0243i 0.848097 1.46895i
\(120\) 0 0
\(121\) 12.2102 1.11002
\(122\) 11.4810 1.03944
\(123\) 0 0
\(124\) 7.78441 + 13.4830i 0.699061 + 1.21081i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.0512339 0.0887398i −0.00454628 0.00787438i 0.863743 0.503932i \(-0.168114\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(128\) −8.14510 + 14.1077i −0.719932 + 1.24696i
\(129\) 0 0
\(130\) −1.31072 + 2.27023i −0.114958 + 0.199112i
\(131\) 6.78366 11.7497i 0.592691 1.02657i −0.401177 0.916001i \(-0.631399\pi\)
0.993868 0.110571i \(-0.0352680\pi\)
\(132\) 0 0
\(133\) 10.1816 + 9.31816i 0.882859 + 0.807987i
\(134\) −2.33414 −0.201639
\(135\) 0 0
\(136\) −6.90326 + 11.9568i −0.591949 + 1.02529i
\(137\) 7.92184 + 13.7210i 0.676808 + 1.17227i 0.975937 + 0.218053i \(0.0699707\pi\)
−0.299129 + 0.954213i \(0.596696\pi\)
\(138\) 0 0
\(139\) 2.15634 + 3.73490i 0.182899 + 0.316790i 0.942866 0.333171i \(-0.108119\pi\)
−0.759968 + 0.649961i \(0.774785\pi\)
\(140\) −9.66137 −0.816535
\(141\) 0 0
\(142\) 4.85763 + 8.41367i 0.407644 + 0.706059i
\(143\) 2.80964 + 4.86644i 0.234954 + 0.406952i
\(144\) 0 0
\(145\) 7.31269 0.607286
\(146\) 4.08308 + 7.07211i 0.337918 + 0.585292i
\(147\) 0 0
\(148\) −11.0895 19.2075i −0.911550 1.57885i
\(149\) 4.78869 8.29426i 0.392305 0.679492i −0.600448 0.799664i \(-0.705011\pi\)
0.992753 + 0.120172i \(0.0383445\pi\)
\(150\) 0 0
\(151\) 1.90169 0.154757 0.0773786 0.997002i \(-0.475345\pi\)
0.0773786 + 0.997002i \(0.475345\pi\)
\(152\) −7.59717 6.95288i −0.616212 0.563953i
\(153\) 0 0
\(154\) −17.1424 + 29.6915i −1.38137 + 2.39261i
\(155\) −2.55123 + 4.41887i −0.204920 + 0.354932i
\(156\) 0 0
\(157\) 9.19333 15.9233i 0.733708 1.27082i −0.221581 0.975142i \(-0.571122\pi\)
0.955288 0.295677i \(-0.0955451\pi\)
\(158\) −16.9422 29.3448i −1.34785 2.33454i
\(159\) 0 0
\(160\) −6.50629 −0.514367
\(161\) −13.6114 23.5757i −1.07273 1.85802i
\(162\) 0 0
\(163\) −10.6234 −0.832091 −0.416046 0.909344i \(-0.636584\pi\)
−0.416046 + 0.909344i \(0.636584\pi\)
\(164\) 7.61280 0.594460
\(165\) 0 0
\(166\) 10.0958 17.4865i 0.783589 1.35722i
\(167\) 7.30974 + 12.6608i 0.565645 + 0.979725i 0.996989 + 0.0775380i \(0.0247059\pi\)
−0.431345 + 0.902187i \(0.641961\pi\)
\(168\) 0 0
\(169\) 5.81978 10.0801i 0.447675 0.775396i
\(170\) −13.1336 −1.00730
\(171\) 0 0
\(172\) 3.55890 0.271364
\(173\) −0.328608 + 0.569166i −0.0249836 + 0.0432729i −0.878247 0.478207i \(-0.841287\pi\)
0.853263 + 0.521480i \(0.174620\pi\)
\(174\) 0 0
\(175\) −1.58319 2.74217i −0.119678 0.207288i
\(176\) −1.90887 + 3.30625i −0.143886 + 0.249218i
\(177\) 0 0
\(178\) 9.37718 0.702849
\(179\) 23.2647 1.73889 0.869444 0.494032i \(-0.164477\pi\)
0.869444 + 0.494032i \(0.164477\pi\)
\(180\) 0 0
\(181\) −0.725576 1.25673i −0.0539316 0.0934123i 0.837799 0.545978i \(-0.183842\pi\)
−0.891731 + 0.452566i \(0.850509\pi\)
\(182\) −8.30047 −0.615272
\(183\) 0 0
\(184\) 10.1564 + 17.5913i 0.748737 + 1.29685i
\(185\) 3.63442 6.29501i 0.267208 0.462818i
\(186\) 0 0
\(187\) −14.0765 + 24.3813i −1.02938 + 1.78293i
\(188\) 14.3051 24.7772i 1.04331 1.80706i
\(189\) 0 0
\(190\) 2.11446 9.56569i 0.153399 0.693968i
\(191\) −19.0598 −1.37912 −0.689559 0.724229i \(-0.742196\pi\)
−0.689559 + 0.724229i \(0.742196\pi\)
\(192\) 0 0
\(193\) −7.84789 + 13.5929i −0.564903 + 0.978441i 0.432156 + 0.901799i \(0.357753\pi\)
−0.997059 + 0.0766418i \(0.975580\pi\)
\(194\) 2.24750 + 3.89278i 0.161361 + 0.279485i
\(195\) 0 0
\(196\) −4.61648 7.99597i −0.329748 0.571141i
\(197\) −8.23620 −0.586805 −0.293402 0.955989i \(-0.594788\pi\)
−0.293402 + 0.955989i \(0.594788\pi\)
\(198\) 0 0
\(199\) −8.69459 15.0595i −0.616343 1.06754i −0.990147 0.140030i \(-0.955280\pi\)
0.373804 0.927508i \(-0.378053\pi\)
\(200\) 1.18132 + 2.04611i 0.0835320 + 0.144682i
\(201\) 0 0
\(202\) 24.5430 1.72684
\(203\) 11.5774 + 20.0526i 0.812573 + 1.40742i
\(204\) 0 0
\(205\) 1.24750 + 2.16072i 0.0871288 + 0.150912i
\(206\) −6.42911 + 11.1355i −0.447937 + 0.775850i
\(207\) 0 0
\(208\) −0.924287 −0.0640878
\(209\) −15.4915 14.1777i −1.07157 0.980694i
\(210\) 0 0
\(211\) −10.5412 + 18.2579i −0.725687 + 1.25693i 0.233003 + 0.972476i \(0.425145\pi\)
−0.958691 + 0.284451i \(0.908189\pi\)
\(212\) −4.20122 + 7.27673i −0.288541 + 0.499768i
\(213\) 0 0
\(214\) 3.35335 5.80818i 0.229231 0.397039i
\(215\) 0.583191 + 1.01012i 0.0397733 + 0.0688894i
\(216\) 0 0
\(217\) −16.1564 −1.09677
\(218\) 14.4585 + 25.0428i 0.979252 + 1.69611i
\(219\) 0 0
\(220\) 14.6999 0.991069
\(221\) −6.81595 −0.458491
\(222\) 0 0
\(223\) −0.464804 + 0.805064i −0.0311256 + 0.0539111i −0.881169 0.472802i \(-0.843243\pi\)
0.850043 + 0.526713i \(0.176576\pi\)
\(224\) −10.3007 17.8413i −0.688244 1.19207i
\(225\) 0 0
\(226\) 18.8496 32.6485i 1.25386 2.17175i
\(227\) −2.53770 −0.168433 −0.0842165 0.996447i \(-0.526839\pi\)
−0.0842165 + 0.996447i \(0.526839\pi\)
\(228\) 0 0
\(229\) −0.912322 −0.0602879 −0.0301440 0.999546i \(-0.509597\pi\)
−0.0301440 + 0.999546i \(0.509597\pi\)
\(230\) −9.66137 + 16.7340i −0.637052 + 1.10341i
\(231\) 0 0
\(232\) −8.63864 14.9626i −0.567154 0.982340i
\(233\) −11.4894 + 19.9003i −0.752697 + 1.30371i 0.193815 + 0.981038i \(0.437914\pi\)
−0.946511 + 0.322671i \(0.895419\pi\)
\(234\) 0 0
\(235\) 9.37660 0.611662
\(236\) 30.8557 2.00853
\(237\) 0 0
\(238\) −20.7930 36.0146i −1.34781 2.33448i
\(239\) −21.1849 −1.37033 −0.685167 0.728386i \(-0.740271\pi\)
−0.685167 + 0.728386i \(0.740271\pi\)
\(240\) 0 0
\(241\) 2.15132 + 3.72619i 0.138578 + 0.240025i 0.926959 0.375163i \(-0.122413\pi\)
−0.788380 + 0.615188i \(0.789080\pi\)
\(242\) 13.7212 23.7658i 0.882032 1.52773i
\(243\) 0 0
\(244\) 7.79341 13.4986i 0.498922 0.864158i
\(245\) 1.51299 2.62057i 0.0966612 0.167422i
\(246\) 0 0
\(247\) 1.09734 4.96431i 0.0698220 0.315871i
\(248\) 12.0553 0.765513
\(249\) 0 0
\(250\) −1.12375 + 1.94639i −0.0710720 + 0.123100i
\(251\) −6.77149 11.7286i −0.427413 0.740301i 0.569230 0.822179i \(-0.307242\pi\)
−0.996642 + 0.0818779i \(0.973908\pi\)
\(252\) 0 0
\(253\) 20.7100 + 35.8707i 1.30203 + 2.25517i
\(254\) −0.230296 −0.0144501
\(255\) 0 0
\(256\) 5.26810 + 9.12462i 0.329256 + 0.570289i
\(257\) −10.9601 18.9835i −0.683672 1.18416i −0.973852 0.227183i \(-0.927048\pi\)
0.290180 0.956972i \(-0.406285\pi\)
\(258\) 0 0
\(259\) 23.0160 1.43014
\(260\) 1.77945 + 3.08210i 0.110357 + 0.191144i
\(261\) 0 0
\(262\) −15.2463 26.4073i −0.941917 1.63145i
\(263\) −9.58645 + 16.6042i −0.591126 + 1.02386i 0.402955 + 0.915220i \(0.367983\pi\)
−0.994081 + 0.108640i \(0.965350\pi\)
\(264\) 0 0
\(265\) −2.75378 −0.169164
\(266\) 29.5783 9.34612i 1.81356 0.573048i
\(267\) 0 0
\(268\) −1.58444 + 2.74432i −0.0967848 + 0.167636i
\(269\) 10.2026 17.6714i 0.622062 1.07744i −0.367040 0.930205i \(-0.619629\pi\)
0.989101 0.147237i \(-0.0470380\pi\)
\(270\) 0 0
\(271\) −8.16106 + 14.1354i −0.495749 + 0.858663i −0.999988 0.00490125i \(-0.998440\pi\)
0.504239 + 0.863564i \(0.331773\pi\)
\(272\) −2.31538 4.01035i −0.140390 0.243163i
\(273\) 0 0
\(274\) 35.6086 2.15119
\(275\) 2.40885 + 4.17225i 0.145259 + 0.251596i
\(276\) 0 0
\(277\) 7.08065 0.425435 0.212717 0.977114i \(-0.431769\pi\)
0.212717 + 0.977114i \(0.431769\pi\)
\(278\) 9.69275 0.581332
\(279\) 0 0
\(280\) −3.74052 + 6.47876i −0.223539 + 0.387180i
\(281\) −5.06129 8.76641i −0.301931 0.522960i 0.674642 0.738145i \(-0.264298\pi\)
−0.976573 + 0.215185i \(0.930965\pi\)
\(282\) 0 0
\(283\) −7.25556 + 12.5670i −0.431298 + 0.747030i −0.996985 0.0775897i \(-0.975278\pi\)
0.565687 + 0.824620i \(0.308611\pi\)
\(284\) 13.1896 0.782658
\(285\) 0 0
\(286\) 12.6293 0.746786
\(287\) −3.95005 + 6.84168i −0.233164 + 0.403852i
\(288\) 0 0
\(289\) −8.57426 14.8511i −0.504368 0.873591i
\(290\) 8.21762 14.2333i 0.482555 0.835810i
\(291\) 0 0
\(292\) 11.0865 0.648789
\(293\) −6.10837 −0.356855 −0.178427 0.983953i \(-0.557101\pi\)
−0.178427 + 0.983953i \(0.557101\pi\)
\(294\) 0 0
\(295\) 5.05626 + 8.75770i 0.294387 + 0.509893i
\(296\) −17.1737 −0.998201
\(297\) 0 0
\(298\) −10.7626 18.6413i −0.623458 1.07986i
\(299\) −5.01396 + 8.68443i −0.289965 + 0.502234i
\(300\) 0 0
\(301\) −1.84661 + 3.19841i −0.106437 + 0.184354i
\(302\) 2.13702 3.70142i 0.122972 0.212993i
\(303\) 0 0
\(304\) 3.29365 1.04072i 0.188904 0.0596896i
\(305\) 5.10837 0.292504
\(306\) 0 0
\(307\) −6.27147 + 10.8625i −0.357932 + 0.619956i −0.987615 0.156896i \(-0.949851\pi\)
0.629683 + 0.776852i \(0.283185\pi\)
\(308\) 23.2728 + 40.3097i 1.32609 + 2.29686i
\(309\) 0 0
\(310\) 5.73389 + 9.93138i 0.325663 + 0.564065i
\(311\) 17.9682 1.01888 0.509440 0.860506i \(-0.329852\pi\)
0.509440 + 0.860506i \(0.329852\pi\)
\(312\) 0 0
\(313\) −3.77236 6.53393i −0.213227 0.369319i 0.739496 0.673161i \(-0.235064\pi\)
−0.952723 + 0.303842i \(0.901731\pi\)
\(314\) −20.6620 35.7876i −1.16602 2.01961i
\(315\) 0 0
\(316\) −46.0020 −2.58782
\(317\) 2.25851 + 3.91185i 0.126850 + 0.219711i 0.922455 0.386105i \(-0.126180\pi\)
−0.795604 + 0.605817i \(0.792847\pi\)
\(318\) 0 0
\(319\) −17.6152 30.5104i −0.986260 1.70825i
\(320\) −6.51899 + 11.2912i −0.364422 + 0.631198i
\(321\) 0 0
\(322\) −61.1832 −3.40961
\(323\) 24.2883 7.67459i 1.35144 0.427026i
\(324\) 0 0
\(325\) −0.583191 + 1.01012i −0.0323496 + 0.0560312i
\(326\) −11.9381 + 20.6773i −0.661188 + 1.14521i
\(327\) 0 0
\(328\) 2.94739 5.10502i 0.162742 0.281878i
\(329\) 14.8450 + 25.7122i 0.818429 + 1.41756i
\(330\) 0 0
\(331\) 16.7674 0.921619 0.460809 0.887499i \(-0.347559\pi\)
0.460809 + 0.887499i \(0.347559\pi\)
\(332\) −13.7063 23.7399i −0.752229 1.30290i
\(333\) 0 0
\(334\) 32.8572 1.79787
\(335\) −1.03855 −0.0567423
\(336\) 0 0
\(337\) 8.71682 15.0980i 0.474835 0.822439i −0.524749 0.851257i \(-0.675841\pi\)
0.999585 + 0.0288179i \(0.00917429\pi\)
\(338\) −13.0799 22.6551i −0.711454 1.23227i
\(339\) 0 0
\(340\) −8.91521 + 15.4416i −0.483495 + 0.837438i
\(341\) 24.5822 1.33120
\(342\) 0 0
\(343\) −12.5833 −0.679433
\(344\) 1.37787 2.38654i 0.0742899 0.128674i
\(345\) 0 0
\(346\) 0.738545 + 1.27920i 0.0397044 + 0.0687701i
\(347\) −15.5446 + 26.9240i −0.834475 + 1.44535i 0.0599815 + 0.998199i \(0.480896\pi\)
−0.894457 + 0.447154i \(0.852437\pi\)
\(348\) 0 0
\(349\) 0.887477 0.0475055 0.0237528 0.999718i \(-0.492439\pi\)
0.0237528 + 0.999718i \(0.492439\pi\)
\(350\) −7.11643 −0.380389
\(351\) 0 0
\(352\) 15.6727 + 27.1459i 0.835356 + 1.44688i
\(353\) 5.27079 0.280536 0.140268 0.990114i \(-0.455204\pi\)
0.140268 + 0.990114i \(0.455204\pi\)
\(354\) 0 0
\(355\) 2.16135 + 3.74358i 0.114713 + 0.198688i
\(356\) 6.36530 11.0250i 0.337360 0.584325i
\(357\) 0 0
\(358\) 26.1437 45.2822i 1.38174 2.39324i
\(359\) −13.6315 + 23.6104i −0.719443 + 1.24611i 0.241778 + 0.970332i \(0.422269\pi\)
−0.961221 + 0.275780i \(0.911064\pi\)
\(360\) 0 0
\(361\) 1.67937 + 18.9256i 0.0883879 + 0.996086i
\(362\) −3.26145 −0.171418
\(363\) 0 0
\(364\) −5.63442 + 9.75911i −0.295324 + 0.511516i
\(365\) 1.81673 + 3.14666i 0.0950918 + 0.164704i
\(366\) 0 0
\(367\) −0.685659 1.18760i −0.0357911 0.0619920i 0.847575 0.530676i \(-0.178062\pi\)
−0.883366 + 0.468684i \(0.844728\pi\)
\(368\) −6.81296 −0.355150
\(369\) 0 0
\(370\) −8.16835 14.1480i −0.424652 0.735520i
\(371\) −4.35977 7.55134i −0.226348 0.392046i
\(372\) 0 0
\(373\) 33.1801 1.71800 0.859001 0.511974i \(-0.171086\pi\)
0.859001 + 0.511974i \(0.171086\pi\)
\(374\) 31.6369 + 54.7968i 1.63591 + 2.83347i
\(375\) 0 0
\(376\) −11.0768 19.1856i −0.571241 0.989419i
\(377\) 4.26469 7.38667i 0.219643 0.380433i
\(378\) 0 0
\(379\) −31.1642 −1.60080 −0.800399 0.599468i \(-0.795379\pi\)
−0.800399 + 0.599468i \(0.795379\pi\)
\(380\) −9.81136 8.97930i −0.503312 0.460628i
\(381\) 0 0
\(382\) −21.4184 + 37.0977i −1.09586 + 1.89809i
\(383\) 14.8307 25.6875i 0.757814 1.31257i −0.186150 0.982521i \(-0.559601\pi\)
0.943963 0.330050i \(-0.107066\pi\)
\(384\) 0 0
\(385\) −7.62734 + 13.2109i −0.388725 + 0.673292i
\(386\) 17.6381 + 30.5501i 0.897755 + 1.55496i
\(387\) 0 0
\(388\) 6.10247 0.309806
\(389\) −10.0190 17.3534i −0.507983 0.879852i −0.999957 0.00924244i \(-0.997058\pi\)
0.491974 0.870610i \(-0.336275\pi\)
\(390\) 0 0
\(391\) −50.2407 −2.54078
\(392\) −7.14930 −0.361094
\(393\) 0 0
\(394\) −9.25540 + 16.0308i −0.466281 + 0.807622i
\(395\) −7.53826 13.0567i −0.379291 0.656952i
\(396\) 0 0
\(397\) 9.73540 16.8622i 0.488606 0.846290i −0.511309 0.859397i \(-0.670839\pi\)
0.999914 + 0.0131075i \(0.00417238\pi\)
\(398\) −39.0821 −1.95901
\(399\) 0 0
\(400\) −0.792439 −0.0396220
\(401\) −18.3816 + 31.8379i −0.917935 + 1.58991i −0.115388 + 0.993320i \(0.536811\pi\)
−0.802547 + 0.596589i \(0.796522\pi\)
\(402\) 0 0
\(403\) 2.97571 + 5.15409i 0.148231 + 0.256743i
\(404\) 16.6600 28.8560i 0.828866 1.43564i
\(405\) 0 0
\(406\) 52.0402 2.58271
\(407\) −35.0191 −1.73583
\(408\) 0 0
\(409\) 6.28240 + 10.8814i 0.310645 + 0.538053i 0.978502 0.206237i \(-0.0661217\pi\)
−0.667857 + 0.744289i \(0.732788\pi\)
\(410\) 5.60748 0.276934
\(411\) 0 0
\(412\) 8.72825 + 15.1178i 0.430010 + 0.744799i
\(413\) −16.0101 + 27.7302i −0.787803 + 1.36452i
\(414\) 0 0
\(415\) 4.49204 7.78044i 0.220506 0.381927i
\(416\) −3.79441 + 6.57211i −0.186036 + 0.322224i
\(417\) 0 0
\(418\) −45.0039 + 14.2203i −2.20121 + 0.695536i
\(419\) −23.8674 −1.16600 −0.583000 0.812472i \(-0.698121\pi\)
−0.583000 + 0.812472i \(0.698121\pi\)
\(420\) 0 0
\(421\) 3.30504 5.72449i 0.161078 0.278995i −0.774178 0.632968i \(-0.781836\pi\)
0.935255 + 0.353974i \(0.115170\pi\)
\(422\) 23.6913 + 41.0346i 1.15328 + 1.99753i
\(423\) 0 0
\(424\) 3.25311 + 5.63454i 0.157985 + 0.273638i
\(425\) −5.84367 −0.283460
\(426\) 0 0
\(427\) 8.08752 + 14.0080i 0.391383 + 0.677895i
\(428\) −4.55256 7.88527i −0.220056 0.381149i
\(429\) 0 0
\(430\) 2.62144 0.126417
\(431\) −3.73156 6.46325i −0.179743 0.311324i 0.762050 0.647519i \(-0.224193\pi\)
−0.941792 + 0.336195i \(0.890860\pi\)
\(432\) 0 0
\(433\) −10.7976 18.7019i −0.518898 0.898758i −0.999759 0.0219608i \(-0.993009\pi\)
0.480861 0.876797i \(-0.340324\pi\)
\(434\) −18.1557 + 31.4465i −0.871500 + 1.50948i
\(435\) 0 0
\(436\) 39.2581 1.88012
\(437\) 8.08854 36.5921i 0.386928 1.75044i
\(438\) 0 0
\(439\) 16.8740 29.2266i 0.805351 1.39491i −0.110703 0.993854i \(-0.535310\pi\)
0.916054 0.401055i \(-0.131356\pi\)
\(440\) 5.69125 9.85754i 0.271320 0.469940i
\(441\) 0 0
\(442\) −7.65941 + 13.2665i −0.364321 + 0.631023i
\(443\) −3.85053 6.66931i −0.182944 0.316868i 0.759938 0.649996i \(-0.225229\pi\)
−0.942882 + 0.333127i \(0.891896\pi\)
\(444\) 0 0
\(445\) 4.17228 0.197785
\(446\) 1.04464 + 1.80938i 0.0494653 + 0.0856765i
\(447\) 0 0
\(448\) −41.2832 −1.95045
\(449\) −4.84306 −0.228558 −0.114279 0.993449i \(-0.536456\pi\)
−0.114279 + 0.993449i \(0.536456\pi\)
\(450\) 0 0
\(451\) 6.01006 10.4097i 0.283002 0.490175i
\(452\) −25.5905 44.3241i −1.20368 2.08483i
\(453\) 0 0
\(454\) −2.85173 + 4.93935i −0.133838 + 0.231815i
\(455\) −3.69321 −0.173140
\(456\) 0 0
\(457\) −18.2322 −0.852868 −0.426434 0.904519i \(-0.640230\pi\)
−0.426434 + 0.904519i \(0.640230\pi\)
\(458\) −1.02522 + 1.77573i −0.0479054 + 0.0829745i
\(459\) 0 0
\(460\) 13.1164 + 22.7183i 0.611557 + 1.05925i
\(461\) −16.2778 + 28.1940i −0.758134 + 1.31313i 0.185668 + 0.982613i \(0.440555\pi\)
−0.943801 + 0.330513i \(0.892778\pi\)
\(462\) 0 0
\(463\) −30.9666 −1.43914 −0.719569 0.694421i \(-0.755661\pi\)
−0.719569 + 0.694421i \(0.755661\pi\)
\(464\) 5.79486 0.269020
\(465\) 0 0
\(466\) 25.8224 + 44.7257i 1.19620 + 2.07188i
\(467\) 26.4956 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(468\) 0 0
\(469\) −1.64423 2.84789i −0.0759234 0.131503i
\(470\) 10.5369 18.2505i 0.486033 0.841833i
\(471\) 0 0
\(472\) 11.9461 20.6913i 0.549866 0.952395i
\(473\) 2.80964 4.86644i 0.129187 0.223759i
\(474\) 0 0
\(475\) 0.940806 4.25616i 0.0431672 0.195286i
\(476\) −56.4579 −2.58774
\(477\) 0 0
\(478\) −23.8064 + 41.2340i −1.08888 + 1.88600i
\(479\) −11.5726 20.0443i −0.528766 0.915849i −0.999437 0.0335408i \(-0.989322\pi\)
0.470671 0.882309i \(-0.344012\pi\)
\(480\) 0 0
\(481\) −4.23913 7.34238i −0.193288 0.334784i
\(482\) 9.67015 0.440463
\(483\) 0 0
\(484\) −18.6281 32.2649i −0.846733 1.46658i
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) −38.3075 −1.73588 −0.867939 0.496671i \(-0.834555\pi\)
−0.867939 + 0.496671i \(0.834555\pi\)
\(488\) −6.03462 10.4523i −0.273175 0.473152i
\(489\) 0 0
\(490\) −3.40043 5.88972i −0.153616 0.266070i
\(491\) 11.8873 20.5893i 0.536464 0.929183i −0.462627 0.886553i \(-0.653093\pi\)
0.999091 0.0426302i \(-0.0135737\pi\)
\(492\) 0 0
\(493\) 42.7330 1.92460
\(494\) −8.42933 7.71448i −0.379254 0.347091i
\(495\) 0 0
\(496\) −2.02170 + 3.50168i −0.0907769 + 0.157230i
\(497\) −6.84367 + 11.8536i −0.306981 + 0.531706i
\(498\) 0 0
\(499\) −0.210818 + 0.365147i −0.00943749 + 0.0163462i −0.870706 0.491805i \(-0.836337\pi\)
0.861268 + 0.508151i \(0.169671\pi\)
\(500\) 1.52562 + 2.64245i 0.0682277 + 0.118174i
\(501\) 0 0
\(502\) −30.4378 −1.35851
\(503\) 13.7328 + 23.7858i 0.612313 + 1.06056i 0.990850 + 0.134971i \(0.0430942\pi\)
−0.378536 + 0.925586i \(0.623572\pi\)
\(504\) 0 0
\(505\) 10.9202 0.485941
\(506\) 93.0912 4.13841
\(507\) 0 0
\(508\) −0.156327 + 0.270766i −0.00693588 + 0.0120133i
\(509\) 3.91889 + 6.78771i 0.173702 + 0.300860i 0.939711 0.341969i \(-0.111094\pi\)
−0.766010 + 0.642829i \(0.777761\pi\)
\(510\) 0 0
\(511\) −5.75245 + 9.96353i −0.254473 + 0.440761i
\(512\) −8.90034 −0.393343
\(513\) 0 0
\(514\) −49.2655 −2.17301
\(515\) −2.86057 + 4.95464i −0.126052 + 0.218328i
\(516\) 0 0
\(517\) −22.5868 39.1215i −0.993367 1.72056i
\(518\) 25.8641 44.7980i 1.13640 1.96831i
\(519\) 0 0
\(520\) 2.75574 0.120847
\(521\) 4.93772 0.216325 0.108163 0.994133i \(-0.465503\pi\)
0.108163 + 0.994133i \(0.465503\pi\)
\(522\) 0 0
\(523\) 8.55988 + 14.8261i 0.374297 + 0.648302i 0.990222 0.139503i \(-0.0445506\pi\)
−0.615924 + 0.787805i \(0.711217\pi\)
\(524\) −41.3971 −1.80844
\(525\) 0 0
\(526\) 21.5455 + 37.3179i 0.939428 + 1.62714i
\(527\) −14.9086 + 25.8224i −0.649428 + 1.12484i
\(528\) 0 0
\(529\) −25.4581 + 44.0948i −1.10688 + 1.91716i
\(530\) −3.09456 + 5.35993i −0.134419 + 0.232821i
\(531\) 0 0
\(532\) 9.08948 41.1203i 0.394079 1.78279i
\(533\) 2.91011 0.126051
\(534\) 0 0
\(535\) 1.49204 2.58429i 0.0645065 0.111729i
\(536\) 1.22687 + 2.12499i 0.0529925 + 0.0917858i
\(537\) 0 0
\(538\) −22.9302 39.7163i −0.988592 1.71229i
\(539\) −14.5782 −0.627929
\(540\) 0 0
\(541\) 3.04946 + 5.28183i 0.131107 + 0.227083i 0.924103 0.382142i \(-0.124814\pi\)
−0.792997 + 0.609226i \(0.791480\pi\)
\(542\) 18.3420 + 31.7692i 0.787854 + 1.36460i
\(543\) 0 0
\(544\) −38.0206 −1.63012
\(545\) 6.43315 + 11.1425i 0.275566 + 0.477294i
\(546\) 0 0
\(547\) 11.4882 + 19.8981i 0.491198 + 0.850780i 0.999949 0.0101341i \(-0.00322583\pi\)
−0.508751 + 0.860914i \(0.669892\pi\)
\(548\) 24.1714 41.8661i 1.03255 1.78843i
\(549\) 0 0
\(550\) 10.8278 0.461697
\(551\) −6.87982 + 31.1240i −0.293090 + 1.32593i
\(552\) 0 0
\(553\) 23.8690 41.3424i 1.01501 1.75806i
\(554\) 7.95686 13.7817i 0.338055 0.585528i
\(555\) 0 0
\(556\) 6.57951 11.3960i 0.279033 0.483300i
\(557\) −3.49499 6.05350i −0.148087 0.256495i 0.782433 0.622735i \(-0.213978\pi\)
−0.930521 + 0.366240i \(0.880645\pi\)
\(558\) 0 0
\(559\) 1.36045 0.0575408
\(560\) −1.25458 2.17300i −0.0530158 0.0918261i
\(561\) 0 0
\(562\) −22.7504 −0.959670
\(563\) 12.7111 0.535708 0.267854 0.963460i \(-0.413686\pi\)
0.267854 + 0.963460i \(0.413686\pi\)
\(564\) 0 0
\(565\) 8.38695 14.5266i 0.352842 0.611139i
\(566\) 16.3068 + 28.2442i 0.685427 + 1.18719i
\(567\) 0 0
\(568\) 5.10651 8.84473i 0.214264 0.371117i
\(569\) 28.0036 1.17397 0.586986 0.809597i \(-0.300315\pi\)
0.586986 + 0.809597i \(0.300315\pi\)
\(570\) 0 0
\(571\) 39.0506 1.63422 0.817108 0.576484i \(-0.195576\pi\)
0.817108 + 0.576484i \(0.195576\pi\)
\(572\) 8.57286 14.8486i 0.358449 0.620853i
\(573\) 0 0
\(574\) 8.87771 + 15.3766i 0.370548 + 0.641809i
\(575\) −4.29873 + 7.44562i −0.179269 + 0.310504i
\(576\) 0 0
\(577\) 18.5294 0.771389 0.385694 0.922627i \(-0.373962\pi\)
0.385694 + 0.922627i \(0.373962\pi\)
\(578\) −38.5412 −1.60310
\(579\) 0 0
\(580\) −11.1564 19.3234i −0.463243 0.802360i
\(581\) 28.4470 1.18018
\(582\) 0 0
\(583\) 6.63345 + 11.4895i 0.274730 + 0.475845i
\(584\) 4.29228 7.43444i 0.177616 0.307639i
\(585\) 0 0
\(586\) −6.86426 + 11.8893i −0.283560 + 0.491140i
\(587\) 9.61458 16.6529i 0.396836 0.687341i −0.596497 0.802615i \(-0.703441\pi\)
0.993334 + 0.115274i \(0.0367747\pi\)
\(588\) 0 0
\(589\) −16.4072 15.0158i −0.676046 0.618713i
\(590\) 22.7278 0.935691
\(591\) 0 0
\(592\) 2.88006 4.98841i 0.118370 0.205022i
\(593\) −15.5293 26.8976i −0.637714 1.10455i −0.985933 0.167140i \(-0.946547\pi\)
0.348219 0.937413i \(-0.386786\pi\)
\(594\) 0 0
\(595\) −9.25165 16.0243i −0.379281 0.656933i
\(596\) −29.2228 −1.19701
\(597\) 0 0
\(598\) 11.2688 + 19.5182i 0.460818 + 0.798159i
\(599\) −4.84691 8.39510i −0.198039 0.343014i 0.749853 0.661604i \(-0.230124\pi\)
−0.947893 + 0.318590i \(0.896791\pi\)
\(600\) 0 0
\(601\) 9.02069 0.367962 0.183981 0.982930i \(-0.441102\pi\)
0.183981 + 0.982930i \(0.441102\pi\)
\(602\) 4.15024 + 7.18842i 0.169151 + 0.292978i
\(603\) 0 0
\(604\) −2.90125 5.02511i −0.118050 0.204469i
\(605\) 6.10511 10.5744i 0.248208 0.429909i
\(606\) 0 0
\(607\) −38.5916 −1.56638 −0.783192 0.621780i \(-0.786410\pi\)
−0.783192 + 0.621780i \(0.786410\pi\)
\(608\) 6.12116 27.6918i 0.248246 1.12305i
\(609\) 0 0
\(610\) 5.74052 9.94286i 0.232427 0.402575i
\(611\) 5.46835 9.47146i 0.221226 0.383174i
\(612\) 0 0
\(613\) 10.3707 17.9626i 0.418869 0.725502i −0.576957 0.816774i \(-0.695760\pi\)
0.995826 + 0.0912724i \(0.0290934\pi\)
\(614\) 14.0951 + 24.4134i 0.568832 + 0.985246i
\(615\) 0 0
\(616\) 36.0413 1.45215
\(617\) −15.2005 26.3280i −0.611949 1.05993i −0.990912 0.134514i \(-0.957053\pi\)
0.378963 0.925412i \(-0.376281\pi\)
\(618\) 0 0
\(619\) −9.69562 −0.389700 −0.194850 0.980833i \(-0.562422\pi\)
−0.194850 + 0.980833i \(0.562422\pi\)
\(620\) 15.5688 0.625259
\(621\) 0 0
\(622\) 20.1917 34.9730i 0.809612 1.40229i
\(623\) 6.60552 + 11.4411i 0.264645 + 0.458378i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −16.9567 −0.677728
\(627\) 0 0
\(628\) −56.1020 −2.23871
\(629\) 21.2384 36.7860i 0.846830 1.46675i
\(630\) 0 0
\(631\) 1.85131 + 3.20656i 0.0736994 + 0.127651i 0.900520 0.434815i \(-0.143186\pi\)
−0.826821 + 0.562466i \(0.809853\pi\)
\(632\) −17.8102 + 30.8482i −0.708453 + 1.22708i
\(633\) 0 0
\(634\) 10.1520 0.403186
\(635\) −0.102468 −0.00406631
\(636\) 0 0
\(637\) −1.76472 3.05659i −0.0699208 0.121106i
\(638\) −79.1800 −3.13477
\(639\) 0 0
\(640\) 8.14510 + 14.1077i 0.321963 + 0.557657i
\(641\) 9.89794 17.1437i 0.390945 0.677137i −0.601629 0.798775i \(-0.705482\pi\)
0.992574 + 0.121639i \(0.0388149\pi\)
\(642\) 0 0
\(643\) 2.63442 4.56296i 0.103892 0.179945i −0.809393 0.587267i \(-0.800204\pi\)
0.913285 + 0.407322i \(0.133537\pi\)
\(644\) −41.5316 + 71.9349i −1.63658 + 2.83463i
\(645\) 0 0
\(646\) 12.3562 55.8988i 0.486148 2.19931i
\(647\) −25.3370 −0.996098 −0.498049 0.867149i \(-0.665950\pi\)
−0.498049 + 0.867149i \(0.665950\pi\)
\(648\) 0 0
\(649\) 24.3595 42.1920i 0.956196 1.65618i
\(650\) 1.31072 + 2.27023i 0.0514106 + 0.0890458i
\(651\) 0 0
\(652\) 16.2073 + 28.0718i 0.634726 + 1.09938i
\(653\) −12.3697 −0.484065 −0.242032 0.970268i \(-0.577814\pi\)
−0.242032 + 0.970268i \(0.577814\pi\)
\(654\) 0 0
\(655\) −6.78366 11.7497i −0.265060 0.459097i
\(656\) 0.988564 + 1.71224i 0.0385969 + 0.0668519i
\(657\) 0 0
\(658\) 66.7279 2.60133
\(659\) −11.4551 19.8407i −0.446226 0.772885i 0.551911 0.833903i \(-0.313899\pi\)
−0.998137 + 0.0610175i \(0.980565\pi\)
\(660\) 0 0
\(661\) −1.64082 2.84198i −0.0638203 0.110540i 0.832350 0.554251i \(-0.186995\pi\)
−0.896170 + 0.443711i \(0.853662\pi\)
\(662\) 18.8423 32.6358i 0.732327 1.26843i
\(663\) 0 0
\(664\) −21.2262 −0.823735
\(665\) 13.1606 4.15846i 0.510345 0.161258i
\(666\) 0 0
\(667\) 31.4353 54.4475i 1.21718 2.10821i
\(668\) 22.3037 38.6312i 0.862957 1.49469i
\(669\) 0 0
\(670\) −1.16707 + 2.02143i −0.0450879 + 0.0780946i
\(671\) −12.3053 21.3134i −0.475040 0.822794i
\(672\) 0 0
\(673\) 29.2183 1.12628 0.563142 0.826360i \(-0.309592\pi\)
0.563142 + 0.826360i \(0.309592\pi\)
\(674\) −19.5910 33.9326i −0.754617 1.30704i
\(675\) 0 0
\(676\) −35.5150 −1.36596
\(677\) 36.0085 1.38392 0.691960 0.721936i \(-0.256747\pi\)
0.691960 + 0.721936i \(0.256747\pi\)
\(678\) 0 0
\(679\) −3.16638 + 5.48433i −0.121515 + 0.210469i
\(680\) 6.90326 + 11.9568i 0.264728 + 0.458522i
\(681\) 0 0
\(682\) 27.6241 47.8464i 1.05778 1.83213i
\(683\) −32.7395 −1.25274 −0.626371 0.779525i \(-0.715460\pi\)
−0.626371 + 0.779525i \(0.715460\pi\)
\(684\) 0 0
\(685\) 15.8437 0.605356
\(686\) −14.1404 + 24.4919i −0.539884 + 0.935107i
\(687\) 0 0
\(688\) 0.462143 + 0.800456i 0.0176191 + 0.0305171i
\(689\) −1.60598 + 2.78164i −0.0611831 + 0.105972i
\(690\) 0 0
\(691\) −17.3452 −0.659842 −0.329921 0.944009i \(-0.607022\pi\)
−0.329921 + 0.944009i \(0.607022\pi\)
\(692\) 2.00532 0.0762308
\(693\) 0 0
\(694\) 34.9363 + 60.5115i 1.32616 + 2.29698i
\(695\) 4.31269 0.163590
\(696\) 0 0
\(697\) 7.28995 + 12.6266i 0.276127 + 0.478265i
\(698\) 0.997300 1.72737i 0.0377484 0.0653821i
\(699\) 0 0
\(700\) −4.83069 + 8.36699i −0.182583 + 0.316243i
\(701\) 1.21218 2.09956i 0.0457834 0.0792992i −0.842226 0.539125i \(-0.818755\pi\)
0.888009 + 0.459826i \(0.152088\pi\)
\(702\) 0 0
\(703\) 23.3733 + 21.3911i 0.881539 + 0.806780i
\(704\) 62.8130 2.36736
\(705\) 0 0
\(706\) 5.92304 10.2590i 0.222917 0.386103i
\(707\) 17.2887 + 29.9449i 0.650209 + 1.12619i
\(708\) 0 0
\(709\) −5.25378 9.09982i −0.197310 0.341751i 0.750345 0.661046i \(-0.229887\pi\)
−0.947655 + 0.319295i \(0.896554\pi\)
\(710\) 9.71527 0.364607
\(711\) 0 0
\(712\) −4.92881 8.53694i −0.184715 0.319935i
\(713\) 21.9341 + 37.9910i 0.821439 + 1.42277i
\(714\) 0 0
\(715\) 5.61928 0.210149
\(716\) −35.4931 61.4758i −1.32644 2.29746i
\(717\) 0 0
\(718\) 30.6367 + 53.0643i 1.14335 + 1.98034i
\(719\) −7.74161 + 13.4089i −0.288713 + 0.500066i −0.973503 0.228675i \(-0.926561\pi\)
0.684789 + 0.728741i \(0.259894\pi\)
\(720\) 0 0
\(721\) −18.1153 −0.674648
\(722\) 38.7238 + 17.9989i 1.44115 + 0.669851i
\(723\) 0 0
\(724\) −2.21390 + 3.83459i −0.0822790 + 0.142511i
\(725\) 3.65634 6.33297i 0.135793 0.235201i
\(726\) 0 0
\(727\) −9.03690 + 15.6524i −0.335160 + 0.580514i −0.983516 0.180823i \(-0.942124\pi\)
0.648355 + 0.761338i \(0.275457\pi\)
\(728\) 4.36287 + 7.55671i 0.161699 + 0.280070i
\(729\) 0 0
\(730\) 8.16617 0.302243
\(731\) 3.40798 + 5.90279i 0.126049 + 0.218323i
\(732\) 0 0
\(733\) −32.5312 −1.20157 −0.600784 0.799411i \(-0.705145\pi\)
−0.600784 + 0.799411i \(0.705145\pi\)
\(734\) −3.08203 −0.113760
\(735\) 0 0
\(736\) −27.9688 + 48.4433i −1.03094 + 1.78565i
\(737\) 2.50172 + 4.33311i 0.0921520 + 0.159612i
\(738\) 0 0
\(739\) −23.9823 + 41.5386i −0.882205 + 1.52802i −0.0333206 + 0.999445i \(0.510608\pi\)
−0.848884 + 0.528579i \(0.822725\pi\)
\(740\) −22.1790 −0.815315
\(741\) 0 0
\(742\) −19.5971 −0.719433
\(743\) −12.8553 + 22.2660i −0.471615 + 0.816861i −0.999473 0.0324716i \(-0.989662\pi\)
0.527858 + 0.849333i \(0.322995\pi\)
\(744\) 0 0
\(745\) −4.78869 8.29426i −0.175444 0.303878i
\(746\) 37.2861 64.5814i 1.36514 2.36449i
\(747\) 0 0
\(748\) 85.9016 3.14087
\(749\) 9.44874 0.345249
\(750\) 0 0
\(751\) 4.55713 + 7.89319i 0.166292 + 0.288026i 0.937113 0.349025i \(-0.113487\pi\)
−0.770821 + 0.637051i \(0.780154\pi\)
\(752\) 7.43039 0.270958
\(753\) 0 0
\(754\) −9.58488 16.6015i −0.349061 0.604591i
\(755\) 0.950844 1.64691i 0.0346048 0.0599372i
\(756\) 0 0
\(757\) 19.5958 33.9409i 0.712222 1.23360i −0.251800 0.967779i \(-0.581022\pi\)
0.964021 0.265825i \(-0.0856442\pi\)
\(758\) −35.0207 + 60.6576i −1.27201 + 2.20318i
\(759\) 0 0
\(760\) −9.81996 + 3.10290i −0.356207 + 0.112554i
\(761\) −52.4574 −1.90158 −0.950790 0.309837i \(-0.899725\pi\)
−0.950790 + 0.309837i \(0.899725\pi\)
\(762\) 0 0
\(763\) −20.3698 + 35.2816i −0.737437 + 1.27728i
\(764\) 29.0779 + 50.3645i 1.05200 + 1.82212i
\(765\) 0 0
\(766\) −33.3319 57.7326i −1.20433 2.08596i
\(767\) 11.7951 0.425895
\(768\) 0 0
\(769\) −11.8286 20.4878i −0.426551 0.738807i 0.570013 0.821635i \(-0.306938\pi\)
−0.996564 + 0.0828283i \(0.973605\pi\)
\(770\) 17.1424 + 29.6915i 0.617769 + 1.07001i
\(771\) 0 0
\(772\) 47.8915 1.72365
\(773\) −2.67555 4.63418i −0.0962328 0.166680i 0.813890 0.581019i \(-0.197346\pi\)
−0.910122 + 0.414339i \(0.864013\pi\)
\(774\) 0 0
\(775\) 2.55123 + 4.41887i 0.0916430 + 0.158730i
\(776\) 2.36264 4.09222i 0.0848139 0.146902i
\(777\) 0 0
\(778\) −45.0352 −1.61459
\(779\) −10.3700 + 3.27671i −0.371545 + 0.117400i
\(780\) 0 0
\(781\) 10.4128 18.0354i 0.372598 0.645358i
\(782\) −56.4579 + 97.7880i −2.01893 + 3.49689i
\(783\) 0 0
\(784\) 1.19895 2.07664i 0.0428197 0.0741658i
\(785\) −9.19333 15.9233i −0.328124 0.568327i
\(786\) 0 0
\(787\) 26.2322 0.935078 0.467539 0.883972i \(-0.345141\pi\)
0.467539 + 0.883972i \(0.345141\pi\)
\(788\) 12.5653 + 21.7637i 0.447620 + 0.775300i
\(789\) 0 0
\(790\) −33.8844 −1.20555
\(791\) 53.1126 1.88847
\(792\) 0 0
\(793\) 2.97915 5.16005i 0.105793 0.183239i
\(794\) −21.8803 37.8977i −0.776501 1.34494i
\(795\) 0 0
\(796\) −26.5292 + 45.9500i −0.940304 + 1.62865i
\(797\) −4.25354 −0.150668 −0.0753341 0.997158i \(-0.524002\pi\)
−0.0753341 + 0.997158i \(0.524002\pi\)
\(798\) 0 0
\(799\) 54.7938 1.93847
\(800\) −3.25314 + 5.63461i −0.115016 + 0.199214i
\(801\) 0 0
\(802\) 41.3126 + 71.5556i 1.45880 + 2.52671i
\(803\) 8.75244 15.1597i 0.308867 0.534973i
\(804\) 0 0
\(805\) −27.2228 −0.959479
\(806\) 13.3758 0.471143
\(807\) 0 0
\(808\) −12.9002 22.3438i −0.453828 0.786054i
\(809\) 12.2708 0.431419 0.215710 0.976458i \(-0.430794\pi\)
0.215710 + 0.976458i \(0.430794\pi\)
\(810\) 0 0
\(811\) 5.22559 + 9.05099i 0.183495 + 0.317823i 0.943068 0.332599i \(-0.107925\pi\)
−0.759573 + 0.650422i \(0.774592\pi\)
\(812\) 35.3253 61.1852i 1.23968 2.14718i
\(813\) 0 0
\(814\) −39.3527 + 68.1608i −1.37931 + 2.38903i
\(815\) −5.31172 + 9.20016i −0.186061 + 0.322268i
\(816\) 0 0
\(817\) −4.84789 + 1.53183i −0.169606 + 0.0535919i
\(818\) 28.2393 0.987365
\(819\) 0 0
\(820\) 3.80640 6.59288i 0.132925 0.230233i
\(821\) 5.03353 + 8.71832i 0.175671 + 0.304272i 0.940393 0.340089i \(-0.110457\pi\)
−0.764722 + 0.644360i \(0.777124\pi\)
\(822\) 0 0
\(823\) −21.6974 37.5810i −0.756324 1.30999i −0.944713 0.327897i \(-0.893660\pi\)
0.188390 0.982094i \(-0.439673\pi\)
\(824\) 13.5170 0.470887
\(825\) 0 0
\(826\) 35.9825 + 62.3236i 1.25199 + 2.16851i
\(827\) −7.36950 12.7643i −0.256263 0.443860i 0.708975 0.705233i \(-0.249158\pi\)
−0.965238 + 0.261374i \(0.915824\pi\)
\(828\) 0 0
\(829\) 54.5313 1.89395 0.946974 0.321309i \(-0.104123\pi\)
0.946974 + 0.321309i \(0.104123\pi\)
\(830\) −10.0958 17.4865i −0.350432 0.606965i
\(831\) 0 0
\(832\) 7.60363 + 13.1699i 0.263608 + 0.456583i
\(833\) 8.84140 15.3138i 0.306336 0.530590i
\(834\) 0 0
\(835\) 14.6195 0.505928
\(836\) −13.8298 + 62.5652i −0.478313 + 2.16386i
\(837\) 0 0
\(838\) −26.8210 + 46.4553i −0.926515 + 1.60477i
\(839\) 18.7632 32.4988i 0.647777 1.12198i −0.335876 0.941906i \(-0.609032\pi\)
0.983653 0.180076i \(-0.0576344\pi\)
\(840\) 0 0
\(841\) −12.2377 + 21.1963i −0.421990 + 0.730908i
\(842\) −7.42805 12.8658i −0.255988 0.443384i
\(843\) 0 0
\(844\) 64.3274 2.21424
\(845\) −5.81978 10.0801i −0.200206 0.346768i
\(846\) 0 0
\(847\) 38.6622 1.32845
\(848\) −2.18221 −0.0749373
\(849\) 0 0
\(850\) −6.56681 + 11.3741i −0.225240 + 0.390127i
\(851\) −31.2468 54.1211i −1.07113 1.85525i
\(852\) 0 0
\(853\) −0.876485 + 1.51812i −0.0300103 + 0.0519793i −0.880640 0.473785i \(-0.842887\pi\)
0.850630 + 0.525764i \(0.176221\pi\)
\(854\) 36.3533 1.24399
\(855\) 0 0
\(856\) −7.05032 −0.240975
\(857\) 15.2630 26.4363i 0.521375 0.903048i −0.478316 0.878188i \(-0.658753\pi\)
0.999691 0.0248601i \(-0.00791404\pi\)
\(858\) 0 0
\(859\) −3.63363 6.29363i −0.123978 0.214736i 0.797355 0.603510i \(-0.206232\pi\)
−0.921333 + 0.388775i \(0.872898\pi\)
\(860\) 1.77945 3.08210i 0.0606788 0.105099i
\(861\) 0 0
\(862\) −16.7733 −0.571301
\(863\) 30.4383 1.03613 0.518066 0.855341i \(-0.326652\pi\)
0.518066 + 0.855341i \(0.326652\pi\)
\(864\) 0 0
\(865\) 0.328608 + 0.569166i 0.0111730 + 0.0193522i
\(866\) −48.5350 −1.64929
\(867\) 0 0
\(868\) 24.6484 + 42.6923i 0.836622 + 1.44907i
\(869\) −36.3171 + 62.9030i −1.23197 + 2.13384i
\(870\) 0 0
\(871\) −0.605675 + 1.04906i −0.0205225 + 0.0355460i
\(872\) 15.1992 26.3259i 0.514711 0.891506i
\(873\) 0 0
\(874\) −62.1330 56.8638i −2.10168 1.92345i
\(875\) −3.16638 −0.107043
\(876\) 0 0
\(877\) −23.3318 + 40.4119i −0.787860 + 1.36461i 0.139416 + 0.990234i \(0.455478\pi\)
−0.927276 + 0.374379i \(0.877856\pi\)
\(878\) −37.9242 65.6866i −1.27988 2.21682i
\(879\) 0 0
\(880\) 1.90887 + 3.30625i 0.0643479 + 0.111454i
\(881\) 31.2809 1.05388 0.526939 0.849903i \(-0.323340\pi\)
0.526939 + 0.849903i \(0.323340\pi\)
\(882\) 0 0
\(883\) −3.87059 6.70405i −0.130256 0.225609i 0.793519 0.608545i \(-0.208246\pi\)
−0.923775 + 0.382936i \(0.874913\pi\)
\(884\) 10.3985 + 18.0108i 0.349741 + 0.605769i
\(885\) 0 0
\(886\) −17.3081 −0.581476
\(887\) −2.49594 4.32310i −0.0838056 0.145156i 0.821076 0.570819i \(-0.193374\pi\)
−0.904882 + 0.425663i \(0.860041\pi\)
\(888\) 0 0
\(889\) −0.162226 0.280984i −0.00544089 0.00942390i
\(890\) 4.68859 8.12088i 0.157162 0.272212i
\(891\) 0 0
\(892\) 2.83645 0.0949714
\(893\) −8.82157 + 39.9083i −0.295203 + 1.33548i
\(894\) 0 0
\(895\) 11.6324 20.1478i 0.388827 0.673468i
\(896\) −25.7905 + 44.6705i −0.861600 + 1.49234i
\(897\) 0 0
\(898\) −5.44238 + 9.42647i −0.181614 + 0.314565i
\(899\) −18.6564 32.3138i −0.622225 1.07773i
\(900\) 0 0
\(901\) −16.0922 −0.536110
\(902\) −13.5076 23.3958i −0.449753 0.778995i
\(903\) 0 0
\(904\) −39.6307 −1.31810
\(905\) −1.45115 −0.0482379
\(906\) 0 0
\(907\) −26.6993 + 46.2446i −0.886537 + 1.53553i −0.0425957 + 0.999092i \(0.513563\pi\)
−0.843942 + 0.536435i \(0.819771\pi\)
\(908\) 3.87156 + 6.70573i 0.128482 + 0.222538i
\(909\) 0 0
\(910\) −4.15024 + 7.18842i −0.137579 + 0.238294i
\(911\) −22.8765 −0.757933 −0.378967 0.925410i \(-0.623720\pi\)
−0.378967 + 0.925410i \(0.623720\pi\)
\(912\) 0 0
\(913\) −43.2826 −1.43244
\(914\) −20.4884 + 35.4870i −0.677697 + 1.17381i
\(915\) 0 0
\(916\) 1.39185 + 2.41076i 0.0459881 + 0.0796538i
\(917\) 21.4797 37.2039i 0.709321 1.22858i
\(918\) 0 0
\(919\) −3.88045 −0.128004 −0.0640021 0.997950i \(-0.520386\pi\)
−0.0640021 + 0.997950i \(0.520386\pi\)
\(920\) 20.3127 0.669691
\(921\) 0 0
\(922\) 36.5843 + 63.3659i 1.20484 + 2.08684i
\(923\) 5.04193 0.165957
\(924\) 0 0
\(925\) −3.63442 6.29501i −0.119499 0.206979i
\(926\) −34.7986 + 60.2729i −1.14355 + 1.98069i
\(927\) 0 0
\(928\) 23.7892 41.2042i 0.780920 1.35259i
\(929\) 25.8821 44.8290i 0.849163 1.47079i −0.0327938 0.999462i \(-0.510440\pi\)
0.881956 0.471331i \(-0.156226\pi\)
\(930\) 0 0
\(931\) 9.73014 + 8.90496i 0.318892 + 0.291848i
\(932\) 70.1138 2.29665
\(933\) 0 0
\(934\) 29.7744 51.5708i 0.974248 1.68745i
\(935\) 14.0765 + 24.3813i 0.460352 + 0.797353i
\(936\) 0 0
\(937\) 2.11094 + 3.65625i 0.0689613 + 0.119444i 0.898444 0.439087i \(-0.144698\pi\)
−0.829483 + 0.558532i \(0.811365\pi\)
\(938\) −7.39079 −0.241318
\(939\) 0 0
\(940\) −14.3051 24.7772i −0.466581 0.808142i
\(941\) −8.88263 15.3852i −0.289566 0.501542i 0.684140 0.729350i \(-0.260178\pi\)
−0.973706 + 0.227808i \(0.926844\pi\)
\(942\) 0 0
\(943\) 21.4506 0.698527
\(944\) 4.00678 + 6.93995i 0.130410 + 0.225876i
\(945\) 0 0
\(946\) −6.31465 10.9373i −0.205307 0.355602i
\(947\) 6.73396 11.6636i 0.218824 0.379015i −0.735624 0.677390i \(-0.763111\pi\)
0.954449 + 0.298375i \(0.0964445\pi\)
\(948\) 0 0
\(949\) 4.23799 0.137571
\(950\) −7.22691 6.61402i −0.234472 0.214587i
\(951\) 0 0
\(952\) −21.8583 + 37.8598i −0.708433 + 1.22704i
\(953\) −13.3390 + 23.1037i −0.432091 + 0.748404i −0.997053 0.0767132i \(-0.975557\pi\)
0.564962 + 0.825117i \(0.308891\pi\)
\(954\) 0 0
\(955\) −9.52990 + 16.5063i −0.308380 + 0.534130i
\(956\) 32.3200 + 55.9799i 1.04530 + 1.81052i
\(957\) 0 0
\(958\) −52.0188 −1.68065
\(959\) 25.0836 + 43.4460i 0.809990 + 1.40294i
\(960\) 0 0
\(961\) −4.96482 −0.160156
\(962\) −19.0548 −0.614353
\(963\) 0 0
\(964\) 6.56417 11.3695i 0.211418 0.366186i
\(965\) 7.84789 + 13.5929i 0.252632 + 0.437572i
\(966\) 0 0
\(967\) 7.10344 12.3035i 0.228431 0.395655i −0.728912 0.684607i \(-0.759974\pi\)
0.957343 + 0.288953i \(0.0933071\pi\)
\(968\) −28.8484 −0.927222
\(969\) 0 0
\(970\) 4.49499 0.144325
\(971\) 9.20622 15.9456i 0.295442 0.511720i −0.679646 0.733540i \(-0.737867\pi\)
0.975088 + 0.221821i \(0.0711999\pi\)
\(972\) 0 0
\(973\) 6.82781 + 11.8261i 0.218890 + 0.379128i
\(974\) −43.0479 + 74.5612i −1.37934 + 2.38909i
\(975\) 0 0
\(976\) 4.04807 0.129576
\(977\) 3.75672 0.120188 0.0600941 0.998193i \(-0.480860\pi\)
0.0600941 + 0.998193i \(0.480860\pi\)
\(978\) 0 0
\(979\) −10.0504 17.4078i −0.321212 0.556356i
\(980\) −9.23296 −0.294936
\(981\) 0 0
\(982\) −26.7165 46.2744i −0.852559 1.47668i
\(983\) −5.73076 + 9.92597i −0.182783 + 0.316589i −0.942827 0.333282i \(-0.891844\pi\)
0.760044 + 0.649871i \(0.225177\pi\)
\(984\) 0 0
\(985\) −4.11810 + 7.13275i −0.131214 + 0.227268i
\(986\) 48.0211 83.1749i 1.52930 2.64883i
\(987\) 0 0
\(988\) −14.7920 + 4.67397i −0.470597 + 0.148699i
\(989\) 10.0279 0.318869
\(990\) 0 0
\(991\) 4.54948 7.87993i 0.144519 0.250314i −0.784674 0.619908i \(-0.787170\pi\)
0.929193 + 0.369594i \(0.120503\pi\)
\(992\) 16.5991 + 28.7504i 0.527021 + 0.912827i
\(993\) 0 0
\(994\) 15.3811 + 26.6409i 0.487860 + 0.844998i
\(995\) −17.3892 −0.551274
\(996\) 0 0
\(997\) −12.3463 21.3844i −0.391012 0.677252i 0.601572 0.798819i \(-0.294541\pi\)
−0.992583 + 0.121567i \(0.961208\pi\)
\(998\) 0.473811 + 0.820665i 0.0149982 + 0.0259777i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.k.i.676.5 10
3.2 odd 2 285.2.i.f.106.1 10
19.7 even 3 inner 855.2.k.i.406.5 10
57.8 even 6 5415.2.a.z.1.1 5
57.11 odd 6 5415.2.a.y.1.5 5
57.26 odd 6 285.2.i.f.121.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.1 10 3.2 odd 2
285.2.i.f.121.1 yes 10 57.26 odd 6
855.2.k.i.406.5 10 19.7 even 3 inner
855.2.k.i.676.5 10 1.1 even 1 trivial
5415.2.a.y.1.5 5 57.11 odd 6
5415.2.a.z.1.1 5 57.8 even 6