Properties

Label 855.2.k.g.676.3
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.3
Root \(1.14257 - 1.97899i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.g.406.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14257 - 1.97899i) q^{2} +(-1.61094 - 2.79023i) q^{4} +(-0.500000 + 0.866025i) q^{5} +3.50702 q^{7} -2.79216 q^{8} +O(q^{10})\) \(q+(1.14257 - 1.97899i) q^{2} +(-1.61094 - 2.79023i) q^{4} +(-0.500000 + 0.866025i) q^{5} +3.50702 q^{7} -2.79216 q^{8} +(1.14257 + 1.97899i) q^{10} +4.50702 q^{11} +(2.50000 + 4.33013i) q^{13} +(4.00702 - 6.94036i) q^{14} +(0.0316332 - 0.0547902i) q^{16} +(0.0793049 - 0.137360i) q^{17} +(-4.26053 + 0.920816i) q^{19} +3.22188 q^{20} +(5.14959 - 8.91935i) q^{22} +(0.579305 + 1.00339i) q^{23} +(-0.500000 - 0.866025i) q^{25} +11.4257 q^{26} +(-5.64959 - 9.78538i) q^{28} +(-1.75351 - 3.03717i) q^{29} -2.28514 q^{31} +(-2.86445 - 4.96137i) q^{32} +(-0.181223 - 0.313888i) q^{34} +(-1.75351 + 3.03717i) q^{35} -10.9648 q^{37} +(-3.04567 + 9.48365i) q^{38} +(1.39608 - 2.41808i) q^{40} +(3.03865 - 5.26310i) q^{41} +(1.67420 - 2.89981i) q^{43} +(-7.26053 - 12.5756i) q^{44} +2.64759 q^{46} +(1.53163 + 2.65287i) q^{47} +5.29918 q^{49} -2.28514 q^{50} +(8.05469 - 13.9511i) q^{52} +(-2.87147 - 4.97353i) q^{53} +(-2.25351 + 3.90319i) q^{55} -9.79216 q^{56} -8.01404 q^{58} +(1.53163 - 2.65287i) q^{59} +(0.436734 + 0.756445i) q^{61} +(-2.61094 + 4.52228i) q^{62} -12.9648 q^{64} -5.00000 q^{65} +(4.22188 + 7.31250i) q^{67} -0.511021 q^{68} +(4.00702 + 6.94036i) q^{70} +(-8.11796 + 14.0607i) q^{71} +(3.57930 - 6.19954i) q^{73} +(-12.5281 + 21.6993i) q^{74} +(9.43273 + 10.4045i) q^{76} +15.8062 q^{77} +(5.06327 - 8.76983i) q^{79} +(0.0316332 + 0.0547902i) q^{80} +(-6.94375 - 12.0269i) q^{82} -4.85543 q^{83} +(0.0793049 + 0.137360i) q^{85} +(-3.82580 - 6.62647i) q^{86} -12.5843 q^{88} +(-0.556248 - 0.963449i) q^{89} +(8.76755 + 15.1858i) q^{91} +(1.86645 - 3.23278i) q^{92} +7.00000 q^{94} +(1.33281 - 4.15013i) q^{95} +(-0.809757 + 1.40254i) q^{97} +(6.05469 - 10.4870i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8} + q^{10} + 10 q^{11} + 15 q^{13} + 7 q^{14} - 3 q^{16} + q^{17} + 14 q^{20} + 8 q^{22} + 4 q^{23} - 3 q^{25} + 10 q^{26} - 11 q^{28} - 2 q^{29} - 2 q^{31} - 6 q^{32} + 25 q^{34} - 2 q^{35} - 4 q^{37} + 19 q^{38} - 6 q^{40} - 2 q^{41} + q^{43} - 18 q^{44} - 48 q^{46} + 6 q^{47} - 14 q^{49} - 2 q^{50} + 35 q^{52} + 11 q^{53} - 5 q^{55} - 30 q^{56} - 14 q^{58} + 6 q^{59} + 9 q^{61} - 13 q^{62} - 16 q^{64} - 30 q^{65} + 20 q^{67} - 68 q^{68} + 7 q^{70} - 29 q^{71} + 22 q^{73} - 7 q^{74} - 19 q^{76} + 32 q^{77} + 24 q^{79} - 3 q^{80} - 31 q^{82} + 6 q^{83} + q^{85} - 32 q^{86} - 18 q^{88} - 14 q^{89} + 10 q^{91} + 41 q^{92} + 42 q^{94} - 7 q^{97} + 23 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14257 1.97899i 0.807920 1.39936i −0.106382 0.994325i \(-0.533927\pi\)
0.914302 0.405033i \(-0.132740\pi\)
\(3\) 0 0
\(4\) −1.61094 2.79023i −0.805469 1.39511i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 3.50702 1.32553 0.662764 0.748828i \(-0.269383\pi\)
0.662764 + 0.748828i \(0.269383\pi\)
\(8\) −2.79216 −0.987178
\(9\) 0 0
\(10\) 1.14257 + 1.97899i 0.361313 + 0.625812i
\(11\) 4.50702 1.35892 0.679459 0.733714i \(-0.262215\pi\)
0.679459 + 0.733714i \(0.262215\pi\)
\(12\) 0 0
\(13\) 2.50000 + 4.33013i 0.693375 + 1.20096i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 4.00702 6.94036i 1.07092 1.85489i
\(15\) 0 0
\(16\) 0.0316332 0.0547902i 0.00790829 0.0136976i
\(17\) 0.0793049 0.137360i 0.0192343 0.0333147i −0.856248 0.516565i \(-0.827210\pi\)
0.875482 + 0.483250i \(0.160544\pi\)
\(18\) 0 0
\(19\) −4.26053 + 0.920816i −0.977432 + 0.211250i
\(20\) 3.22188 0.720433
\(21\) 0 0
\(22\) 5.14959 8.91935i 1.09790 1.90161i
\(23\) 0.579305 + 1.00339i 0.120793 + 0.209220i 0.920081 0.391729i \(-0.128123\pi\)
−0.799287 + 0.600949i \(0.794789\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 11.4257 2.24077
\(27\) 0 0
\(28\) −5.64959 9.78538i −1.06767 1.84926i
\(29\) −1.75351 3.03717i −0.325619 0.563988i 0.656019 0.754745i \(-0.272239\pi\)
−0.981637 + 0.190757i \(0.938906\pi\)
\(30\) 0 0
\(31\) −2.28514 −0.410424 −0.205212 0.978718i \(-0.565788\pi\)
−0.205212 + 0.978718i \(0.565788\pi\)
\(32\) −2.86445 4.96137i −0.506368 0.877054i
\(33\) 0 0
\(34\) −0.181223 0.313888i −0.0310795 0.0538313i
\(35\) −1.75351 + 3.03717i −0.296397 + 0.513375i
\(36\) 0 0
\(37\) −10.9648 −1.80260 −0.901302 0.433192i \(-0.857387\pi\)
−0.901302 + 0.433192i \(0.857387\pi\)
\(38\) −3.04567 + 9.48365i −0.494073 + 1.53845i
\(39\) 0 0
\(40\) 1.39608 2.41808i 0.220740 0.382332i
\(41\) 3.03865 5.26310i 0.474558 0.821958i −0.525018 0.851091i \(-0.675941\pi\)
0.999576 + 0.0291332i \(0.00927470\pi\)
\(42\) 0 0
\(43\) 1.67420 2.89981i 0.255314 0.442216i −0.709667 0.704537i \(-0.751155\pi\)
0.964981 + 0.262321i \(0.0844879\pi\)
\(44\) −7.26053 12.5756i −1.09457 1.89584i
\(45\) 0 0
\(46\) 2.64759 0.390366
\(47\) 1.53163 + 2.65287i 0.223412 + 0.386960i 0.955842 0.293882i \(-0.0949472\pi\)
−0.732430 + 0.680842i \(0.761614\pi\)
\(48\) 0 0
\(49\) 5.29918 0.757026
\(50\) −2.28514 −0.323168
\(51\) 0 0
\(52\) 8.05469 13.9511i 1.11698 1.93467i
\(53\) −2.87147 4.97353i −0.394426 0.683166i 0.598602 0.801047i \(-0.295723\pi\)
−0.993028 + 0.117881i \(0.962390\pi\)
\(54\) 0 0
\(55\) −2.25351 + 3.90319i −0.303863 + 0.526306i
\(56\) −9.79216 −1.30853
\(57\) 0 0
\(58\) −8.01404 −1.05229
\(59\) 1.53163 2.65287i 0.199402 0.345374i −0.748933 0.662646i \(-0.769433\pi\)
0.948335 + 0.317272i \(0.102767\pi\)
\(60\) 0 0
\(61\) 0.436734 + 0.756445i 0.0559180 + 0.0968528i 0.892629 0.450791i \(-0.148858\pi\)
−0.836711 + 0.547644i \(0.815525\pi\)
\(62\) −2.61094 + 4.52228i −0.331589 + 0.574330i
\(63\) 0 0
\(64\) −12.9648 −1.62060
\(65\) −5.00000 −0.620174
\(66\) 0 0
\(67\) 4.22188 + 7.31250i 0.515784 + 0.893365i 0.999832 + 0.0183230i \(0.00583273\pi\)
−0.484048 + 0.875042i \(0.660834\pi\)
\(68\) −0.511021 −0.0619704
\(69\) 0 0
\(70\) 4.00702 + 6.94036i 0.478930 + 0.829532i
\(71\) −8.11796 + 14.0607i −0.963424 + 1.66870i −0.249634 + 0.968340i \(0.580310\pi\)
−0.713790 + 0.700359i \(0.753023\pi\)
\(72\) 0 0
\(73\) 3.57930 6.19954i 0.418926 0.725601i −0.576906 0.816811i \(-0.695740\pi\)
0.995832 + 0.0912097i \(0.0290733\pi\)
\(74\) −12.5281 + 21.6993i −1.45636 + 2.52249i
\(75\) 0 0
\(76\) 9.43273 + 10.4045i 1.08201 + 1.19347i
\(77\) 15.8062 1.80128
\(78\) 0 0
\(79\) 5.06327 8.76983i 0.569662 0.986683i −0.426937 0.904281i \(-0.640407\pi\)
0.996599 0.0824022i \(-0.0262592\pi\)
\(80\) 0.0316332 + 0.0547902i 0.00353669 + 0.00612574i
\(81\) 0 0
\(82\) −6.94375 12.0269i −0.766809 1.32815i
\(83\) −4.85543 −0.532952 −0.266476 0.963841i \(-0.585859\pi\)
−0.266476 + 0.963841i \(0.585859\pi\)
\(84\) 0 0
\(85\) 0.0793049 + 0.137360i 0.00860183 + 0.0148988i
\(86\) −3.82580 6.62647i −0.412546 0.714551i
\(87\) 0 0
\(88\) −12.5843 −1.34149
\(89\) −0.556248 0.963449i −0.0589621 0.102125i 0.835038 0.550193i \(-0.185446\pi\)
−0.894000 + 0.448067i \(0.852112\pi\)
\(90\) 0 0
\(91\) 8.76755 + 15.1858i 0.919089 + 1.59191i
\(92\) 1.86645 3.23278i 0.194591 0.337041i
\(93\) 0 0
\(94\) 7.00000 0.721995
\(95\) 1.33281 4.15013i 0.136744 0.425795i
\(96\) 0 0
\(97\) −0.809757 + 1.40254i −0.0822184 + 0.142406i −0.904203 0.427104i \(-0.859534\pi\)
0.821984 + 0.569510i \(0.192867\pi\)
\(98\) 6.05469 10.4870i 0.611616 1.05935i
\(99\) 0 0
\(100\) −1.61094 + 2.79023i −0.161094 + 0.279023i
\(101\) 6.15661 + 10.6636i 0.612605 + 1.06106i 0.990800 + 0.135337i \(0.0432118\pi\)
−0.378194 + 0.925726i \(0.623455\pi\)
\(102\) 0 0
\(103\) 10.6164 1.04606 0.523032 0.852313i \(-0.324801\pi\)
0.523032 + 0.852313i \(0.324801\pi\)
\(104\) −6.98040 12.0904i −0.684485 1.18556i
\(105\) 0 0
\(106\) −13.1234 −1.27466
\(107\) 2.17265 0.210038 0.105019 0.994470i \(-0.466510\pi\)
0.105019 + 0.994470i \(0.466510\pi\)
\(108\) 0 0
\(109\) −7.91012 + 13.7007i −0.757652 + 1.31229i 0.186393 + 0.982475i \(0.440320\pi\)
−0.944045 + 0.329816i \(0.893013\pi\)
\(110\) 5.14959 + 8.91935i 0.490994 + 0.850427i
\(111\) 0 0
\(112\) 0.110938 0.192150i 0.0104827 0.0181565i
\(113\) −9.83828 −0.925507 −0.462754 0.886487i \(-0.653139\pi\)
−0.462754 + 0.886487i \(0.653139\pi\)
\(114\) 0 0
\(115\) −1.15861 −0.108041
\(116\) −5.64959 + 9.78538i −0.524551 + 0.908549i
\(117\) 0 0
\(118\) −3.50000 6.06218i −0.322201 0.558069i
\(119\) 0.278124 0.481725i 0.0254956 0.0441596i
\(120\) 0 0
\(121\) 9.31322 0.846656
\(122\) 1.99600 0.180709
\(123\) 0 0
\(124\) 3.68122 + 6.37607i 0.330584 + 0.572588i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −7.85543 13.6060i −0.697056 1.20734i −0.969483 0.245160i \(-0.921159\pi\)
0.272426 0.962177i \(-0.412174\pi\)
\(128\) −9.08432 + 15.7345i −0.802948 + 1.39075i
\(129\) 0 0
\(130\) −5.71286 + 9.89496i −0.501051 + 0.867845i
\(131\) −5.76755 + 9.98968i −0.503913 + 0.872803i 0.496077 + 0.868279i \(0.334773\pi\)
−0.999990 + 0.00452412i \(0.998560\pi\)
\(132\) 0 0
\(133\) −14.9418 + 3.22932i −1.29561 + 0.280017i
\(134\) 19.2952 1.66685
\(135\) 0 0
\(136\) −0.221432 + 0.383532i −0.0189876 + 0.0328876i
\(137\) 0.0546904 + 0.0947266i 0.00467252 + 0.00809304i 0.868352 0.495948i \(-0.165179\pi\)
−0.863680 + 0.504041i \(0.831846\pi\)
\(138\) 0 0
\(139\) −0.721876 1.25033i −0.0612287 0.106051i 0.833786 0.552088i \(-0.186169\pi\)
−0.895015 + 0.446036i \(0.852835\pi\)
\(140\) 11.2992 0.954955
\(141\) 0 0
\(142\) 18.5507 + 32.1307i 1.55674 + 2.69635i
\(143\) 11.2675 + 19.5160i 0.942240 + 1.63201i
\(144\) 0 0
\(145\) 3.50702 0.291242
\(146\) −8.17922 14.1668i −0.676917 1.17245i
\(147\) 0 0
\(148\) 17.6636 + 30.5943i 1.45194 + 2.51484i
\(149\) 0.864447 1.49727i 0.0708183 0.122661i −0.828442 0.560075i \(-0.810772\pi\)
0.899260 + 0.437414i \(0.144106\pi\)
\(150\) 0 0
\(151\) −20.1406 −1.63902 −0.819508 0.573068i \(-0.805753\pi\)
−0.819508 + 0.573068i \(0.805753\pi\)
\(152\) 11.8961 2.57107i 0.964900 0.208541i
\(153\) 0 0
\(154\) 18.0597 31.2803i 1.45529 2.52064i
\(155\) 1.14257 1.97899i 0.0917735 0.158956i
\(156\) 0 0
\(157\) −1.88906 + 3.27195i −0.150764 + 0.261130i −0.931508 0.363720i \(-0.881507\pi\)
0.780745 + 0.624850i \(0.214840\pi\)
\(158\) −11.5703 20.0403i −0.920482 1.59432i
\(159\) 0 0
\(160\) 5.72889 0.452909
\(161\) 2.03163 + 3.51889i 0.160115 + 0.277328i
\(162\) 0 0
\(163\) −1.61640 −0.126606 −0.0633031 0.997994i \(-0.520163\pi\)
−0.0633031 + 0.997994i \(0.520163\pi\)
\(164\) −19.5803 −1.52897
\(165\) 0 0
\(166\) −5.54767 + 9.60885i −0.430583 + 0.745791i
\(167\) 3.24649 + 5.62309i 0.251221 + 0.435128i 0.963862 0.266401i \(-0.0858346\pi\)
−0.712641 + 0.701529i \(0.752501\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0.362446 0.0277983
\(171\) 0 0
\(172\) −10.7882 −0.822589
\(173\) 4.26053 7.37945i 0.323922 0.561049i −0.657372 0.753567i \(-0.728332\pi\)
0.981294 + 0.192517i \(0.0616651\pi\)
\(174\) 0 0
\(175\) −1.75351 3.03717i −0.132553 0.229588i
\(176\) 0.142571 0.246941i 0.0107467 0.0186139i
\(177\) 0 0
\(178\) −2.54221 −0.190547
\(179\) 10.2711 0.767698 0.383849 0.923396i \(-0.374598\pi\)
0.383849 + 0.923396i \(0.374598\pi\)
\(180\) 0 0
\(181\) −6.13355 10.6236i −0.455903 0.789648i 0.542836 0.839838i \(-0.317350\pi\)
−0.998740 + 0.0501908i \(0.984017\pi\)
\(182\) 40.0702 2.97020
\(183\) 0 0
\(184\) −1.61751 2.80161i −0.119245 0.206538i
\(185\) 5.48240 9.49580i 0.403074 0.698145i
\(186\) 0 0
\(187\) 0.357429 0.619085i 0.0261378 0.0452720i
\(188\) 4.93473 8.54721i 0.359902 0.623369i
\(189\) 0 0
\(190\) −6.69024 7.37945i −0.485361 0.535362i
\(191\) −5.71085 −0.413223 −0.206611 0.978423i \(-0.566244\pi\)
−0.206611 + 0.978423i \(0.566244\pi\)
\(192\) 0 0
\(193\) 5.07930 8.79761i 0.365616 0.633266i −0.623259 0.782016i \(-0.714192\pi\)
0.988875 + 0.148750i \(0.0475249\pi\)
\(194\) 1.85041 + 3.20500i 0.132852 + 0.230106i
\(195\) 0 0
\(196\) −8.53665 14.7859i −0.609761 1.05614i
\(197\) −16.2038 −1.15448 −0.577238 0.816576i \(-0.695869\pi\)
−0.577238 + 0.816576i \(0.695869\pi\)
\(198\) 0 0
\(199\) −0.167186 0.289574i −0.0118515 0.0205274i 0.860039 0.510229i \(-0.170439\pi\)
−0.871890 + 0.489701i \(0.837106\pi\)
\(200\) 1.39608 + 2.41808i 0.0987178 + 0.170984i
\(201\) 0 0
\(202\) 28.1375 1.97974
\(203\) −6.14959 10.6514i −0.431617 0.747582i
\(204\) 0 0
\(205\) 3.03865 + 5.26310i 0.212229 + 0.367591i
\(206\) 12.1300 21.0098i 0.845137 1.46382i
\(207\) 0 0
\(208\) 0.316332 0.0219336
\(209\) −19.2023 + 4.15013i −1.32825 + 0.287071i
\(210\) 0 0
\(211\) −1.01404 + 1.75636i −0.0698092 + 0.120913i −0.898817 0.438324i \(-0.855572\pi\)
0.829008 + 0.559237i \(0.188906\pi\)
\(212\) −9.25151 + 16.0241i −0.635396 + 1.10054i
\(213\) 0 0
\(214\) 2.48240 4.29965i 0.169694 0.293918i
\(215\) 1.67420 + 2.89981i 0.114180 + 0.197765i
\(216\) 0 0
\(217\) −8.01404 −0.544028
\(218\) 18.0757 + 31.3081i 1.22424 + 2.12045i
\(219\) 0 0
\(220\) 14.5211 0.979009
\(221\) 0.793049 0.0533463
\(222\) 0 0
\(223\) 9.61596 16.6553i 0.643932 1.11532i −0.340615 0.940203i \(-0.610635\pi\)
0.984547 0.175120i \(-0.0560314\pi\)
\(224\) −10.0457 17.3996i −0.671205 1.16256i
\(225\) 0 0
\(226\) −11.2409 + 19.4699i −0.747736 + 1.29512i
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −12.9788 −0.857666 −0.428833 0.903384i \(-0.641075\pi\)
−0.428833 + 0.903384i \(0.641075\pi\)
\(230\) −1.32379 + 2.29288i −0.0872884 + 0.151188i
\(231\) 0 0
\(232\) 4.89608 + 8.48026i 0.321443 + 0.556756i
\(233\) 13.5367 23.4462i 0.886815 1.53601i 0.0431968 0.999067i \(-0.486246\pi\)
0.843619 0.536943i \(-0.180421\pi\)
\(234\) 0 0
\(235\) −3.06327 −0.199825
\(236\) −9.86946 −0.642447
\(237\) 0 0
\(238\) −0.635553 1.10081i −0.0411968 0.0713549i
\(239\) −20.0602 −1.29758 −0.648792 0.760966i \(-0.724725\pi\)
−0.648792 + 0.760966i \(0.724725\pi\)
\(240\) 0 0
\(241\) 10.7922 + 18.6926i 0.695184 + 1.20409i 0.970119 + 0.242631i \(0.0780105\pi\)
−0.274934 + 0.961463i \(0.588656\pi\)
\(242\) 10.6410 18.4308i 0.684030 1.18478i
\(243\) 0 0
\(244\) 1.40710 2.43717i 0.0900805 0.156024i
\(245\) −2.64959 + 4.58922i −0.169276 + 0.293195i
\(246\) 0 0
\(247\) −14.6386 16.1466i −0.931430 1.02738i
\(248\) 6.38049 0.405161
\(249\) 0 0
\(250\) 1.14257 1.97899i 0.0722626 0.125162i
\(251\) −3.63400 6.29426i −0.229376 0.397290i 0.728248 0.685314i \(-0.240335\pi\)
−0.957623 + 0.288024i \(0.907002\pi\)
\(252\) 0 0
\(253\) 2.61094 + 4.52228i 0.164148 + 0.284313i
\(254\) −35.9015 −2.25266
\(255\) 0 0
\(256\) 7.79416 + 13.4999i 0.487135 + 0.843743i
\(257\) 7.53865 + 13.0573i 0.470248 + 0.814494i 0.999421 0.0340202i \(-0.0108311\pi\)
−0.529173 + 0.848514i \(0.677498\pi\)
\(258\) 0 0
\(259\) −38.4538 −2.38940
\(260\) 8.05469 + 13.9511i 0.499531 + 0.865213i
\(261\) 0 0
\(262\) 13.1797 + 22.8279i 0.814242 + 1.41031i
\(263\) 10.0773 17.4544i 0.621393 1.07628i −0.367833 0.929892i \(-0.619900\pi\)
0.989227 0.146393i \(-0.0467663\pi\)
\(264\) 0 0
\(265\) 5.74293 0.352786
\(266\) −10.6812 + 33.2593i −0.654908 + 2.03926i
\(267\) 0 0
\(268\) 13.6024 23.5600i 0.830897 1.43915i
\(269\) −3.86245 + 6.68995i −0.235497 + 0.407894i −0.959417 0.281991i \(-0.909005\pi\)
0.723920 + 0.689884i \(0.242339\pi\)
\(270\) 0 0
\(271\) 2.64257 4.57707i 0.160525 0.278037i −0.774532 0.632534i \(-0.782015\pi\)
0.935057 + 0.354497i \(0.115348\pi\)
\(272\) −0.00501733 0.00869027i −0.000304220 0.000526925i
\(273\) 0 0
\(274\) 0.249951 0.0151001
\(275\) −2.25351 3.90319i −0.135892 0.235371i
\(276\) 0 0
\(277\) 30.6264 1.84016 0.920082 0.391726i \(-0.128122\pi\)
0.920082 + 0.391726i \(0.128122\pi\)
\(278\) −3.29918 −0.197872
\(279\) 0 0
\(280\) 4.89608 8.48026i 0.292597 0.506792i
\(281\) 6.68122 + 11.5722i 0.398568 + 0.690341i 0.993550 0.113399i \(-0.0361738\pi\)
−0.594981 + 0.803740i \(0.702841\pi\)
\(282\) 0 0
\(283\) −2.04767 + 3.54667i −0.121721 + 0.210828i −0.920447 0.390868i \(-0.872175\pi\)
0.798725 + 0.601696i \(0.205508\pi\)
\(284\) 52.3101 3.10403
\(285\) 0 0
\(286\) 51.4959 3.04502
\(287\) 10.6566 18.4578i 0.629040 1.08953i
\(288\) 0 0
\(289\) 8.48742 + 14.7006i 0.499260 + 0.864744i
\(290\) 4.00702 6.94036i 0.235300 0.407552i
\(291\) 0 0
\(292\) −23.0642 −1.34973
\(293\) −12.1726 −0.711134 −0.355567 0.934651i \(-0.615712\pi\)
−0.355567 + 0.934651i \(0.615712\pi\)
\(294\) 0 0
\(295\) 1.53163 + 2.65287i 0.0891751 + 0.154456i
\(296\) 30.6155 1.77949
\(297\) 0 0
\(298\) −1.97539 3.42147i −0.114431 0.198200i
\(299\) −2.89652 + 5.01693i −0.167510 + 0.290136i
\(300\) 0 0
\(301\) 5.87147 10.1697i 0.338426 0.586170i
\(302\) −23.0120 + 39.8580i −1.32419 + 2.29357i
\(303\) 0 0
\(304\) −0.0843223 + 0.262564i −0.00483621 + 0.0150591i
\(305\) −0.873467 −0.0500146
\(306\) 0 0
\(307\) −12.2675 + 21.2480i −0.700146 + 1.21269i 0.268269 + 0.963344i \(0.413548\pi\)
−0.968415 + 0.249344i \(0.919785\pi\)
\(308\) −25.4628 44.1029i −1.45088 2.51299i
\(309\) 0 0
\(310\) −2.61094 4.52228i −0.148291 0.256848i
\(311\) 10.2038 0.578606 0.289303 0.957238i \(-0.406576\pi\)
0.289303 + 0.957238i \(0.406576\pi\)
\(312\) 0 0
\(313\) 15.9910 + 27.6972i 0.903864 + 1.56554i 0.822435 + 0.568859i \(0.192615\pi\)
0.0814282 + 0.996679i \(0.474052\pi\)
\(314\) 4.31678 + 7.47687i 0.243610 + 0.421944i
\(315\) 0 0
\(316\) −32.6264 −1.83538
\(317\) 1.11796 + 1.93636i 0.0627907 + 0.108757i 0.895712 0.444635i \(-0.146667\pi\)
−0.832921 + 0.553392i \(0.813333\pi\)
\(318\) 0 0
\(319\) −7.90310 13.6886i −0.442489 0.766413i
\(320\) 6.48240 11.2279i 0.362377 0.627656i
\(321\) 0 0
\(322\) 9.28514 0.517441
\(323\) −0.211397 + 0.658252i −0.0117625 + 0.0366261i
\(324\) 0 0
\(325\) 2.50000 4.33013i 0.138675 0.240192i
\(326\) −1.84685 + 3.19884i −0.102288 + 0.177167i
\(327\) 0 0
\(328\) −8.48441 + 14.6954i −0.468473 + 0.811419i
\(329\) 5.37147 + 9.30365i 0.296139 + 0.512927i
\(330\) 0 0
\(331\) −10.0913 −0.554670 −0.277335 0.960773i \(-0.589451\pi\)
−0.277335 + 0.960773i \(0.589451\pi\)
\(332\) 7.82179 + 13.5477i 0.429277 + 0.743529i
\(333\) 0 0
\(334\) 14.8374 0.811866
\(335\) −8.44375 −0.461331
\(336\) 0 0
\(337\) −2.80620 + 4.86048i −0.152863 + 0.264767i −0.932279 0.361740i \(-0.882183\pi\)
0.779416 + 0.626507i \(0.215516\pi\)
\(338\) 13.7109 + 23.7479i 0.745772 + 1.29172i
\(339\) 0 0
\(340\) 0.255511 0.442557i 0.0138570 0.0240010i
\(341\) −10.2992 −0.557732
\(342\) 0 0
\(343\) −5.96481 −0.322069
\(344\) −4.67465 + 8.09673i −0.252040 + 0.436546i
\(345\) 0 0
\(346\) −9.73591 16.8631i −0.523406 0.906566i
\(347\) 2.73747 4.74144i 0.146955 0.254534i −0.783146 0.621838i \(-0.786386\pi\)
0.930101 + 0.367305i \(0.119719\pi\)
\(348\) 0 0
\(349\) −18.8202 −1.00742 −0.503712 0.863872i \(-0.668033\pi\)
−0.503712 + 0.863872i \(0.668033\pi\)
\(350\) −8.01404 −0.428368
\(351\) 0 0
\(352\) −12.9101 22.3610i −0.688112 1.19184i
\(353\) 12.7008 0.675996 0.337998 0.941147i \(-0.390250\pi\)
0.337998 + 0.941147i \(0.390250\pi\)
\(354\) 0 0
\(355\) −8.11796 14.0607i −0.430856 0.746265i
\(356\) −1.79216 + 3.10411i −0.0949843 + 0.164518i
\(357\) 0 0
\(358\) 11.7355 20.3264i 0.620239 1.07429i
\(359\) −5.54021 + 9.59592i −0.292401 + 0.506453i −0.974377 0.224921i \(-0.927788\pi\)
0.681976 + 0.731375i \(0.261121\pi\)
\(360\) 0 0
\(361\) 17.3042 7.84632i 0.910747 0.412964i
\(362\) −28.0321 −1.47333
\(363\) 0 0
\(364\) 28.2479 48.9269i 1.48059 2.56447i
\(365\) 3.57930 + 6.19954i 0.187349 + 0.324499i
\(366\) 0 0
\(367\) 10.3202 + 17.8752i 0.538712 + 0.933076i 0.998974 + 0.0452932i \(0.0144222\pi\)
−0.460262 + 0.887783i \(0.652244\pi\)
\(368\) 0.0733010 0.00382108
\(369\) 0 0
\(370\) −12.5281 21.6993i −0.651304 1.12809i
\(371\) −10.0703 17.4422i −0.522823 0.905556i
\(372\) 0 0
\(373\) 4.55313 0.235752 0.117876 0.993028i \(-0.462391\pi\)
0.117876 + 0.993028i \(0.462391\pi\)
\(374\) −0.816776 1.41470i −0.0422345 0.0731522i
\(375\) 0 0
\(376\) −4.27657 7.40723i −0.220547 0.381999i
\(377\) 8.76755 15.1858i 0.451552 0.782110i
\(378\) 0 0
\(379\) −19.9187 −1.02315 −0.511577 0.859237i \(-0.670939\pi\)
−0.511577 + 0.859237i \(0.670939\pi\)
\(380\) −13.7269 + 2.96675i −0.704175 + 0.152191i
\(381\) 0 0
\(382\) −6.52506 + 11.3017i −0.333851 + 0.578247i
\(383\) −9.98742 + 17.2987i −0.510333 + 0.883923i 0.489595 + 0.871950i \(0.337145\pi\)
−0.999928 + 0.0119734i \(0.996189\pi\)
\(384\) 0 0
\(385\) −7.90310 + 13.6886i −0.402779 + 0.697634i
\(386\) −11.6069 20.1038i −0.590777 1.02326i
\(387\) 0 0
\(388\) 5.21787 0.264897
\(389\) 6.90110 + 11.9531i 0.349900 + 0.606044i 0.986231 0.165372i \(-0.0528824\pi\)
−0.636332 + 0.771416i \(0.719549\pi\)
\(390\) 0 0
\(391\) 0.183767 0.00929349
\(392\) −14.7962 −0.747319
\(393\) 0 0
\(394\) −18.5140 + 32.0673i −0.932724 + 1.61552i
\(395\) 5.06327 + 8.76983i 0.254761 + 0.441258i
\(396\) 0 0
\(397\) 8.27457 14.3320i 0.415289 0.719301i −0.580170 0.814495i \(-0.697014\pi\)
0.995459 + 0.0951945i \(0.0303473\pi\)
\(398\) −0.764087 −0.0383002
\(399\) 0 0
\(400\) −0.0632663 −0.00316332
\(401\) 4.26253 7.38292i 0.212861 0.368685i −0.739748 0.672884i \(-0.765055\pi\)
0.952609 + 0.304199i \(0.0983887\pi\)
\(402\) 0 0
\(403\) −5.71286 9.89496i −0.284578 0.492903i
\(404\) 19.8358 34.3567i 0.986869 1.70931i
\(405\) 0 0
\(406\) −28.1054 −1.39485
\(407\) −49.4186 −2.44959
\(408\) 0 0
\(409\) 5.78314 + 10.0167i 0.285958 + 0.495294i 0.972841 0.231474i \(-0.0743549\pi\)
−0.686883 + 0.726768i \(0.741022\pi\)
\(410\) 13.8875 0.685855
\(411\) 0 0
\(412\) −17.1024 29.6222i −0.842573 1.45938i
\(413\) 5.37147 9.30365i 0.264313 0.457803i
\(414\) 0 0
\(415\) 2.42771 4.20492i 0.119172 0.206412i
\(416\) 14.3222 24.8068i 0.702205 1.21626i
\(417\) 0 0
\(418\) −13.7269 + 42.7430i −0.671404 + 2.09063i
\(419\) 21.7149 1.06084 0.530420 0.847735i \(-0.322034\pi\)
0.530420 + 0.847735i \(0.322034\pi\)
\(420\) 0 0
\(421\) 3.46135 5.99523i 0.168696 0.292190i −0.769266 0.638929i \(-0.779378\pi\)
0.937962 + 0.346739i \(0.112711\pi\)
\(422\) 2.31722 + 4.01354i 0.112800 + 0.195376i
\(423\) 0 0
\(424\) 8.01760 + 13.8869i 0.389369 + 0.674407i
\(425\) −0.158610 −0.00769371
\(426\) 0 0
\(427\) 1.53163 + 2.65287i 0.0741209 + 0.128381i
\(428\) −3.50000 6.06218i −0.169179 0.293026i
\(429\) 0 0
\(430\) 7.65159 0.368992
\(431\) −13.9894 24.2304i −0.673847 1.16714i −0.976805 0.214133i \(-0.931307\pi\)
0.302958 0.953004i \(-0.402026\pi\)
\(432\) 0 0
\(433\) −3.12698 5.41608i −0.150273 0.260280i 0.781055 0.624462i \(-0.214682\pi\)
−0.931328 + 0.364182i \(0.881349\pi\)
\(434\) −9.15661 + 15.8597i −0.439531 + 0.761290i
\(435\) 0 0
\(436\) 50.9708 2.44106
\(437\) −3.39208 3.74152i −0.162265 0.178981i
\(438\) 0 0
\(439\) −15.5988 + 27.0179i −0.744490 + 1.28949i 0.205942 + 0.978564i \(0.433974\pi\)
−0.950433 + 0.310931i \(0.899359\pi\)
\(440\) 6.29216 10.8983i 0.299967 0.519558i
\(441\) 0 0
\(442\) 0.906115 1.56944i 0.0430995 0.0746505i
\(443\) −16.3519 28.3223i −0.776901 1.34563i −0.933720 0.358004i \(-0.883457\pi\)
0.156819 0.987627i \(-0.449876\pi\)
\(444\) 0 0
\(445\) 1.11250 0.0527373
\(446\) −21.9738 38.0598i −1.04049 1.80218i
\(447\) 0 0
\(448\) −45.4678 −2.14815
\(449\) −25.6304 −1.20958 −0.604788 0.796387i \(-0.706742\pi\)
−0.604788 + 0.796387i \(0.706742\pi\)
\(450\) 0 0
\(451\) 13.6953 23.7209i 0.644885 1.11697i
\(452\) 15.8489 + 27.4510i 0.745467 + 1.29119i
\(453\) 0 0
\(454\) −4.57028 + 7.91597i −0.214494 + 0.371515i
\(455\) −17.5351 −0.822058
\(456\) 0 0
\(457\) 33.1646 1.55138 0.775688 0.631116i \(-0.217403\pi\)
0.775688 + 0.631116i \(0.217403\pi\)
\(458\) −14.8293 + 25.6850i −0.692926 + 1.20018i
\(459\) 0 0
\(460\) 1.86645 + 3.23278i 0.0870236 + 0.150729i
\(461\) 1.08788 1.88426i 0.0506677 0.0877590i −0.839579 0.543237i \(-0.817198\pi\)
0.890247 + 0.455478i \(0.150532\pi\)
\(462\) 0 0
\(463\) −6.20072 −0.288172 −0.144086 0.989565i \(-0.546024\pi\)
−0.144086 + 0.989565i \(0.546024\pi\)
\(464\) −0.221876 −0.0103003
\(465\) 0 0
\(466\) −30.9332 53.5778i −1.43295 2.48195i
\(467\) 17.1546 0.793821 0.396910 0.917857i \(-0.370082\pi\)
0.396910 + 0.917857i \(0.370082\pi\)
\(468\) 0 0
\(469\) 14.8062 + 25.6451i 0.683687 + 1.18418i
\(470\) −3.50000 + 6.06218i −0.161443 + 0.279627i
\(471\) 0 0
\(472\) −4.27657 + 7.40723i −0.196845 + 0.340945i
\(473\) 7.54567 13.0695i 0.346950 0.600936i
\(474\) 0 0
\(475\) 2.92771 + 3.22932i 0.134333 + 0.148171i
\(476\) −1.79216 −0.0821436
\(477\) 0 0
\(478\) −22.9202 + 39.6989i −1.04834 + 1.81578i
\(479\) −17.8891 30.9848i −0.817372 1.41573i −0.907612 0.419810i \(-0.862097\pi\)
0.0902399 0.995920i \(-0.471237\pi\)
\(480\) 0 0
\(481\) −27.4120 47.4790i −1.24988 2.16486i
\(482\) 49.3233 2.24661
\(483\) 0 0
\(484\) −15.0030 25.9860i −0.681955 1.18118i
\(485\) −0.809757 1.40254i −0.0367692 0.0636861i
\(486\) 0 0
\(487\) −23.7149 −1.07462 −0.537311 0.843384i \(-0.680560\pi\)
−0.537311 + 0.843384i \(0.680560\pi\)
\(488\) −1.21943 2.11212i −0.0552010 0.0956110i
\(489\) 0 0
\(490\) 6.05469 + 10.4870i 0.273523 + 0.473756i
\(491\) −19.5933 + 33.9367i −0.884235 + 1.53154i −0.0376474 + 0.999291i \(0.511986\pi\)
−0.846588 + 0.532249i \(0.821347\pi\)
\(492\) 0 0
\(493\) −0.556248 −0.0250521
\(494\) −48.6796 + 10.5210i −2.19020 + 0.473361i
\(495\) 0 0
\(496\) −0.0722863 + 0.125204i −0.00324575 + 0.00562180i
\(497\) −28.4698 + 49.3112i −1.27705 + 2.21191i
\(498\) 0 0
\(499\) 4.68824 8.12027i 0.209875 0.363513i −0.741800 0.670621i \(-0.766028\pi\)
0.951675 + 0.307107i \(0.0993611\pi\)
\(500\) −1.61094 2.79023i −0.0720433 0.124783i
\(501\) 0 0
\(502\) −16.6084 −0.741269
\(503\) 6.74649 + 11.6853i 0.300811 + 0.521020i 0.976320 0.216332i \(-0.0694093\pi\)
−0.675509 + 0.737352i \(0.736076\pi\)
\(504\) 0 0
\(505\) −12.3132 −0.547931
\(506\) 11.9327 0.530475
\(507\) 0 0
\(508\) −25.3092 + 43.8368i −1.12291 + 1.94495i
\(509\) 12.8534 + 22.2628i 0.569718 + 0.986781i 0.996594 + 0.0824703i \(0.0262809\pi\)
−0.426875 + 0.904310i \(0.640386\pi\)
\(510\) 0 0
\(511\) 12.5527 21.7419i 0.555298 0.961805i
\(512\) −0.715746 −0.0316318
\(513\) 0 0
\(514\) 34.4538 1.51969
\(515\) −5.30820 + 9.19407i −0.233907 + 0.405139i
\(516\) 0 0
\(517\) 6.90310 + 11.9565i 0.303598 + 0.525847i
\(518\) −43.9362 + 76.0997i −1.93045 + 3.34363i
\(519\) 0 0
\(520\) 13.9608 0.612222
\(521\) 37.7358 1.65324 0.826618 0.562763i \(-0.190262\pi\)
0.826618 + 0.562763i \(0.190262\pi\)
\(522\) 0 0
\(523\) −19.2003 33.2559i −0.839570 1.45418i −0.890255 0.455462i \(-0.849474\pi\)
0.0506855 0.998715i \(-0.483859\pi\)
\(524\) 37.1646 1.62354
\(525\) 0 0
\(526\) −23.0281 39.8858i −1.00407 1.73910i
\(527\) −0.181223 + 0.313888i −0.00789420 + 0.0136732i
\(528\) 0 0
\(529\) 10.8288 18.7561i 0.470818 0.815481i
\(530\) 6.56171 11.3652i 0.285022 0.493673i
\(531\) 0 0
\(532\) 33.0808 + 36.4886i 1.43423 + 1.58198i
\(533\) 30.3865 1.31619
\(534\) 0 0
\(535\) −1.08632 + 1.88157i −0.0469659 + 0.0813473i
\(536\) −11.7882 20.4177i −0.509171 0.881910i
\(537\) 0 0
\(538\) 8.82624 + 15.2875i 0.380526 + 0.659091i
\(539\) 23.8835 1.02874
\(540\) 0 0
\(541\) 6.40310 + 11.0905i 0.275291 + 0.476818i 0.970208 0.242272i \(-0.0778926\pi\)
−0.694918 + 0.719089i \(0.744559\pi\)
\(542\) −6.03865 10.4593i −0.259382 0.449263i
\(543\) 0 0
\(544\) −0.908659 −0.0389584
\(545\) −7.91012 13.7007i −0.338832 0.586875i
\(546\) 0 0
\(547\) 9.12853 + 15.8111i 0.390308 + 0.676033i 0.992490 0.122326i \(-0.0390352\pi\)
−0.602182 + 0.798359i \(0.705702\pi\)
\(548\) 0.176206 0.305197i 0.00752714 0.0130374i
\(549\) 0 0
\(550\) −10.2992 −0.439159
\(551\) 10.2675 + 11.3253i 0.437412 + 0.482473i
\(552\) 0 0
\(553\) 17.7570 30.7560i 0.755103 1.30788i
\(554\) 34.9929 60.6095i 1.48671 2.57505i
\(555\) 0 0
\(556\) −2.32580 + 4.02840i −0.0986357 + 0.170842i
\(557\) 7.45233 + 12.9078i 0.315765 + 0.546922i 0.979600 0.200958i \(-0.0644054\pi\)
−0.663835 + 0.747879i \(0.731072\pi\)
\(558\) 0 0
\(559\) 16.7420 0.708113
\(560\) 0.110938 + 0.192150i 0.00468799 + 0.00811984i
\(561\) 0 0
\(562\) 30.5351 1.28805
\(563\) −45.7810 −1.92944 −0.964720 0.263276i \(-0.915197\pi\)
−0.964720 + 0.263276i \(0.915197\pi\)
\(564\) 0 0
\(565\) 4.91914 8.52020i 0.206950 0.358447i
\(566\) 4.67922 + 8.10465i 0.196682 + 0.340664i
\(567\) 0 0
\(568\) 22.6666 39.2598i 0.951071 1.64730i
\(569\) −0.379598 −0.0159136 −0.00795679 0.999968i \(-0.502533\pi\)
−0.00795679 + 0.999968i \(0.502533\pi\)
\(570\) 0 0
\(571\) −15.8514 −0.663361 −0.331681 0.943392i \(-0.607616\pi\)
−0.331681 + 0.943392i \(0.607616\pi\)
\(572\) 36.3026 62.8780i 1.51789 2.62906i
\(573\) 0 0
\(574\) −24.3519 42.1787i −1.01643 1.76050i
\(575\) 0.579305 1.00339i 0.0241587 0.0418441i
\(576\) 0 0
\(577\) −19.2350 −0.800765 −0.400382 0.916348i \(-0.631123\pi\)
−0.400382 + 0.916348i \(0.631123\pi\)
\(578\) 38.7899 1.61345
\(579\) 0 0
\(580\) −5.64959 9.78538i −0.234586 0.406316i
\(581\) −17.0281 −0.706444
\(582\) 0 0
\(583\) −12.9418 22.4158i −0.535993 0.928366i
\(584\) −9.99400 + 17.3101i −0.413554 + 0.716297i
\(585\) 0 0
\(586\) −13.9081 + 24.0896i −0.574539 + 0.995131i
\(587\) 20.4242 35.3757i 0.842995 1.46011i −0.0443559 0.999016i \(-0.514124\pi\)
0.887351 0.461095i \(-0.152543\pi\)
\(588\) 0 0
\(589\) 9.73591 2.10419i 0.401161 0.0867018i
\(590\) 7.00000 0.288185
\(591\) 0 0
\(592\) −0.346852 + 0.600764i −0.0142555 + 0.0246913i
\(593\) −7.12342 12.3381i −0.292524 0.506666i 0.681882 0.731462i \(-0.261162\pi\)
−0.974406 + 0.224796i \(0.927828\pi\)
\(594\) 0 0
\(595\) 0.278124 + 0.481725i 0.0114020 + 0.0197488i
\(596\) −5.57028 −0.228168
\(597\) 0 0
\(598\) 6.61897 + 11.4644i 0.270670 + 0.468814i
\(599\) −7.92571 13.7277i −0.323836 0.560900i 0.657440 0.753507i \(-0.271639\pi\)
−0.981276 + 0.192607i \(0.938306\pi\)
\(600\) 0 0
\(601\) 16.4718 0.671900 0.335950 0.941880i \(-0.390943\pi\)
0.335950 + 0.941880i \(0.390943\pi\)
\(602\) −13.4171 23.2392i −0.546842 0.947158i
\(603\) 0 0
\(604\) 32.4452 + 56.1968i 1.32018 + 2.28661i
\(605\) −4.65661 + 8.06548i −0.189318 + 0.327908i
\(606\) 0 0
\(607\) −10.3914 −0.421774 −0.210887 0.977510i \(-0.567635\pi\)
−0.210887 + 0.977510i \(0.567635\pi\)
\(608\) 16.7726 + 18.5004i 0.680217 + 0.750291i
\(609\) 0 0
\(610\) −0.997999 + 1.72858i −0.0404078 + 0.0699883i
\(611\) −7.65817 + 13.2643i −0.309816 + 0.536617i
\(612\) 0 0
\(613\) 10.8925 18.8664i 0.439945 0.762007i −0.557740 0.830016i \(-0.688331\pi\)
0.997685 + 0.0680090i \(0.0216647\pi\)
\(614\) 28.0331 + 48.5547i 1.13132 + 1.95951i
\(615\) 0 0
\(616\) −44.1335 −1.77819
\(617\) −21.3855 37.0408i −0.860948 1.49121i −0.871015 0.491256i \(-0.836538\pi\)
0.0100671 0.999949i \(-0.496795\pi\)
\(618\) 0 0
\(619\) 28.7882 1.15709 0.578547 0.815649i \(-0.303620\pi\)
0.578547 + 0.815649i \(0.303620\pi\)
\(620\) −7.36245 −0.295683
\(621\) 0 0
\(622\) 11.6586 20.1933i 0.467468 0.809678i
\(623\) −1.95077 3.37883i −0.0781560 0.135370i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 73.0833 2.92100
\(627\) 0 0
\(628\) 12.1726 0.485742
\(629\) −0.869563 + 1.50613i −0.0346718 + 0.0600532i
\(630\) 0 0
\(631\) 9.69370 + 16.7900i 0.385900 + 0.668399i 0.991894 0.127071i \(-0.0405576\pi\)
−0.605993 + 0.795470i \(0.707224\pi\)
\(632\) −14.1375 + 24.4868i −0.562358 + 0.974032i
\(633\) 0 0
\(634\) 5.10938 0.202919
\(635\) 15.7109 0.623466
\(636\) 0 0
\(637\) 13.2479 + 22.9461i 0.524903 + 0.909158i
\(638\) −36.1194 −1.42998
\(639\) 0 0
\(640\) −9.08432 15.7345i −0.359089 0.621961i
\(641\) 20.3433 35.2356i 0.803512 1.39172i −0.113779 0.993506i \(-0.536296\pi\)
0.917291 0.398217i \(-0.130371\pi\)
\(642\) 0 0
\(643\) 17.0527 29.5361i 0.672492 1.16479i −0.304703 0.952448i \(-0.598557\pi\)
0.977195 0.212344i \(-0.0681096\pi\)
\(644\) 6.54567 11.3374i 0.257936 0.446757i
\(645\) 0 0
\(646\) 1.06114 + 1.17045i 0.0417499 + 0.0460509i
\(647\) 48.0029 1.88719 0.943595 0.331103i \(-0.107421\pi\)
0.943595 + 0.331103i \(0.107421\pi\)
\(648\) 0 0
\(649\) 6.90310 11.9565i 0.270970 0.469334i
\(650\) −5.71286 9.89496i −0.224077 0.388112i
\(651\) 0 0
\(652\) 2.60392 + 4.51012i 0.101977 + 0.176630i
\(653\) −3.90866 −0.152958 −0.0764788 0.997071i \(-0.524368\pi\)
−0.0764788 + 0.997071i \(0.524368\pi\)
\(654\) 0 0
\(655\) −5.76755 9.98968i −0.225357 0.390329i
\(656\) −0.192244 0.332977i −0.00750588 0.0130006i
\(657\) 0 0
\(658\) 24.5491 0.957025
\(659\) 6.54411 + 11.3347i 0.254922 + 0.441539i 0.964874 0.262711i \(-0.0846167\pi\)
−0.709952 + 0.704250i \(0.751283\pi\)
\(660\) 0 0
\(661\) 11.9714 + 20.7350i 0.465633 + 0.806500i 0.999230 0.0392391i \(-0.0124934\pi\)
−0.533597 + 0.845739i \(0.679160\pi\)
\(662\) −11.5301 + 19.9707i −0.448129 + 0.776182i
\(663\) 0 0
\(664\) 13.5571 0.526119
\(665\) 4.67420 14.5546i 0.181258 0.564403i
\(666\) 0 0
\(667\) 2.03163 3.51889i 0.0786652 0.136252i
\(668\) 10.4598 18.1169i 0.404701 0.700963i
\(669\) 0 0
\(670\) −9.64759 + 16.7101i −0.372719 + 0.645568i
\(671\) 1.96837 + 3.40931i 0.0759880 + 0.131615i
\(672\) 0 0
\(673\) −11.3304 −0.436754 −0.218377 0.975865i \(-0.570076\pi\)
−0.218377 + 0.975865i \(0.570076\pi\)
\(674\) 6.41256 + 11.1069i 0.247003 + 0.427821i
\(675\) 0 0
\(676\) 38.6625 1.48702
\(677\) −8.90466 −0.342234 −0.171117 0.985251i \(-0.554738\pi\)
−0.171117 + 0.985251i \(0.554738\pi\)
\(678\) 0 0
\(679\) −2.83983 + 4.91873i −0.108983 + 0.188764i
\(680\) −0.221432 0.383532i −0.00849153 0.0147078i
\(681\) 0 0
\(682\) −11.7675 + 20.3820i −0.450603 + 0.780467i
\(683\) 26.6977 1.02156 0.510780 0.859712i \(-0.329357\pi\)
0.510780 + 0.859712i \(0.329357\pi\)
\(684\) 0 0
\(685\) −0.109381 −0.00417923
\(686\) −6.81522 + 11.8043i −0.260206 + 0.450690i
\(687\) 0 0
\(688\) −0.105921 0.183460i −0.00403819 0.00699435i
\(689\) 14.3573 24.8676i 0.546971 0.947381i
\(690\) 0 0
\(691\) 35.9708 1.36840 0.684198 0.729297i \(-0.260153\pi\)
0.684198 + 0.729297i \(0.260153\pi\)
\(692\) −27.4538 −1.04364
\(693\) 0 0
\(694\) −6.25551 10.8349i −0.237456 0.411286i
\(695\) 1.44375 0.0547646
\(696\) 0 0
\(697\) −0.481960 0.834779i −0.0182555 0.0316195i
\(698\) −21.5035 + 37.2451i −0.813918 + 1.40975i
\(699\) 0 0
\(700\) −5.64959 + 9.78538i −0.213534 + 0.369852i
\(701\) 1.22543 2.12252i 0.0462840 0.0801663i −0.841955 0.539547i \(-0.818595\pi\)
0.888239 + 0.459381i \(0.151929\pi\)
\(702\) 0 0
\(703\) 46.7159 10.0966i 1.76192 0.380799i
\(704\) −58.4326 −2.20226
\(705\) 0 0
\(706\) 14.5116 25.1348i 0.546151 0.945961i
\(707\) 21.5913 + 37.3973i 0.812026 + 1.40647i
\(708\) 0 0
\(709\) 25.1440 + 43.5507i 0.944304 + 1.63558i 0.757139 + 0.653254i \(0.226597\pi\)
0.187165 + 0.982329i \(0.440070\pi\)
\(710\) −37.1014 −1.39239
\(711\) 0 0
\(712\) 1.55313 + 2.69011i 0.0582061 + 0.100816i
\(713\) −1.32379 2.29288i −0.0495765 0.0858690i
\(714\) 0 0
\(715\) −22.5351 −0.842765
\(716\) −16.5461 28.6587i −0.618357 1.07103i
\(717\) 0 0
\(718\) 12.6602 + 21.9281i 0.472473 + 0.818348i
\(719\) −24.0491 + 41.6543i −0.896881 + 1.55344i −0.0654223 + 0.997858i \(0.520839\pi\)
−0.831459 + 0.555586i \(0.812494\pi\)
\(720\) 0 0
\(721\) 37.2319 1.38659
\(722\) 4.24347 43.2098i 0.157926 1.60810i
\(723\) 0 0
\(724\) −19.7615 + 34.2280i −0.734432 + 1.27207i
\(725\) −1.75351 + 3.03717i −0.0651237 + 0.112798i
\(726\) 0 0
\(727\) 8.33983 14.4450i 0.309307 0.535736i −0.668904 0.743349i \(-0.733236\pi\)
0.978211 + 0.207613i \(0.0665695\pi\)
\(728\) −24.4804 42.4013i −0.907304 1.57150i
\(729\) 0 0
\(730\) 16.3584 0.605453
\(731\) −0.265545 0.459938i −0.00982155 0.0170114i
\(732\) 0 0
\(733\) −4.13365 −0.152680 −0.0763399 0.997082i \(-0.524323\pi\)
−0.0763399 + 0.997082i \(0.524323\pi\)
\(734\) 47.1664 1.74094
\(735\) 0 0
\(736\) 3.31878 5.74829i 0.122332 0.211885i
\(737\) 19.0281 + 32.9576i 0.700908 + 1.21401i
\(738\) 0 0
\(739\) −23.4870 + 40.6806i −0.863982 + 1.49646i 0.00407159 + 0.999992i \(0.498704\pi\)
−0.868054 + 0.496470i \(0.834629\pi\)
\(740\) −35.3273 −1.29866
\(741\) 0 0
\(742\) −46.0241 −1.68960
\(743\) 20.6069 35.6923i 0.755995 1.30942i −0.188883 0.982000i \(-0.560487\pi\)
0.944878 0.327422i \(-0.106180\pi\)
\(744\) 0 0
\(745\) 0.864447 + 1.49727i 0.0316709 + 0.0548556i
\(746\) 5.20228 9.01061i 0.190469 0.329902i
\(747\) 0 0
\(748\) −2.30318 −0.0842127
\(749\) 7.61951 0.278411
\(750\) 0 0
\(751\) −2.98942 5.17783i −0.109086 0.188942i 0.806314 0.591487i \(-0.201459\pi\)
−0.915400 + 0.402545i \(0.868126\pi\)
\(752\) 0.193802 0.00706722
\(753\) 0 0
\(754\) −20.0351 34.7018i −0.729635 1.26376i
\(755\) 10.0703 17.4422i 0.366495 0.634788i
\(756\) 0 0
\(757\) −18.1968 + 31.5178i −0.661375 + 1.14553i 0.318880 + 0.947795i \(0.396693\pi\)
−0.980255 + 0.197739i \(0.936640\pi\)
\(758\) −22.7585 + 39.4189i −0.826627 + 1.43176i
\(759\) 0 0
\(760\) −3.72143 + 11.5878i −0.134991 + 0.420335i
\(761\) 2.71397 0.0983813 0.0491907 0.998789i \(-0.484336\pi\)
0.0491907 + 0.998789i \(0.484336\pi\)
\(762\) 0 0
\(763\) −27.7409 + 48.0487i −1.00429 + 1.73948i
\(764\) 9.19983 + 15.9346i 0.332838 + 0.576493i
\(765\) 0 0
\(766\) 22.8227 + 39.5300i 0.824617 + 1.42828i
\(767\) 15.3163 0.553041
\(768\) 0 0
\(769\) −19.8995 34.4670i −0.717596 1.24291i −0.961950 0.273226i \(-0.911909\pi\)
0.244354 0.969686i \(-0.421424\pi\)
\(770\) 18.0597 + 31.2803i 0.650827 + 1.12726i
\(771\) 0 0
\(772\) −32.7298 −1.17797
\(773\) 22.4874 + 38.9494i 0.808816 + 1.40091i 0.913684 + 0.406425i \(0.133225\pi\)
−0.104868 + 0.994486i \(0.533442\pi\)
\(774\) 0 0
\(775\) 1.14257 + 1.97899i 0.0410424 + 0.0710875i
\(776\) 2.26097 3.91612i 0.0811642 0.140580i
\(777\) 0 0
\(778\) 31.5400 1.13076
\(779\) −8.09992 + 25.2216i −0.290210 + 0.903658i
\(780\) 0 0
\(781\) −36.5878 + 63.3719i −1.30921 + 2.26762i
\(782\) 0.209967 0.363673i 0.00750840 0.0130049i
\(783\) 0