Properties

Label 855.2.k.i.676.3
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 2x^{7} + 56x^{6} - 18x^{5} + 125x^{4} + x^{3} + 189x^{2} - 52x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.3
Root \(0.145349 + 0.251751i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.i.406.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.145349 + 0.251751i) q^{2} +(0.957748 + 1.65887i) q^{4} +(0.500000 - 0.866025i) q^{5} -0.486575 q^{7} -1.13822 q^{8} +(0.145349 + 0.251751i) q^{10} -5.34764 q^{11} +(1.24329 + 2.15344i) q^{13} +(0.0707229 - 0.122496i) q^{14} +(-1.75006 + 3.03119i) q^{16} +(-1.70780 + 2.95800i) q^{17} +(-2.46291 + 3.59640i) q^{19} +1.91550 q^{20} +(0.777272 - 1.34627i) q^{22} +(3.20619 + 5.55329i) q^{23} +(-0.500000 - 0.866025i) q^{25} -0.722840 q^{26} +(-0.466016 - 0.807163i) q^{28} +(1.38312 + 2.39564i) q^{29} +4.83099 q^{31} +(-1.64696 - 2.85262i) q^{32} +(-0.496454 - 0.859883i) q^{34} +(-0.243287 + 0.421386i) q^{35} -6.31756 q^{37} +(-0.547418 - 1.14277i) q^{38} +(-0.569112 + 0.985730i) q^{40} +(1.29070 - 2.23555i) q^{41} +(1.24329 - 2.15344i) q^{43} +(-5.12169 - 8.87102i) q^{44} -1.86406 q^{46} +(5.55533 + 9.62211i) q^{47} -6.76325 q^{49} +0.290697 q^{50} +(-2.38151 + 4.12490i) q^{52} +(1.49839 + 2.59529i) q^{53} +(-2.67382 + 4.63119i) q^{55} +0.553831 q^{56} -0.804139 q^{58} +(6.36659 - 11.0273i) q^{59} +(-5.92742 - 10.2666i) q^{61} +(-0.702178 + 1.21621i) q^{62} -6.04269 q^{64} +2.48657 q^{65} +(7.58770 + 13.1423i) q^{67} -6.54258 q^{68} +(-0.0707229 - 0.122496i) q^{70} +(-4.96452 + 8.59879i) q^{71} +(5.50642 - 9.53740i) q^{73} +(0.918249 - 1.59045i) q^{74} +(-8.32479 - 0.641189i) q^{76} +2.60202 q^{77} +(-4.06636 + 7.04314i) q^{79} +(1.75006 + 3.03119i) q^{80} +(0.375202 + 0.649869i) q^{82} +5.86106 q^{83} +(1.70780 + 2.95800i) q^{85} +(0.361420 + 0.625998i) q^{86} +6.08681 q^{88} +(-3.25521 - 5.63820i) q^{89} +(-0.604952 - 1.04781i) q^{91} +(-6.14145 + 10.6373i) q^{92} -3.22984 q^{94} +(1.88312 + 3.93114i) q^{95} +(-1.00000 + 1.73205i) q^{97} +(0.983028 - 1.70265i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - 7 q^{4} + 5 q^{5} + 4 q^{7} + 12 q^{8} + q^{10} - 10 q^{11} + 8 q^{13} - 4 q^{14} - 7 q^{16} + 10 q^{17} + 5 q^{19} - 14 q^{20} - 2 q^{22} - 2 q^{23} - 5 q^{25} + 4 q^{26} - 10 q^{28} - 7 q^{29}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.145349 + 0.251751i −0.102777 + 0.178015i −0.912828 0.408345i \(-0.866106\pi\)
0.810051 + 0.586360i \(0.199439\pi\)
\(3\) 0 0
\(4\) 0.957748 + 1.65887i 0.478874 + 0.829434i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) −0.486575 −0.183908 −0.0919539 0.995763i \(-0.529311\pi\)
−0.0919539 + 0.995763i \(0.529311\pi\)
\(8\) −1.13822 −0.402423
\(9\) 0 0
\(10\) 0.145349 + 0.251751i 0.0459633 + 0.0796107i
\(11\) −5.34764 −1.61237 −0.806187 0.591661i \(-0.798472\pi\)
−0.806187 + 0.591661i \(0.798472\pi\)
\(12\) 0 0
\(13\) 1.24329 + 2.15344i 0.344826 + 0.597256i 0.985322 0.170705i \(-0.0546046\pi\)
−0.640496 + 0.767961i \(0.721271\pi\)
\(14\) 0.0707229 0.122496i 0.0189015 0.0327384i
\(15\) 0 0
\(16\) −1.75006 + 3.03119i −0.437514 + 0.757796i
\(17\) −1.70780 + 2.95800i −0.414203 + 0.717421i −0.995344 0.0963817i \(-0.969273\pi\)
0.581141 + 0.813803i \(0.302606\pi\)
\(18\) 0 0
\(19\) −2.46291 + 3.59640i −0.565029 + 0.825071i
\(20\) 1.91550 0.428318
\(21\) 0 0
\(22\) 0.777272 1.34627i 0.165715 0.287027i
\(23\) 3.20619 + 5.55329i 0.668537 + 1.15794i 0.978313 + 0.207131i \(0.0664126\pi\)
−0.309776 + 0.950810i \(0.600254\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −0.722840 −0.141761
\(27\) 0 0
\(28\) −0.466016 0.807163i −0.0880687 0.152539i
\(29\) 1.38312 + 2.39564i 0.256839 + 0.444859i 0.965393 0.260798i \(-0.0839856\pi\)
−0.708554 + 0.705656i \(0.750652\pi\)
\(30\) 0 0
\(31\) 4.83099 0.867671 0.433836 0.900992i \(-0.357160\pi\)
0.433836 + 0.900992i \(0.357160\pi\)
\(32\) −1.64696 2.85262i −0.291144 0.504276i
\(33\) 0 0
\(34\) −0.496454 0.859883i −0.0851411 0.147469i
\(35\) −0.243287 + 0.421386i −0.0411231 + 0.0712272i
\(36\) 0 0
\(37\) −6.31756 −1.03860 −0.519301 0.854592i \(-0.673808\pi\)
−0.519301 + 0.854592i \(0.673808\pi\)
\(38\) −0.547418 1.14277i −0.0888030 0.185382i
\(39\) 0 0
\(40\) −0.569112 + 0.985730i −0.0899845 + 0.155858i
\(41\) 1.29070 2.23555i 0.201573 0.349135i −0.747462 0.664304i \(-0.768728\pi\)
0.949035 + 0.315169i \(0.102061\pi\)
\(42\) 0 0
\(43\) 1.24329 2.15344i 0.189600 0.328396i −0.755517 0.655129i \(-0.772614\pi\)
0.945117 + 0.326733i \(0.105948\pi\)
\(44\) −5.12169 8.87102i −0.772123 1.33736i
\(45\) 0 0
\(46\) −1.86406 −0.274841
\(47\) 5.55533 + 9.62211i 0.810328 + 1.40353i 0.912634 + 0.408777i \(0.134044\pi\)
−0.102306 + 0.994753i \(0.532622\pi\)
\(48\) 0 0
\(49\) −6.76325 −0.966178
\(50\) 0.290697 0.0411108
\(51\) 0 0
\(52\) −2.38151 + 4.12490i −0.330256 + 0.572020i
\(53\) 1.49839 + 2.59529i 0.205820 + 0.356490i 0.950394 0.311050i \(-0.100681\pi\)
−0.744574 + 0.667540i \(0.767347\pi\)
\(54\) 0 0
\(55\) −2.67382 + 4.63119i −0.360538 + 0.624470i
\(56\) 0.553831 0.0740087
\(57\) 0 0
\(58\) −0.804139 −0.105589
\(59\) 6.36659 11.0273i 0.828859 1.43563i −0.0700752 0.997542i \(-0.522324\pi\)
0.898934 0.438084i \(-0.144343\pi\)
\(60\) 0 0
\(61\) −5.92742 10.2666i −0.758929 1.31450i −0.943397 0.331664i \(-0.892390\pi\)
0.184469 0.982838i \(-0.440944\pi\)
\(62\) −0.702178 + 1.21621i −0.0891767 + 0.154458i
\(63\) 0 0
\(64\) −6.04269 −0.755336
\(65\) 2.48657 0.308422
\(66\) 0 0
\(67\) 7.58770 + 13.1423i 0.926985 + 1.60559i 0.788336 + 0.615244i \(0.210943\pi\)
0.138649 + 0.990342i \(0.455724\pi\)
\(68\) −6.54258 −0.793404
\(69\) 0 0
\(70\) −0.0707229 0.122496i −0.00845301 0.0146410i
\(71\) −4.96452 + 8.59879i −0.589180 + 1.02049i 0.405160 + 0.914246i \(0.367216\pi\)
−0.994340 + 0.106244i \(0.966118\pi\)
\(72\) 0 0
\(73\) 5.50642 9.53740i 0.644478 1.11627i −0.339944 0.940446i \(-0.610408\pi\)
0.984422 0.175823i \(-0.0562585\pi\)
\(74\) 0.918249 1.59045i 0.106744 0.184887i
\(75\) 0 0
\(76\) −8.32479 0.641189i −0.954919 0.0735494i
\(77\) 2.60202 0.296528
\(78\) 0 0
\(79\) −4.06636 + 7.04314i −0.457501 + 0.792415i −0.998828 0.0483971i \(-0.984589\pi\)
0.541327 + 0.840812i \(0.317922\pi\)
\(80\) 1.75006 + 3.03119i 0.195662 + 0.338897i
\(81\) 0 0
\(82\) 0.375202 + 0.649869i 0.0414341 + 0.0717660i
\(83\) 5.86106 0.643335 0.321668 0.946853i \(-0.395757\pi\)
0.321668 + 0.946853i \(0.395757\pi\)
\(84\) 0 0
\(85\) 1.70780 + 2.95800i 0.185237 + 0.320840i
\(86\) 0.361420 + 0.625998i 0.0389729 + 0.0675031i
\(87\) 0 0
\(88\) 6.08681 0.648856
\(89\) −3.25521 5.63820i −0.345052 0.597647i 0.640311 0.768116i \(-0.278805\pi\)
−0.985363 + 0.170468i \(0.945472\pi\)
\(90\) 0 0
\(91\) −0.604952 1.04781i −0.0634162 0.109840i
\(92\) −6.14145 + 10.6373i −0.640290 + 1.10901i
\(93\) 0 0
\(94\) −3.22984 −0.333132
\(95\) 1.88312 + 3.93114i 0.193204 + 0.403326i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0.983028 1.70265i 0.0993008 0.171994i
\(99\) 0 0
\(100\) 0.957748 1.65887i 0.0957748 0.165887i
\(101\) 0.758324 + 1.31346i 0.0754561 + 0.130694i 0.901285 0.433228i \(-0.142625\pi\)
−0.825828 + 0.563921i \(0.809292\pi\)
\(102\) 0 0
\(103\) −9.15478 −0.902047 −0.451023 0.892512i \(-0.648941\pi\)
−0.451023 + 0.892512i \(0.648941\pi\)
\(104\) −1.41514 2.45109i −0.138766 0.240349i
\(105\) 0 0
\(106\) −0.871155 −0.0846140
\(107\) −0.138936 −0.0134315 −0.00671574 0.999977i \(-0.502138\pi\)
−0.00671574 + 0.999977i \(0.502138\pi\)
\(108\) 0 0
\(109\) 7.86497 13.6225i 0.753328 1.30480i −0.192873 0.981224i \(-0.561781\pi\)
0.946201 0.323579i \(-0.104886\pi\)
\(110\) −0.777272 1.34627i −0.0741099 0.128362i
\(111\) 0 0
\(112\) 0.851533 1.47490i 0.0804623 0.139365i
\(113\) −14.8011 −1.39237 −0.696187 0.717860i \(-0.745122\pi\)
−0.696187 + 0.717860i \(0.745122\pi\)
\(114\) 0 0
\(115\) 6.41238 0.597958
\(116\) −2.64936 + 4.58883i −0.245987 + 0.426062i
\(117\) 0 0
\(118\) 1.85075 + 3.20559i 0.170375 + 0.295099i
\(119\) 0.830974 1.43929i 0.0761752 0.131939i
\(120\) 0 0
\(121\) 17.5972 1.59975
\(122\) 3.44617 0.312002
\(123\) 0 0
\(124\) 4.62687 + 8.01397i 0.415505 + 0.719676i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.91550 + 8.51389i 0.436180 + 0.755485i 0.997391 0.0721871i \(-0.0229979\pi\)
−0.561211 + 0.827672i \(0.689665\pi\)
\(128\) 4.17222 7.22649i 0.368775 0.638738i
\(129\) 0 0
\(130\) −0.361420 + 0.625998i −0.0316986 + 0.0549037i
\(131\) 7.11459 12.3228i 0.621605 1.07665i −0.367582 0.929991i \(-0.619814\pi\)
0.989187 0.146660i \(-0.0468524\pi\)
\(132\) 0 0
\(133\) 1.19839 1.74992i 0.103913 0.151737i
\(134\) −4.41145 −0.381091
\(135\) 0 0
\(136\) 1.94386 3.36687i 0.166685 0.288707i
\(137\) 3.29220 + 5.70225i 0.281271 + 0.487176i 0.971698 0.236226i \(-0.0759106\pi\)
−0.690427 + 0.723402i \(0.742577\pi\)
\(138\) 0 0
\(139\) −0.116878 0.202439i −0.00991347 0.0171706i 0.861026 0.508561i \(-0.169822\pi\)
−0.870940 + 0.491390i \(0.836489\pi\)
\(140\) −0.932031 −0.0787710
\(141\) 0 0
\(142\) −1.44317 2.49965i −0.121108 0.209766i
\(143\) −6.64865 11.5158i −0.555988 0.963000i
\(144\) 0 0
\(145\) 2.76624 0.229724
\(146\) 1.60070 + 2.77250i 0.132475 + 0.229453i
\(147\) 0 0
\(148\) −6.05063 10.4800i −0.497359 0.861451i
\(149\) −1.33650 + 2.31488i −0.109490 + 0.189642i −0.915564 0.402173i \(-0.868255\pi\)
0.806074 + 0.591815i \(0.201588\pi\)
\(150\) 0 0
\(151\) 5.95266 0.484421 0.242210 0.970224i \(-0.422128\pi\)
0.242210 + 0.970224i \(0.422128\pi\)
\(152\) 2.80334 4.09351i 0.227381 0.332027i
\(153\) 0 0
\(154\) −0.378201 + 0.655063i −0.0304763 + 0.0527865i
\(155\) 2.41550 4.18376i 0.194017 0.336048i
\(156\) 0 0
\(157\) 3.60424 6.24273i 0.287650 0.498224i −0.685599 0.727980i \(-0.740459\pi\)
0.973248 + 0.229756i \(0.0737928\pi\)
\(158\) −1.18208 2.04742i −0.0940411 0.162884i
\(159\) 0 0
\(160\) −3.29392 −0.260407
\(161\) −1.56005 2.70209i −0.122949 0.212954i
\(162\) 0 0
\(163\) 14.1756 1.11032 0.555161 0.831743i \(-0.312657\pi\)
0.555161 + 0.831743i \(0.312657\pi\)
\(164\) 4.94465 0.386112
\(165\) 0 0
\(166\) −0.851897 + 1.47553i −0.0661201 + 0.114523i
\(167\) 6.27817 + 10.8741i 0.485819 + 0.841464i 0.999867 0.0162977i \(-0.00518794\pi\)
−0.514048 + 0.857762i \(0.671855\pi\)
\(168\) 0 0
\(169\) 3.40847 5.90365i 0.262190 0.454127i
\(170\) −0.992907 −0.0761525
\(171\) 0 0
\(172\) 4.76302 0.363177
\(173\) 1.09482 1.89628i 0.0832376 0.144172i −0.821401 0.570351i \(-0.806807\pi\)
0.904639 + 0.426179i \(0.140141\pi\)
\(174\) 0 0
\(175\) 0.243287 + 0.421386i 0.0183908 + 0.0318538i
\(176\) 9.35867 16.2097i 0.705436 1.22185i
\(177\) 0 0
\(178\) 1.89256 0.141854
\(179\) −7.50421 −0.560891 −0.280445 0.959870i \(-0.590482\pi\)
−0.280445 + 0.959870i \(0.590482\pi\)
\(180\) 0 0
\(181\) 6.33260 + 10.9684i 0.470699 + 0.815274i 0.999438 0.0335101i \(-0.0106686\pi\)
−0.528740 + 0.848784i \(0.677335\pi\)
\(182\) 0.351716 0.0260709
\(183\) 0 0
\(184\) −3.64936 6.32088i −0.269035 0.465982i
\(185\) −3.15878 + 5.47117i −0.232238 + 0.402249i
\(186\) 0 0
\(187\) 9.13272 15.8183i 0.667850 1.15675i
\(188\) −10.6412 + 18.4311i −0.776090 + 1.34423i
\(189\) 0 0
\(190\) −1.26338 0.0973074i −0.0916551 0.00705942i
\(191\) −8.15777 −0.590276 −0.295138 0.955455i \(-0.595366\pi\)
−0.295138 + 0.955455i \(0.595366\pi\)
\(192\) 0 0
\(193\) 1.68252 2.91422i 0.121111 0.209770i −0.799095 0.601204i \(-0.794688\pi\)
0.920206 + 0.391435i \(0.128021\pi\)
\(194\) −0.290697 0.503502i −0.0208708 0.0361494i
\(195\) 0 0
\(196\) −6.47748 11.2193i −0.462677 0.801381i
\(197\) −3.83399 −0.273160 −0.136580 0.990629i \(-0.543611\pi\)
−0.136580 + 0.990629i \(0.543611\pi\)
\(198\) 0 0
\(199\) −6.34925 10.9972i −0.450086 0.779572i 0.548305 0.836279i \(-0.315273\pi\)
−0.998391 + 0.0567063i \(0.981940\pi\)
\(200\) 0.569112 + 0.985730i 0.0402423 + 0.0697017i
\(201\) 0 0
\(202\) −0.440885 −0.0310206
\(203\) −0.672992 1.16566i −0.0472348 0.0818130i
\(204\) 0 0
\(205\) −1.29070 2.23555i −0.0901462 0.156138i
\(206\) 1.33063 2.30473i 0.0927097 0.160578i
\(207\) 0 0
\(208\) −8.70329 −0.603465
\(209\) 13.1707 19.2323i 0.911038 1.33032i
\(210\) 0 0
\(211\) 4.57828 7.92982i 0.315182 0.545911i −0.664294 0.747471i \(-0.731268\pi\)
0.979476 + 0.201560i \(0.0646011\pi\)
\(212\) −2.87016 + 4.97126i −0.197123 + 0.341427i
\(213\) 0 0
\(214\) 0.0201942 0.0349774i 0.00138045 0.00239100i
\(215\) −1.24329 2.15344i −0.0847915 0.146863i
\(216\) 0 0
\(217\) −2.35064 −0.159572
\(218\) 2.28633 + 3.96003i 0.154850 + 0.268207i
\(219\) 0 0
\(220\) −10.2434 −0.690608
\(221\) −8.49316 −0.571312
\(222\) 0 0
\(223\) −5.44877 + 9.43754i −0.364876 + 0.631984i −0.988756 0.149536i \(-0.952222\pi\)
0.623880 + 0.781520i \(0.285555\pi\)
\(224\) 0.801369 + 1.38801i 0.0535437 + 0.0927404i
\(225\) 0 0
\(226\) 2.15133 3.72620i 0.143104 0.247863i
\(227\) 24.6351 1.63509 0.817545 0.575864i \(-0.195334\pi\)
0.817545 + 0.575864i \(0.195334\pi\)
\(228\) 0 0
\(229\) 17.1676 1.13447 0.567234 0.823557i \(-0.308013\pi\)
0.567234 + 0.823557i \(0.308013\pi\)
\(230\) −0.932031 + 1.61433i −0.0614563 + 0.106445i
\(231\) 0 0
\(232\) −1.57430 2.72677i −0.103358 0.179021i
\(233\) 14.2316 24.6498i 0.932341 1.61486i 0.153032 0.988221i \(-0.451096\pi\)
0.779309 0.626640i \(-0.215570\pi\)
\(234\) 0 0
\(235\) 11.1107 0.724780
\(236\) 24.3903 1.58768
\(237\) 0 0
\(238\) 0.241562 + 0.418397i 0.0156581 + 0.0271207i
\(239\) −4.07741 −0.263746 −0.131873 0.991267i \(-0.542099\pi\)
−0.131873 + 0.991267i \(0.542099\pi\)
\(240\) 0 0
\(241\) 6.33421 + 10.9712i 0.408023 + 0.706716i 0.994668 0.103128i \(-0.0328852\pi\)
−0.586646 + 0.809844i \(0.699552\pi\)
\(242\) −2.55773 + 4.43012i −0.164417 + 0.284779i
\(243\) 0 0
\(244\) 11.3539 19.6656i 0.726862 1.25896i
\(245\) −3.38162 + 5.85714i −0.216044 + 0.374199i
\(246\) 0 0
\(247\) −10.8067 0.832351i −0.687615 0.0529612i
\(248\) −5.49875 −0.349171
\(249\) 0 0
\(250\) 0.145349 0.251751i 0.00919265 0.0159221i
\(251\) −5.81204 10.0668i −0.366853 0.635408i 0.622219 0.782843i \(-0.286231\pi\)
−0.989072 + 0.147436i \(0.952898\pi\)
\(252\) 0 0
\(253\) −17.1456 29.6970i −1.07793 1.86703i
\(254\) −2.85784 −0.179317
\(255\) 0 0
\(256\) −4.82984 8.36553i −0.301865 0.522845i
\(257\) 5.27416 + 9.13512i 0.328993 + 0.569833i 0.982312 0.187250i \(-0.0599574\pi\)
−0.653319 + 0.757083i \(0.726624\pi\)
\(258\) 0 0
\(259\) 3.07397 0.191007
\(260\) 2.38151 + 4.12490i 0.147695 + 0.255815i
\(261\) 0 0
\(262\) 2.06819 + 3.58221i 0.127773 + 0.221310i
\(263\) 11.8967 20.6058i 0.733585 1.27061i −0.221757 0.975102i \(-0.571179\pi\)
0.955341 0.295504i \(-0.0954876\pi\)
\(264\) 0 0
\(265\) 2.99678 0.184091
\(266\) 0.266360 + 0.556043i 0.0163316 + 0.0340932i
\(267\) 0 0
\(268\) −14.5342 + 25.1740i −0.887818 + 1.53775i
\(269\) −2.11377 + 3.66115i −0.128879 + 0.223224i −0.923242 0.384218i \(-0.874471\pi\)
0.794364 + 0.607442i \(0.207804\pi\)
\(270\) 0 0
\(271\) −15.5736 + 26.9742i −0.946027 + 1.63857i −0.192344 + 0.981328i \(0.561609\pi\)
−0.753682 + 0.657239i \(0.771724\pi\)
\(272\) −5.97750 10.3533i −0.362439 0.627763i
\(273\) 0 0
\(274\) −1.91406 −0.115633
\(275\) 2.67382 + 4.63119i 0.161237 + 0.279271i
\(276\) 0 0
\(277\) 1.05393 0.0633243 0.0316621 0.999499i \(-0.489920\pi\)
0.0316621 + 0.999499i \(0.489920\pi\)
\(278\) 0.0679523 0.00407551
\(279\) 0 0
\(280\) 0.276915 0.479631i 0.0165489 0.0286635i
\(281\) 12.8177 + 22.2009i 0.764638 + 1.32439i 0.940437 + 0.339967i \(0.110416\pi\)
−0.175799 + 0.984426i \(0.556251\pi\)
\(282\) 0 0
\(283\) −14.7056 + 25.4708i −0.874157 + 1.51408i −0.0164983 + 0.999864i \(0.505252\pi\)
−0.857658 + 0.514220i \(0.828082\pi\)
\(284\) −19.0190 −1.12857
\(285\) 0 0
\(286\) 3.86549 0.228571
\(287\) −0.628020 + 1.08776i −0.0370709 + 0.0642086i
\(288\) 0 0
\(289\) 2.66681 + 4.61906i 0.156871 + 0.271709i
\(290\) −0.402070 + 0.696405i −0.0236103 + 0.0408943i
\(291\) 0 0
\(292\) 21.0950 1.23449
\(293\) 10.8548 0.634147 0.317073 0.948401i \(-0.397300\pi\)
0.317073 + 0.948401i \(0.397300\pi\)
\(294\) 0 0
\(295\) −6.36659 11.0273i −0.370677 0.642031i
\(296\) 7.19080 0.417957
\(297\) 0 0
\(298\) −0.388516 0.672929i −0.0225061 0.0389817i
\(299\) −7.97244 + 13.8087i −0.461058 + 0.798576i
\(300\) 0 0
\(301\) −0.604952 + 1.04781i −0.0348688 + 0.0603946i
\(302\) −0.865211 + 1.49859i −0.0497873 + 0.0862341i
\(303\) 0 0
\(304\) −6.59114 13.7594i −0.378028 0.789157i
\(305\) −11.8548 −0.678806
\(306\) 0 0
\(307\) −16.8445 + 29.1756i −0.961368 + 1.66514i −0.242296 + 0.970202i \(0.577901\pi\)
−0.719072 + 0.694936i \(0.755433\pi\)
\(308\) 2.49208 + 4.31641i 0.142000 + 0.245950i
\(309\) 0 0
\(310\) 0.702178 + 1.21621i 0.0398810 + 0.0690759i
\(311\) 11.7221 0.664701 0.332350 0.943156i \(-0.392158\pi\)
0.332350 + 0.943156i \(0.392158\pi\)
\(312\) 0 0
\(313\) −2.23928 3.87855i −0.126572 0.219229i 0.795775 0.605593i \(-0.207064\pi\)
−0.922346 + 0.386364i \(0.873731\pi\)
\(314\) 1.04774 + 1.81474i 0.0591275 + 0.102412i
\(315\) 0 0
\(316\) −15.5782 −0.876341
\(317\) 6.19367 + 10.7277i 0.347871 + 0.602530i 0.985871 0.167506i \(-0.0535714\pi\)
−0.638000 + 0.770036i \(0.720238\pi\)
\(318\) 0 0
\(319\) −7.39644 12.8110i −0.414121 0.717278i
\(320\) −3.02135 + 5.23312i −0.168898 + 0.292541i
\(321\) 0 0
\(322\) 0.907005 0.0505454
\(323\) −6.43200 13.4272i −0.357886 0.747111i
\(324\) 0 0
\(325\) 1.24329 2.15344i 0.0689652 0.119451i
\(326\) −2.06041 + 3.56873i −0.114115 + 0.197654i
\(327\) 0 0
\(328\) −1.46910 + 2.54456i −0.0811176 + 0.140500i
\(329\) −2.70308 4.68188i −0.149026 0.258120i
\(330\) 0 0
\(331\) 24.5058 1.34696 0.673480 0.739206i \(-0.264799\pi\)
0.673480 + 0.739206i \(0.264799\pi\)
\(332\) 5.61342 + 9.72273i 0.308076 + 0.533604i
\(333\) 0 0
\(334\) −3.65009 −0.199724
\(335\) 15.1754 0.829121
\(336\) 0 0
\(337\) −5.25038 + 9.09392i −0.286006 + 0.495378i −0.972853 0.231425i \(-0.925661\pi\)
0.686846 + 0.726803i \(0.258995\pi\)
\(338\) 0.990834 + 1.71617i 0.0538942 + 0.0933476i
\(339\) 0 0
\(340\) −3.27129 + 5.66604i −0.177411 + 0.307284i
\(341\) −25.8344 −1.39901
\(342\) 0 0
\(343\) 6.69684 0.361596
\(344\) −1.41514 + 2.45109i −0.0762992 + 0.132154i
\(345\) 0 0
\(346\) 0.318261 + 0.551244i 0.0171098 + 0.0296351i
\(347\) −0.727562 + 1.26017i −0.0390576 + 0.0676497i −0.884893 0.465794i \(-0.845769\pi\)
0.845836 + 0.533443i \(0.179102\pi\)
\(348\) 0 0
\(349\) 23.7332 1.27041 0.635204 0.772345i \(-0.280916\pi\)
0.635204 + 0.772345i \(0.280916\pi\)
\(350\) −0.141446 −0.00756060
\(351\) 0 0
\(352\) 8.80735 + 15.2548i 0.469433 + 0.813082i
\(353\) 7.39055 0.393359 0.196680 0.980468i \(-0.436984\pi\)
0.196680 + 0.980468i \(0.436984\pi\)
\(354\) 0 0
\(355\) 4.96452 + 8.59879i 0.263489 + 0.456377i
\(356\) 6.23535 10.7999i 0.330473 0.572395i
\(357\) 0 0
\(358\) 1.09073 1.88919i 0.0576467 0.0998469i
\(359\) 1.17934 2.04268i 0.0622433 0.107808i −0.833225 0.552935i \(-0.813508\pi\)
0.895468 + 0.445126i \(0.146841\pi\)
\(360\) 0 0
\(361\) −6.86820 17.7152i −0.361484 0.932378i
\(362\) −3.68174 −0.193508
\(363\) 0 0
\(364\) 1.15878 2.00707i 0.0607367 0.105199i
\(365\) −5.50642 9.53740i −0.288219 0.499210i
\(366\) 0 0
\(367\) 11.0743 + 19.1812i 0.578073 + 1.00125i 0.995700 + 0.0926329i \(0.0295283\pi\)
−0.417628 + 0.908618i \(0.637138\pi\)
\(368\) −22.4441 −1.16998
\(369\) 0 0
\(370\) −0.918249 1.59045i −0.0477375 0.0826838i
\(371\) −0.729078 1.26280i −0.0378518 0.0655613i
\(372\) 0 0
\(373\) 31.1738 1.61412 0.807060 0.590469i \(-0.201057\pi\)
0.807060 + 0.590469i \(0.201057\pi\)
\(374\) 2.65485 + 4.59834i 0.137279 + 0.237775i
\(375\) 0 0
\(376\) −6.32321 10.9521i −0.326094 0.564812i
\(377\) −3.43924 + 5.95693i −0.177130 + 0.306798i
\(378\) 0 0
\(379\) −26.0349 −1.33732 −0.668662 0.743567i \(-0.733132\pi\)
−0.668662 + 0.743567i \(0.733132\pi\)
\(380\) −4.71768 + 6.88889i −0.242012 + 0.353393i
\(381\) 0 0
\(382\) 1.18572 2.05373i 0.0606668 0.105078i
\(383\) −1.06647 + 1.84718i −0.0544941 + 0.0943865i −0.891986 0.452064i \(-0.850688\pi\)
0.837492 + 0.546450i \(0.184021\pi\)
\(384\) 0 0
\(385\) 1.30101 2.25342i 0.0663057 0.114845i
\(386\) 0.489105 + 0.847154i 0.0248948 + 0.0431190i
\(387\) 0 0
\(388\) −3.83099 −0.194489
\(389\) −6.52135 11.2953i −0.330645 0.572695i 0.651993 0.758225i \(-0.273933\pi\)
−0.982639 + 0.185530i \(0.940600\pi\)
\(390\) 0 0
\(391\) −21.9022 −1.10764
\(392\) 7.69808 0.388812
\(393\) 0 0
\(394\) 0.557265 0.965211i 0.0280746 0.0486266i
\(395\) 4.06636 + 7.04314i 0.204601 + 0.354379i
\(396\) 0 0
\(397\) −0.0143214 + 0.0248054i −0.000718770 + 0.00124495i −0.866385 0.499377i \(-0.833562\pi\)
0.865666 + 0.500622i \(0.166895\pi\)
\(398\) 3.69142 0.185034
\(399\) 0 0
\(400\) 3.50011 0.175006
\(401\) −13.6596 + 23.6591i −0.682126 + 1.18148i 0.292204 + 0.956356i \(0.405611\pi\)
−0.974331 + 0.225122i \(0.927722\pi\)
\(402\) 0 0
\(403\) 6.00631 + 10.4032i 0.299196 + 0.518222i
\(404\) −1.45257 + 2.51592i −0.0722679 + 0.125172i
\(405\) 0 0
\(406\) 0.391274 0.0194186
\(407\) 33.7841 1.67461
\(408\) 0 0
\(409\) 3.36958 + 5.83629i 0.166615 + 0.288586i 0.937228 0.348718i \(-0.113383\pi\)
−0.770612 + 0.637304i \(0.780050\pi\)
\(410\) 0.750404 0.0370598
\(411\) 0 0
\(412\) −8.76796 15.1866i −0.431967 0.748188i
\(413\) −3.09782 + 5.36558i −0.152434 + 0.264023i
\(414\) 0 0
\(415\) 2.93053 5.07583i 0.143854 0.249163i
\(416\) 4.09529 7.09325i 0.200788 0.347775i
\(417\) 0 0
\(418\) 2.92739 + 6.11113i 0.143184 + 0.298905i
\(419\) −26.4076 −1.29010 −0.645048 0.764142i \(-0.723163\pi\)
−0.645048 + 0.764142i \(0.723163\pi\)
\(420\) 0 0
\(421\) −18.9448 + 32.8133i −0.923311 + 1.59922i −0.129056 + 0.991637i \(0.541195\pi\)
−0.794255 + 0.607584i \(0.792139\pi\)
\(422\) 1.33089 + 2.30518i 0.0647869 + 0.112214i
\(423\) 0 0
\(424\) −1.70550 2.95401i −0.0828265 0.143460i
\(425\) 3.41561 0.165681
\(426\) 0 0
\(427\) 2.88413 + 4.99546i 0.139573 + 0.241747i
\(428\) −0.133066 0.230477i −0.00643198 0.0111405i
\(429\) 0 0
\(430\) 0.722840 0.0348585
\(431\) −9.60285 16.6326i −0.462553 0.801165i 0.536534 0.843879i \(-0.319733\pi\)
−0.999087 + 0.0427131i \(0.986400\pi\)
\(432\) 0 0
\(433\) −8.47562 14.6802i −0.407312 0.705485i 0.587275 0.809387i \(-0.300201\pi\)
−0.994588 + 0.103902i \(0.966867\pi\)
\(434\) 0.341662 0.591776i 0.0164003 0.0284061i
\(435\) 0 0
\(436\) 30.1306 1.44300
\(437\) −27.8684 2.14647i −1.33313 0.102680i
\(438\) 0 0
\(439\) −5.55143 + 9.61536i −0.264955 + 0.458916i −0.967552 0.252672i \(-0.918691\pi\)
0.702597 + 0.711588i \(0.252024\pi\)
\(440\) 3.04340 5.27133i 0.145089 0.251301i
\(441\) 0 0
\(442\) 1.23447 2.13816i 0.0587177 0.101702i
\(443\) −6.94708 12.0327i −0.330066 0.571691i 0.652459 0.757824i \(-0.273738\pi\)
−0.982524 + 0.186133i \(0.940404\pi\)
\(444\) 0 0
\(445\) −6.51043 −0.308624
\(446\) −1.58394 2.74347i −0.0750018 0.129907i
\(447\) 0 0
\(448\) 2.94022 0.138912
\(449\) −27.8675 −1.31515 −0.657573 0.753391i \(-0.728417\pi\)
−0.657573 + 0.753391i \(0.728417\pi\)
\(450\) 0 0
\(451\) −6.90218 + 11.9549i −0.325011 + 0.562936i
\(452\) −14.1758 24.5531i −0.666772 1.15488i
\(453\) 0 0
\(454\) −3.58068 + 6.20192i −0.168050 + 0.291071i
\(455\) −1.20990 −0.0567212
\(456\) 0 0
\(457\) −36.5660 −1.71048 −0.855242 0.518229i \(-0.826591\pi\)
−0.855242 + 0.518229i \(0.826591\pi\)
\(458\) −2.49529 + 4.32197i −0.116597 + 0.201952i
\(459\) 0 0
\(460\) 6.14145 + 10.6373i 0.286346 + 0.495966i
\(461\) 10.9590 18.9816i 0.510412 0.884059i −0.489515 0.871995i \(-0.662826\pi\)
0.999927 0.0120646i \(-0.00384039\pi\)
\(462\) 0 0
\(463\) −14.0255 −0.651821 −0.325910 0.945401i \(-0.605671\pi\)
−0.325910 + 0.945401i \(0.605671\pi\)
\(464\) −9.68216 −0.449483
\(465\) 0 0
\(466\) 4.13707 + 7.16562i 0.191646 + 0.331941i
\(467\) −33.9294 −1.57007 −0.785033 0.619453i \(-0.787354\pi\)
−0.785033 + 0.619453i \(0.787354\pi\)
\(468\) 0 0
\(469\) −3.69198 6.39470i −0.170480 0.295280i
\(470\) −1.61492 + 2.79712i −0.0744906 + 0.129022i
\(471\) 0 0
\(472\) −7.24660 + 12.5515i −0.333552 + 0.577728i
\(473\) −6.64865 + 11.5158i −0.305705 + 0.529497i
\(474\) 0 0
\(475\) 4.34603 + 0.334738i 0.199409 + 0.0153588i
\(476\) 3.18345 0.145913
\(477\) 0 0
\(478\) 0.592646 1.02649i 0.0271070 0.0469507i
\(479\) 15.9748 + 27.6692i 0.729909 + 1.26424i 0.956921 + 0.290348i \(0.0937711\pi\)
−0.227012 + 0.973892i \(0.572896\pi\)
\(480\) 0 0
\(481\) −7.85455 13.6045i −0.358137 0.620311i
\(482\) −3.68268 −0.167741
\(483\) 0 0
\(484\) 16.8537 + 29.1915i 0.766078 + 1.32689i
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) 37.6229 1.70486 0.852428 0.522844i \(-0.175129\pi\)
0.852428 + 0.522844i \(0.175129\pi\)
\(488\) 6.74673 + 11.6857i 0.305410 + 0.528986i
\(489\) 0 0
\(490\) −0.983028 1.70265i −0.0444087 0.0769181i
\(491\) −20.0421 + 34.7139i −0.904487 + 1.56662i −0.0828838 + 0.996559i \(0.526413\pi\)
−0.821604 + 0.570059i \(0.806920\pi\)
\(492\) 0 0
\(493\) −9.44840 −0.425535
\(494\) 1.78029 2.59962i 0.0800989 0.116963i
\(495\) 0 0
\(496\) −8.45450 + 14.6436i −0.379618 + 0.657518i
\(497\) 2.41561 4.18395i 0.108355 0.187676i
\(498\) 0 0
\(499\) 15.1533 26.2464i 0.678357 1.17495i −0.297118 0.954841i \(-0.596026\pi\)
0.975475 0.220108i \(-0.0706410\pi\)
\(500\) −0.957748 1.65887i −0.0428318 0.0741868i
\(501\) 0 0
\(502\) 3.37909 0.150816
\(503\) −8.64393 14.9717i −0.385414 0.667556i 0.606413 0.795150i \(-0.292608\pi\)
−0.991827 + 0.127594i \(0.959275\pi\)
\(504\) 0 0
\(505\) 1.51665 0.0674899
\(506\) 9.96833 0.443146
\(507\) 0 0
\(508\) −9.41561 + 16.3083i −0.417750 + 0.723564i
\(509\) 2.80412 + 4.85688i 0.124291 + 0.215278i 0.921455 0.388484i \(-0.127001\pi\)
−0.797165 + 0.603762i \(0.793668\pi\)
\(510\) 0 0
\(511\) −2.67928 + 4.64066i −0.118525 + 0.205291i
\(512\) 19.4969 0.861650
\(513\) 0 0
\(514\) −3.06637 −0.135252
\(515\) −4.57739 + 7.92827i −0.201704 + 0.349361i
\(516\) 0 0
\(517\) −29.7079 51.4556i −1.30655 2.26301i
\(518\) −0.446797 + 0.773874i −0.0196311 + 0.0340021i
\(519\) 0 0
\(520\) −2.83028 −0.124116
\(521\) −13.7128 −0.600767 −0.300384 0.953818i \(-0.597115\pi\)
−0.300384 + 0.953818i \(0.597115\pi\)
\(522\) 0 0
\(523\) 17.6171 + 30.5137i 0.770341 + 1.33427i 0.937376 + 0.348319i \(0.113247\pi\)
−0.167035 + 0.985951i \(0.553419\pi\)
\(524\) 27.2559 1.19068
\(525\) 0 0
\(526\) 3.45835 + 5.99004i 0.150791 + 0.261178i
\(527\) −8.25038 + 14.2901i −0.359392 + 0.622486i
\(528\) 0 0
\(529\) −9.05934 + 15.6912i −0.393884 + 0.682228i
\(530\) −0.435577 + 0.754442i −0.0189203 + 0.0327709i
\(531\) 0 0
\(532\) 4.05063 + 0.311986i 0.175617 + 0.0135263i
\(533\) 6.41883 0.278030
\(534\) 0 0
\(535\) −0.0694682 + 0.120322i −0.00300337 + 0.00520199i
\(536\) −8.63650 14.9589i −0.373040 0.646124i
\(537\) 0 0
\(538\) −0.614466 1.06429i −0.0264915 0.0458847i
\(539\) 36.1674 1.55784
\(540\) 0 0
\(541\) −15.1179 26.1849i −0.649968 1.12578i −0.983130 0.182908i \(-0.941449\pi\)
0.333162 0.942869i \(-0.391884\pi\)
\(542\) −4.52719 7.84133i −0.194460 0.336814i
\(543\) 0 0
\(544\) 11.2507 0.482371
\(545\) −7.86497 13.6225i −0.336899 0.583525i
\(546\) 0 0
\(547\) −17.4766 30.2703i −0.747244 1.29426i −0.949139 0.314858i \(-0.898043\pi\)
0.201895 0.979407i \(-0.435290\pi\)
\(548\) −6.30619 + 10.9226i −0.269387 + 0.466592i
\(549\) 0 0
\(550\) −1.55454 −0.0662860
\(551\) −12.0222 0.925967i −0.512162 0.0394475i
\(552\) 0 0
\(553\) 1.97859 3.42701i 0.0841380 0.145731i
\(554\) −0.153187 + 0.265327i −0.00650828 + 0.0112727i
\(555\) 0 0
\(556\) 0.223879 0.387771i 0.00949460 0.0164451i
\(557\) 1.58139 + 2.73906i 0.0670058 + 0.116058i 0.897582 0.440848i \(-0.145322\pi\)
−0.830576 + 0.556905i \(0.811989\pi\)
\(558\) 0 0
\(559\) 6.18305 0.261515
\(560\) −0.851533 1.47490i −0.0359838 0.0623258i
\(561\) 0 0
\(562\) −7.45213 −0.314349
\(563\) 29.0570 1.22460 0.612302 0.790624i \(-0.290244\pi\)
0.612302 + 0.790624i \(0.290244\pi\)
\(564\) 0 0
\(565\) −7.40057 + 12.8182i −0.311344 + 0.539264i
\(566\) −4.27487 7.40430i −0.179686 0.311226i
\(567\) 0 0
\(568\) 5.65073 9.78735i 0.237099 0.410668i
\(569\) 31.3398 1.31383 0.656916 0.753964i \(-0.271861\pi\)
0.656916 + 0.753964i \(0.271861\pi\)
\(570\) 0 0
\(571\) 2.56556 0.107365 0.0536827 0.998558i \(-0.482904\pi\)
0.0536827 + 0.998558i \(0.482904\pi\)
\(572\) 12.7355 22.0585i 0.532496 0.922311i
\(573\) 0 0
\(574\) −0.182564 0.316210i −0.00762006 0.0131983i
\(575\) 3.20619 5.55329i 0.133707 0.231588i
\(576\) 0 0
\(577\) 3.12153 0.129951 0.0649755 0.997887i \(-0.479303\pi\)
0.0649755 + 0.997887i \(0.479303\pi\)
\(578\) −1.55047 −0.0644911
\(579\) 0 0
\(580\) 2.64936 + 4.58883i 0.110009 + 0.190541i
\(581\) −2.85184 −0.118314
\(582\) 0 0
\(583\) −8.01284 13.8786i −0.331858 0.574795i
\(584\) −6.26754 + 10.8557i −0.259353 + 0.449212i
\(585\) 0 0
\(586\) −1.57774 + 2.73272i −0.0651757 + 0.112888i
\(587\) −4.63985 + 8.03646i −0.191507 + 0.331700i −0.945750 0.324896i \(-0.894671\pi\)
0.754243 + 0.656596i \(0.228004\pi\)
\(588\) 0 0
\(589\) −11.8983 + 17.3742i −0.490260 + 0.715891i
\(590\) 3.70150 0.152388
\(591\) 0 0
\(592\) 11.0561 19.1497i 0.454403 0.787048i
\(593\) 17.0224 + 29.4836i 0.699025 + 1.21075i 0.968805 + 0.247825i \(0.0797157\pi\)
−0.269780 + 0.962922i \(0.586951\pi\)
\(594\) 0 0
\(595\) −0.830974 1.43929i −0.0340666 0.0590051i
\(596\) −5.12010 −0.209728
\(597\) 0 0
\(598\) −2.31756 4.01414i −0.0947723 0.164150i
\(599\) 12.5366 + 21.7140i 0.512231 + 0.887210i 0.999899 + 0.0141810i \(0.00451411\pi\)
−0.487669 + 0.873029i \(0.662153\pi\)
\(600\) 0 0
\(601\) −26.0225 −1.06148 −0.530739 0.847535i \(-0.678086\pi\)
−0.530739 + 0.847535i \(0.678086\pi\)
\(602\) −0.175858 0.304595i −0.00716743 0.0124144i
\(603\) 0 0
\(604\) 5.70115 + 9.87468i 0.231976 + 0.401795i
\(605\) 8.79862 15.2397i 0.357715 0.619580i
\(606\) 0 0
\(607\) −7.54650 −0.306303 −0.153151 0.988203i \(-0.548942\pi\)
−0.153151 + 0.988203i \(0.548942\pi\)
\(608\) 14.3155 + 1.10260i 0.580569 + 0.0447163i
\(609\) 0 0
\(610\) 1.72308 2.98447i 0.0697657 0.120838i
\(611\) −13.8137 + 23.9261i −0.558844 + 0.967946i
\(612\) 0 0
\(613\) 19.1345 33.1419i 0.772836 1.33859i −0.163167 0.986598i \(-0.552171\pi\)
0.936003 0.351992i \(-0.114496\pi\)
\(614\) −4.89666 8.48126i −0.197613 0.342276i
\(615\) 0 0
\(616\) −2.96169 −0.119330
\(617\) −5.82540 10.0899i −0.234522 0.406203i 0.724612 0.689157i \(-0.242019\pi\)
−0.959134 + 0.282954i \(0.908686\pi\)
\(618\) 0 0
\(619\) −2.47710 −0.0995630 −0.0497815 0.998760i \(-0.515852\pi\)
−0.0497815 + 0.998760i \(0.515852\pi\)
\(620\) 9.25374 0.371639
\(621\) 0 0
\(622\) −1.70379 + 2.95106i −0.0683159 + 0.118327i
\(623\) 1.58390 + 2.74340i 0.0634578 + 0.109912i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 1.30191 0.0520346
\(627\) 0 0
\(628\) 13.8078 0.550991
\(629\) 10.7892 18.6874i 0.430192 0.745114i
\(630\) 0 0
\(631\) 21.8279 + 37.8070i 0.868954 + 1.50507i 0.863067 + 0.505090i \(0.168541\pi\)
0.00588756 + 0.999983i \(0.498126\pi\)
\(632\) 4.62842 8.01666i 0.184109 0.318886i
\(633\) 0 0
\(634\) −3.60096 −0.143012
\(635\) 9.83099 0.390131
\(636\) 0 0
\(637\) −8.40866 14.5642i −0.333163 0.577055i
\(638\) 4.30025 0.170248
\(639\) 0 0
\(640\) −4.17222 7.22649i −0.164921 0.285652i
\(641\) 12.1163 20.9860i 0.478564 0.828897i −0.521134 0.853475i \(-0.674491\pi\)
0.999698 + 0.0245776i \(0.00782407\pi\)
\(642\) 0 0
\(643\) −4.15878 + 7.20322i −0.164006 + 0.284067i −0.936302 0.351196i \(-0.885775\pi\)
0.772296 + 0.635263i \(0.219108\pi\)
\(644\) 2.98827 5.17584i 0.117754 0.203957i
\(645\) 0 0
\(646\) 4.31520 + 0.332364i 0.169779 + 0.0130767i
\(647\) 10.9164 0.429170 0.214585 0.976705i \(-0.431160\pi\)
0.214585 + 0.976705i \(0.431160\pi\)
\(648\) 0 0
\(649\) −34.0462 + 58.9697i −1.33643 + 2.31476i
\(650\) 0.361420 + 0.625998i 0.0141761 + 0.0245537i
\(651\) 0 0
\(652\) 13.5767 + 23.5155i 0.531704 + 0.920938i
\(653\) 21.8452 0.854868 0.427434 0.904047i \(-0.359418\pi\)
0.427434 + 0.904047i \(0.359418\pi\)
\(654\) 0 0
\(655\) −7.11459 12.3228i −0.277990 0.481493i
\(656\) 4.51758 + 7.82469i 0.176382 + 0.305503i
\(657\) 0 0
\(658\) 1.57156 0.0612657
\(659\) −13.2094 22.8794i −0.514566 0.891254i −0.999857 0.0169015i \(-0.994620\pi\)
0.485291 0.874352i \(-0.338714\pi\)
\(660\) 0 0
\(661\) −9.30721 16.1206i −0.362008 0.627017i 0.626283 0.779596i \(-0.284576\pi\)
−0.988291 + 0.152579i \(0.951242\pi\)
\(662\) −3.56188 + 6.16936i −0.138436 + 0.239779i
\(663\) 0 0
\(664\) −6.67120 −0.258893
\(665\) −0.916279 1.91279i −0.0355318 0.0741749i
\(666\) 0 0
\(667\) −8.86911 + 15.3617i −0.343413 + 0.594809i
\(668\) −12.0258 + 20.8293i −0.465292 + 0.805910i
\(669\) 0 0
\(670\) −2.20572 + 3.82043i −0.0852146 + 0.147596i
\(671\) 31.6977 + 54.9020i 1.22368 + 2.11947i
\(672\) 0 0
\(673\) 5.98693 0.230779 0.115390 0.993320i \(-0.463188\pi\)
0.115390 + 0.993320i \(0.463188\pi\)
\(674\) −1.52627 2.64358i −0.0587898 0.101827i
\(675\) 0 0
\(676\) 13.0578 0.502224
\(677\) −33.7287 −1.29630 −0.648150 0.761512i \(-0.724457\pi\)
−0.648150 + 0.761512i \(0.724457\pi\)
\(678\) 0 0
\(679\) 0.486575 0.842772i 0.0186730 0.0323426i
\(680\) −1.94386 3.36687i −0.0745437 0.129113i
\(681\) 0 0
\(682\) 3.75499 6.50384i 0.143786 0.249045i
\(683\) −11.4959 −0.439880 −0.219940 0.975513i \(-0.570586\pi\)
−0.219940 + 0.975513i \(0.570586\pi\)
\(684\) 0 0
\(685\) 6.58439 0.251577
\(686\) −0.973377 + 1.68594i −0.0371637 + 0.0643694i
\(687\) 0 0
\(688\) 4.35164 + 7.53727i 0.165905 + 0.287356i
\(689\) −3.72586 + 6.45337i −0.141944 + 0.245854i
\(690\) 0 0
\(691\) 36.3039 1.38107 0.690533 0.723301i \(-0.257376\pi\)
0.690533 + 0.723301i \(0.257376\pi\)
\(692\) 4.19424 0.159441
\(693\) 0 0
\(694\) −0.211500 0.366329i −0.00802844 0.0139057i
\(695\) −0.233756 −0.00886688
\(696\) 0 0
\(697\) 4.40851 + 7.63577i 0.166984 + 0.289225i
\(698\) −3.44958 + 5.97485i −0.130569 + 0.226152i
\(699\) 0 0
\(700\) −0.466016 + 0.807163i −0.0176137 + 0.0305079i
\(701\) 6.76373 11.7151i 0.255463 0.442474i −0.709558 0.704647i \(-0.751106\pi\)
0.965021 + 0.262172i \(0.0844389\pi\)
\(702\) 0 0
\(703\) 15.5596 22.7205i 0.586840 0.856920i
\(704\) 32.3141 1.21788
\(705\) 0 0
\(706\) −1.07421 + 1.86058i −0.0404283 + 0.0700239i
\(707\) −0.368981 0.639094i −0.0138770 0.0240356i
\(708\) 0 0
\(709\) 0.496778 + 0.860444i 0.0186569 + 0.0323147i 0.875203 0.483756i \(-0.160728\pi\)
−0.856546 + 0.516070i \(0.827394\pi\)
\(710\) −2.88634 −0.108322
\(711\) 0 0
\(712\) 3.70516 + 6.41753i 0.138857 + 0.240507i
\(713\) 15.4891 + 26.8279i 0.580071 + 1.00471i
\(714\) 0 0
\(715\) −13.2973 −0.497291
\(716\) −7.18714 12.4485i −0.268596 0.465222i
\(717\) 0 0
\(718\) 0.342831 + 0.593801i 0.0127943 + 0.0221605i
\(719\) −0.700670 + 1.21360i −0.0261306 + 0.0452595i −0.878795 0.477200i \(-0.841652\pi\)
0.852664 + 0.522459i \(0.174985\pi\)
\(720\) 0 0
\(721\) 4.45448 0.165894
\(722\) 5.45810 + 0.845801i 0.203130 + 0.0314775i
\(723\) 0 0
\(724\) −12.1301 + 21.0099i −0.450810 + 0.780827i
\(725\) 1.38312 2.39564i 0.0513679 0.0889717i
\(726\) 0 0
\(727\) 23.4834 40.6745i 0.870953 1.50853i 0.00993990 0.999951i \(-0.496836\pi\)
0.861013 0.508584i \(-0.169831\pi\)
\(728\) 0.688570 + 1.19264i 0.0255201 + 0.0442021i
\(729\) 0 0
\(730\) 3.20140 0.118489
\(731\) 4.24658 + 7.35529i 0.157065 + 0.272045i
\(732\) 0 0
\(733\) −21.6068 −0.798066 −0.399033 0.916937i \(-0.630654\pi\)
−0.399033 + 0.916937i \(0.630654\pi\)
\(734\) −6.43852 −0.237650
\(735\) 0 0
\(736\) 10.5609 18.2921i 0.389281 0.674255i
\(737\) −40.5763 70.2802i −1.49465 2.58880i
\(738\) 0 0
\(739\) 15.4063 26.6845i 0.566729 0.981603i −0.430158 0.902754i \(-0.641542\pi\)
0.996887 0.0788496i \(-0.0251247\pi\)
\(740\) −12.1013 −0.444851
\(741\) 0 0
\(742\) 0.423882 0.0155612
\(743\) 22.2143 38.4763i 0.814964 1.41156i −0.0943897 0.995535i \(-0.530090\pi\)
0.909354 0.416024i \(-0.136577\pi\)
\(744\) 0 0
\(745\) 1.33650 + 2.31488i 0.0489654 + 0.0848106i
\(746\) −4.53107 + 7.84805i −0.165894 + 0.287338i
\(747\) 0 0
\(748\) 34.9873 1.27926
\(749\) 0.0676029 0.00247016
\(750\) 0 0
\(751\) −7.43935 12.8853i −0.271466 0.470192i 0.697772 0.716320i \(-0.254175\pi\)
−0.969237 + 0.246128i \(0.920842\pi\)
\(752\) −38.8886 −1.41812
\(753\) 0 0
\(754\) −0.999776 1.73166i −0.0364097 0.0630634i
\(755\) 2.97633 5.15516i 0.108320 0.187615i
\(756\) 0 0
\(757\) −11.7204 + 20.3004i −0.425986 + 0.737829i −0.996512 0.0834503i \(-0.973406\pi\)
0.570526 + 0.821279i \(0.306739\pi\)
\(758\) 3.78414 6.55432i 0.137446 0.238063i
\(759\) 0 0
\(760\) −2.14341 4.47451i −0.0777498 0.162308i
\(761\) −36.3224 −1.31669 −0.658344 0.752717i \(-0.728743\pi\)
−0.658344 + 0.752717i \(0.728743\pi\)
\(762\) 0 0
\(763\) −3.82690 + 6.62838i −0.138543 + 0.239963i
\(764\) −7.81309 13.5327i −0.282668 0.489595i
\(765\) 0 0
\(766\) −0.310020 0.536970i −0.0112015 0.0194015i
\(767\) 31.6620 1.14325
\(768\) 0 0
\(769\) −10.4052 18.0223i −0.375220 0.649901i 0.615140 0.788418i \(-0.289100\pi\)
−0.990360 + 0.138517i \(0.955766\pi\)
\(770\) 0.378201 + 0.655063i 0.0136294 + 0.0236068i
\(771\) 0 0
\(772\) 6.44573 0.231987
\(773\) 1.78351 + 3.08913i 0.0641484 + 0.111108i 0.896316 0.443416i \(-0.146234\pi\)
−0.832168 + 0.554524i \(0.812900\pi\)
\(774\) 0 0
\(775\) −2.41550 4.18376i −0.0867671 0.150285i
\(776\) 1.13822 1.97146i 0.0408598 0.0707713i
\(777\) 0 0
\(778\) 3.79147 0.135931
\(779\) 4.86108 + 10.1478i 0.174166 + 0.363583i
\(780\) 0 0
\(781\) 26.5484 45.9832i 0.949978 1.64541i
\(782\) 3.18345 5.51390i 0.113840 0.197177i
\(783\) 0 0
\(784\) 11.8361 20.5007i 0.422716 0.732166i
\(785\) −3.60424 6.24273i −0.128641 0.222812i
\(786\) 0 0
\(787\) 44.5660 1.58860 0.794302 0.607523i \(-0.207837\pi\)
0.794302 + 0.607523i \(0.207837\pi\)
\(788\) −3.67199 6.36008i −0.130809 0.226568i
\(789\) 0 0
\(790\) −2.36416 −0.0841129
\(791\) 7.20186 0.256069
\(792\) 0 0
\(793\) 14.7390 25.5287i 0.523396 0.906549i
\(794\) −0.00416319 0.00721085i −0.000147746 0.000255904i
\(795\) 0 0
\(796\) 12.1620 21.0651i 0.431069 0.746634i
\(797\) 44.7396 1.58476 0.792378 0.610030i \(-0.208843\pi\)
0.792378 + 0.610030i \(0.208843\pi\)
\(798\) 0 0
\(799\) −37.9496 −1.34256
\(800\) −1.64696 + 2.85262i −0.0582288 + 0.100855i
\(801\) 0 0
\(802\) −3.97080 6.87762i −0.140214 0.242857i
\(803\) −29.4463 + 51.0026i −1.03914 + 1.79984i
\(804\) 0 0
\(805\) −3.12010 −0.109969
\(806\) −3.49203 −0.123002
\(807\) 0 0
\(808\) −0.863142 1.49501i −0.0303652 0.0525941i
\(809\) −8.67442 −0.304976 −0.152488 0.988305i \(-0.548729\pi\)
−0.152488 + 0.988305i \(0.548729\pi\)
\(810\) 0 0
\(811\) −13.3651 23.1490i −0.469312 0.812872i 0.530073 0.847952i \(-0.322165\pi\)
−0.999384 + 0.0350805i \(0.988831\pi\)
\(812\) 1.28911 2.23281i 0.0452390 0.0783562i
\(813\) 0 0
\(814\) −4.91046 + 8.50517i −0.172112 + 0.298106i
\(815\) 7.08781 12.2765i 0.248275 0.430025i
\(816\) 0 0
\(817\) 4.68252 + 9.77507i 0.163821 + 0.341986i
\(818\) −1.95906 −0.0684968
\(819\) 0 0
\(820\) 2.47232 4.28219i 0.0863373 0.149541i
\(821\) −4.72432 8.18275i −0.164880 0.285580i 0.771733 0.635947i \(-0.219390\pi\)
−0.936613 + 0.350367i \(0.886057\pi\)
\(822\) 0 0
\(823\) 9.73340 + 16.8587i 0.339285 + 0.587659i 0.984298 0.176513i \(-0.0564816\pi\)
−0.645014 + 0.764171i \(0.723148\pi\)
\(824\) 10.4202 0.363004
\(825\) 0 0
\(826\) −0.900527 1.55976i −0.0313333 0.0542709i
\(827\) −18.5009 32.0445i −0.643340 1.11430i −0.984682 0.174358i \(-0.944215\pi\)
0.341342 0.939939i \(-0.389118\pi\)
\(828\) 0 0
\(829\) 20.5418 0.713448 0.356724 0.934210i \(-0.383894\pi\)
0.356724 + 0.934210i \(0.383894\pi\)
\(830\) 0.851897 + 1.47553i 0.0295698 + 0.0512164i
\(831\) 0 0
\(832\) −7.51280 13.0126i −0.260459 0.451129i
\(833\) 11.5503 20.0057i 0.400194 0.693156i
\(834\) 0 0
\(835\) 12.5563 0.434530
\(836\) 44.5180 + 3.42885i 1.53969 + 0.118589i
\(837\) 0 0
\(838\) 3.83831 6.64814i 0.132592 0.229656i
\(839\) −23.8946 + 41.3866i −0.824932 + 1.42882i 0.0770401 + 0.997028i \(0.475453\pi\)
−0.901972 + 0.431795i \(0.857880\pi\)
\(840\) 0 0
\(841\) 10.6739 18.4878i 0.368067 0.637511i
\(842\) −5.50719 9.53873i −0.189790 0.328726i
\(843\) 0 0
\(844\) 17.5394 0.603730
\(845\) −3.40847 5.90365i −0.117255 0.203092i
\(846\) 0 0
\(847\) −8.56237 −0.294206
\(848\) −10.4891 −0.360196
\(849\) 0 0
\(850\) −0.496454 + 0.859883i −0.0170282 + 0.0294937i
\(851\) −20.2553 35.0833i −0.694344 1.20264i
\(852\) 0 0
\(853\) −5.71632 + 9.90096i −0.195723 + 0.339003i −0.947137 0.320828i \(-0.896039\pi\)
0.751414 + 0.659831i \(0.229372\pi\)
\(854\) −1.67682 −0.0573795
\(855\) 0 0
\(856\) 0.158141 0.00540513
\(857\) 2.78522 4.82414i 0.0951412 0.164789i −0.814526 0.580127i \(-0.803003\pi\)
0.909668 + 0.415337i \(0.136336\pi\)
\(858\) 0 0
\(859\) 8.50709 + 14.7347i 0.290258 + 0.502742i 0.973871 0.227103i \(-0.0729255\pi\)
−0.683612 + 0.729845i \(0.739592\pi\)
\(860\) 2.38151 4.12490i 0.0812088 0.140658i
\(861\) 0 0
\(862\) 5.58304 0.190159
\(863\) −46.8850 −1.59598 −0.797992 0.602668i \(-0.794104\pi\)
−0.797992 + 0.602668i \(0.794104\pi\)
\(864\) 0 0
\(865\) −1.09482 1.89628i −0.0372250 0.0644756i
\(866\) 4.92768 0.167449
\(867\) 0 0
\(868\) −2.25132 3.89939i −0.0764147 0.132354i
\(869\) 21.7454 37.6642i 0.737662 1.27767i
\(870\) 0 0
\(871\) −18.8674 + 32.6793i −0.639297 + 1.10730i
\(872\) −8.95210 + 15.5055i −0.303156 + 0.525082i
\(873\) 0 0
\(874\) 4.59101 6.70391i 0.155293 0.226763i
\(875\) 0.486575 0.0164492
\(876\) 0 0
\(877\) 14.8922 25.7940i 0.502873 0.871002i −0.497121 0.867681i \(-0.665610\pi\)
0.999994 0.00332078i \(-0.00105704\pi\)
\(878\) −1.61379 2.79516i −0.0544626 0.0943321i
\(879\) 0 0
\(880\) −9.35867 16.2097i −0.315481 0.546428i
\(881\) 20.4884 0.690271 0.345135 0.938553i \(-0.387833\pi\)
0.345135 + 0.938553i \(0.387833\pi\)
\(882\) 0 0
\(883\) −15.7402 27.2628i −0.529699 0.917466i −0.999400 0.0346401i \(-0.988972\pi\)
0.469701 0.882826i \(-0.344362\pi\)
\(884\) −8.13430 14.0890i −0.273586 0.473865i
\(885\) 0 0
\(886\) 4.03900 0.135693
\(887\) −16.8051 29.1074i −0.564262 0.977330i −0.997118 0.0758670i \(-0.975828\pi\)
0.432856 0.901463i \(-0.357506\pi\)
\(888\) 0 0
\(889\) −2.39175 4.14264i −0.0802169 0.138940i
\(890\) 0.946281 1.63901i 0.0317194 0.0549397i
\(891\) 0 0
\(892\) −20.8742 −0.698919
\(893\) −48.2872 3.71916i −1.61587 0.124457i
\(894\) 0 0
\(895\) −3.75210 + 6.49883i −0.125419 + 0.217232i
\(896\) −2.03009 + 3.51623i −0.0678207 + 0.117469i
\(897\) 0 0
\(898\) 4.05050 7.01567i 0.135167 0.234116i
\(899\) 6.68185 + 11.5733i 0.222852 + 0.385991i
\(900\) 0 0
\(901\) −10.2358 −0.341004
\(902\) −2.00644 3.47526i −0.0668073 0.115714i
\(903\) 0 0
\(904\) 16.8470 0.560323
\(905\) 12.6652 0.421006
\(906\) 0 0
\(907\) −10.9747 + 19.0088i −0.364410 + 0.631176i −0.988681 0.150031i \(-0.952063\pi\)
0.624272 + 0.781207i \(0.285396\pi\)
\(908\) 23.5942 + 40.8664i 0.783002 + 1.35620i
\(909\) 0 0
\(910\) 0.175858 0.304595i 0.00582963 0.0100972i
\(911\) −21.2865 −0.705253 −0.352626 0.935764i \(-0.614711\pi\)
−0.352626 + 0.935764i \(0.614711\pi\)
\(912\) 0 0
\(913\) −31.3428 −1.03730
\(914\) 5.31481 9.20552i 0.175798 0.304492i
\(915\) 0 0
\(916\) 16.4422 + 28.4788i 0.543267 + 0.940966i
\(917\) −3.46178 + 5.99598i −0.114318 + 0.198005i
\(918\) 0 0
\(919\) −2.61948 −0.0864087 −0.0432043 0.999066i \(-0.513757\pi\)
−0.0432043 + 0.999066i \(0.513757\pi\)
\(920\) −7.29873 −0.240632
\(921\) 0 0
\(922\) 3.18575 + 5.51789i 0.104917 + 0.181722i
\(923\) −24.6893 −0.812658
\(924\) 0 0
\(925\) 3.15878 + 5.47117i 0.103860 + 0.179891i
\(926\) 2.03859 3.53094i 0.0669921 0.116034i
\(927\) 0 0
\(928\) 4.55589 7.89104i 0.149554 0.259036i
\(929\) 1.91237 3.31232i 0.0627428 0.108674i −0.832948 0.553352i \(-0.813349\pi\)
0.895691 + 0.444678i \(0.146682\pi\)
\(930\) 0 0
\(931\) 16.6572 24.3233i 0.545919 0.797165i
\(932\) 54.5210 1.78589
\(933\) 0 0
\(934\) 4.93160 8.54177i 0.161367 0.279495i
\(935\) −9.13272 15.8183i −0.298672 0.517315i
\(936\) 0 0
\(937\) 3.69584 + 6.40138i 0.120738 + 0.209124i 0.920059 0.391780i \(-0.128141\pi\)
−0.799321 + 0.600904i \(0.794807\pi\)
\(938\) 2.14650 0.0700856
\(939\) 0 0
\(940\) 10.6412 + 18.4311i 0.347078 + 0.601157i
\(941\) 24.3057 + 42.0988i 0.792344 + 1.37238i 0.924512 + 0.381153i \(0.124473\pi\)
−0.132168 + 0.991227i \(0.542194\pi\)
\(942\) 0 0
\(943\) 16.5529 0.539036
\(944\) 22.2838 + 38.5966i 0.725275 + 1.25621i
\(945\) 0 0
\(946\) −1.93274 3.34761i −0.0628389 0.108840i
\(947\) −18.0103 + 31.1948i −0.585257 + 1.01370i 0.409586 + 0.912271i \(0.365673\pi\)
−0.994843 + 0.101424i \(0.967660\pi\)
\(948\) 0 0
\(949\) 27.3843 0.888930
\(950\) −0.715960 + 1.04546i −0.0232288 + 0.0339193i
\(951\) 0 0
\(952\) −0.945834 + 1.63823i −0.0306546 + 0.0530954i
\(953\) 5.60605 9.70996i 0.181598 0.314537i −0.760827 0.648955i \(-0.775206\pi\)
0.942425 + 0.334418i \(0.108540\pi\)
\(954\) 0 0
\(955\) −4.07889 + 7.06484i −0.131990 + 0.228613i
\(956\) −3.90513 6.76389i −0.126301 0.218760i
\(957\) 0 0
\(958\) −9.28769 −0.300072
\(959\) −1.60190 2.77457i −0.0517280 0.0895955i
\(960\) 0 0
\(961\) −7.66153 −0.247146
\(962\) 4.56659 0.147233
\(963\) 0 0
\(964\) −12.1332 + 21.0152i −0.390783 + 0.676855i
\(965\) −1.68252 2.91422i −0.0541623 0.0938119i
\(966\) 0 0
\(967\) 5.02307 8.70021i 0.161531 0.279780i −0.773887 0.633324i \(-0.781690\pi\)
0.935418 + 0.353544i \(0.115023\pi\)
\(968\) −20.0296 −0.643775
\(969\) 0 0
\(970\) −0.581394 −0.0186674
\(971\) −18.9495 + 32.8214i −0.608117 + 1.05329i 0.383434 + 0.923568i \(0.374742\pi\)
−0.991551 + 0.129721i \(0.958592\pi\)
\(972\) 0 0
\(973\) 0.0568699 + 0.0985016i 0.00182317 + 0.00315782i
\(974\) −5.46844 + 9.47161i −0.175220 + 0.303490i
\(975\) 0 0
\(976\) 41.4933 1.32817
\(977\) −44.6435 −1.42827 −0.714135 0.700008i \(-0.753180\pi\)
−0.714135 + 0.700008i \(0.753180\pi\)
\(978\) 0 0
\(979\) 17.4077 + 30.1510i 0.556353 + 0.963631i
\(980\) −12.9550 −0.413831
\(981\) 0 0
\(982\) −5.82618 10.0912i −0.185921 0.322025i
\(983\) −6.25454 + 10.8332i −0.199489 + 0.345525i −0.948363 0.317188i \(-0.897262\pi\)
0.748874 + 0.662712i \(0.230595\pi\)
\(984\) 0 0
\(985\) −1.91699 + 3.32033i −0.0610805 + 0.105795i
\(986\) 1.37331 2.37865i 0.0437352 0.0757515i
\(987\) 0 0
\(988\) −8.96935 18.7241i −0.285353 0.595693i
\(989\) 15.9449 0.507017
\(990\) 0 0
\(991\) −25.1503 + 43.5617i −0.798927 + 1.38378i 0.121388 + 0.992605i \(0.461265\pi\)
−0.920315 + 0.391177i \(0.872068\pi\)
\(992\) −7.95645 13.7810i −0.252617 0.437546i
\(993\) 0 0
\(994\) 0.702210 + 1.21626i 0.0222728 + 0.0385775i
\(995\) −12.6985 −0.402569
\(996\) 0 0
\(997\) −6.46875 11.2042i −0.204867 0.354841i 0.745223 0.666815i \(-0.232343\pi\)
−0.950090 + 0.311975i \(0.899010\pi\)
\(998\) 4.40504 + 7.62975i 0.139439 + 0.241515i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.k.i.676.3 10
3.2 odd 2 285.2.i.f.106.3 10
19.7 even 3 inner 855.2.k.i.406.3 10
57.8 even 6 5415.2.a.z.1.3 5
57.11 odd 6 5415.2.a.y.1.3 5
57.26 odd 6 285.2.i.f.121.3 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.f.106.3 10 3.2 odd 2
285.2.i.f.121.3 yes 10 57.26 odd 6
855.2.k.i.406.3 10 19.7 even 3 inner
855.2.k.i.676.3 10 1.1 even 1 trivial
5415.2.a.y.1.3 5 57.11 odd 6
5415.2.a.z.1.3 5 57.8 even 6