Properties

Label 855.2.k.g.406.1
Level $855$
Weight $2$
Character 855.406
Analytic conductor $6.827$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 406.1
Root \(-1.25351 - 2.17114i\) of defining polynomial
Character \(\chi\) \(=\) 855.406
Dual form 855.2.k.g.676.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25351 - 2.17114i) q^{2} +(-2.14257 + 3.71104i) q^{4} +(-0.500000 - 0.866025i) q^{5} -0.221876 q^{7} +5.72889 q^{8} +O(q^{10})\) \(q+(-1.25351 - 2.17114i) q^{2} +(-2.14257 + 3.71104i) q^{4} +(-0.500000 - 0.866025i) q^{5} -0.221876 q^{7} +5.72889 q^{8} +(-1.25351 + 2.17114i) q^{10} +0.778124 q^{11} +(2.50000 - 4.33013i) q^{13} +(0.278124 + 0.481725i) q^{14} +(-2.89608 - 5.01616i) q^{16} +(3.53865 + 6.12912i) q^{17} +(1.33281 + 4.15013i) q^{19} +4.28514 q^{20} +(-0.975385 - 1.68942i) q^{22} +(4.03865 - 6.99515i) q^{23} +(-0.500000 + 0.866025i) q^{25} -12.5351 q^{26} +(0.475385 - 0.823392i) q^{28} +(0.110938 - 0.192150i) q^{29} +2.50702 q^{31} +(-1.53163 + 2.65287i) q^{32} +(8.87147 - 15.3658i) q^{34} +(0.110938 + 0.192150i) q^{35} -1.90466 q^{37} +(7.33983 - 8.09596i) q^{38} +(-2.86445 - 4.96137i) q^{40} +(-3.61796 - 6.26648i) q^{41} +(-3.64959 - 6.32128i) q^{43} +(-1.66719 + 2.88765i) q^{44} -20.2500 q^{46} +(-1.39608 + 2.41808i) q^{47} -6.95077 q^{49} +2.50702 q^{50} +(10.7129 + 18.5552i) q^{52} +(2.19024 - 3.79361i) q^{53} +(-0.389062 - 0.673875i) q^{55} -1.27111 q^{56} -0.556248 q^{58} +(-1.39608 - 2.41808i) q^{59} +(6.29216 - 10.8983i) q^{61} +(-3.14257 - 5.44309i) q^{62} -3.90466 q^{64} -5.00000 q^{65} +(5.28514 - 9.15414i) q^{67} -30.3273 q^{68} +(0.278124 - 0.481725i) q^{70} +(-4.92070 - 8.52289i) q^{71} +(7.03865 + 12.1913i) q^{73} +(2.38750 + 4.13528i) q^{74} +(-18.2570 - 3.94583i) q^{76} -0.172647 q^{77} +(-0.792161 - 1.37206i) q^{79} +(-2.89608 + 5.01616i) q^{80} +(-9.07028 + 15.7102i) q^{82} +9.52106 q^{83} +(3.53865 - 6.12912i) q^{85} +(-9.14959 + 15.8476i) q^{86} +4.45779 q^{88} +(1.57028 - 2.71981i) q^{89} +(-0.554690 + 0.960752i) q^{91} +(17.3062 + 29.9752i) q^{92} +7.00000 q^{94} +(2.92771 - 3.22932i) q^{95} +(3.18122 + 5.51004i) q^{97} +(8.71286 + 15.0911i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - 7 q^{4} - 3 q^{5} + 4 q^{7} + 12 q^{8} + q^{10} + 10 q^{11} + 15 q^{13} + 7 q^{14} - 3 q^{16} + q^{17} + 14 q^{20} + 8 q^{22} + 4 q^{23} - 3 q^{25} + 10 q^{26} - 11 q^{28} - 2 q^{29} - 2 q^{31} - 6 q^{32} + 25 q^{34} - 2 q^{35} - 4 q^{37} + 19 q^{38} - 6 q^{40} - 2 q^{41} + q^{43} - 18 q^{44} - 48 q^{46} + 6 q^{47} - 14 q^{49} - 2 q^{50} + 35 q^{52} + 11 q^{53} - 5 q^{55} - 30 q^{56} - 14 q^{58} + 6 q^{59} + 9 q^{61} - 13 q^{62} - 16 q^{64} - 30 q^{65} + 20 q^{67} - 68 q^{68} + 7 q^{70} - 29 q^{71} + 22 q^{73} - 7 q^{74} - 19 q^{76} + 32 q^{77} + 24 q^{79} - 3 q^{80} - 31 q^{82} + 6 q^{83} + q^{85} - 32 q^{86} - 18 q^{88} - 14 q^{89} + 10 q^{91} + 41 q^{92} + 42 q^{94} - 7 q^{97} + 23 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25351 2.17114i −0.886365 1.53523i −0.844141 0.536121i \(-0.819889\pi\)
−0.0422238 0.999108i \(-0.513444\pi\)
\(3\) 0 0
\(4\) −2.14257 + 3.71104i −1.07129 + 1.85552i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −0.221876 −0.0838613 −0.0419307 0.999121i \(-0.513351\pi\)
−0.0419307 + 0.999121i \(0.513351\pi\)
\(8\) 5.72889 2.02547
\(9\) 0 0
\(10\) −1.25351 + 2.17114i −0.396394 + 0.686575i
\(11\) 0.778124 0.234613 0.117307 0.993096i \(-0.462574\pi\)
0.117307 + 0.993096i \(0.462574\pi\)
\(12\) 0 0
\(13\) 2.50000 4.33013i 0.693375 1.20096i −0.277350 0.960769i \(-0.589456\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 0.278124 + 0.481725i 0.0743317 + 0.128746i
\(15\) 0 0
\(16\) −2.89608 5.01616i −0.724020 1.25404i
\(17\) 3.53865 + 6.12912i 0.858249 + 1.48653i 0.873598 + 0.486649i \(0.161781\pi\)
−0.0153485 + 0.999882i \(0.504886\pi\)
\(18\) 0 0
\(19\) 1.33281 + 4.15013i 0.305769 + 0.952106i
\(20\) 4.28514 0.958187
\(21\) 0 0
\(22\) −0.975385 1.68942i −0.207953 0.360185i
\(23\) 4.03865 6.99515i 0.842117 1.45859i −0.0459843 0.998942i \(-0.514642\pi\)
0.888101 0.459647i \(-0.152024\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −12.5351 −2.45833
\(27\) 0 0
\(28\) 0.475385 0.823392i 0.0898394 0.155606i
\(29\) 0.110938 0.192150i 0.0206007 0.0356814i −0.855541 0.517735i \(-0.826775\pi\)
0.876142 + 0.482053i \(0.160109\pi\)
\(30\) 0 0
\(31\) 2.50702 0.450274 0.225137 0.974327i \(-0.427717\pi\)
0.225137 + 0.974327i \(0.427717\pi\)
\(32\) −1.53163 + 2.65287i −0.270757 + 0.468965i
\(33\) 0 0
\(34\) 8.87147 15.3658i 1.52144 2.63522i
\(35\) 0.110938 + 0.192150i 0.0187520 + 0.0324793i
\(36\) 0 0
\(37\) −1.90466 −0.313124 −0.156562 0.987668i \(-0.550041\pi\)
−0.156562 + 0.987668i \(0.550041\pi\)
\(38\) 7.33983 8.09596i 1.19068 1.31334i
\(39\) 0 0
\(40\) −2.86445 4.96137i −0.452909 0.784461i
\(41\) −3.61796 6.26648i −0.565030 0.978661i −0.997047 0.0767950i \(-0.975531\pi\)
0.432017 0.901865i \(-0.357802\pi\)
\(42\) 0 0
\(43\) −3.64959 6.32128i −0.556557 0.963985i −0.997781 0.0665881i \(-0.978789\pi\)
0.441223 0.897397i \(-0.354545\pi\)
\(44\) −1.66719 + 2.88765i −0.251338 + 0.435330i
\(45\) 0 0
\(46\) −20.2500 −2.98569
\(47\) −1.39608 + 2.41808i −0.203639 + 0.352714i −0.949698 0.313166i \(-0.898610\pi\)
0.746059 + 0.665880i \(0.231944\pi\)
\(48\) 0 0
\(49\) −6.95077 −0.992967
\(50\) 2.50702 0.354546
\(51\) 0 0
\(52\) 10.7129 + 18.5552i 1.48561 + 2.57314i
\(53\) 2.19024 3.79361i 0.300853 0.521093i −0.675476 0.737382i \(-0.736062\pi\)
0.976329 + 0.216289i \(0.0693953\pi\)
\(54\) 0 0
\(55\) −0.389062 0.673875i −0.0524611 0.0908653i
\(56\) −1.27111 −0.169859
\(57\) 0 0
\(58\) −0.556248 −0.0730389
\(59\) −1.39608 2.41808i −0.181754 0.314808i 0.760724 0.649076i \(-0.224844\pi\)
−0.942478 + 0.334268i \(0.891511\pi\)
\(60\) 0 0
\(61\) 6.29216 10.8983i 0.805629 1.39539i −0.110237 0.993905i \(-0.535161\pi\)
0.915866 0.401484i \(-0.131506\pi\)
\(62\) −3.14257 5.44309i −0.399107 0.691274i
\(63\) 0 0
\(64\) −3.90466 −0.488082
\(65\) −5.00000 −0.620174
\(66\) 0 0
\(67\) 5.28514 9.15414i 0.645683 1.11836i −0.338460 0.940981i \(-0.609906\pi\)
0.984143 0.177375i \(-0.0567605\pi\)
\(68\) −30.3273 −3.67772
\(69\) 0 0
\(70\) 0.278124 0.481725i 0.0332422 0.0575771i
\(71\) −4.92070 8.52289i −0.583979 1.01148i −0.995002 0.0998563i \(-0.968162\pi\)
0.411023 0.911625i \(-0.365172\pi\)
\(72\) 0 0
\(73\) 7.03865 + 12.1913i 0.823812 + 1.42688i 0.902824 + 0.430010i \(0.141490\pi\)
−0.0790121 + 0.996874i \(0.525177\pi\)
\(74\) 2.38750 + 4.13528i 0.277542 + 0.480716i
\(75\) 0 0
\(76\) −18.2570 3.94583i −2.09422 0.452617i
\(77\) −0.172647 −0.0196750
\(78\) 0 0
\(79\) −0.792161 1.37206i −0.0891251 0.154369i 0.818016 0.575195i \(-0.195074\pi\)
−0.907142 + 0.420826i \(0.861740\pi\)
\(80\) −2.89608 + 5.01616i −0.323792 + 0.560824i
\(81\) 0 0
\(82\) −9.07028 + 15.7102i −1.00165 + 1.73490i
\(83\) 9.52106 1.04507 0.522536 0.852617i \(-0.324986\pi\)
0.522536 + 0.852617i \(0.324986\pi\)
\(84\) 0 0
\(85\) 3.53865 6.12912i 0.383821 0.664797i
\(86\) −9.14959 + 15.8476i −0.986626 + 1.70889i
\(87\) 0 0
\(88\) 4.45779 0.475202
\(89\) 1.57028 2.71981i 0.166450 0.288300i −0.770719 0.637175i \(-0.780103\pi\)
0.937169 + 0.348875i \(0.113436\pi\)
\(90\) 0 0
\(91\) −0.554690 + 0.960752i −0.0581474 + 0.100714i
\(92\) 17.3062 + 29.9752i 1.80430 + 3.12513i
\(93\) 0 0
\(94\) 7.00000 0.721995
\(95\) 2.92771 3.22932i 0.300377 0.331321i
\(96\) 0 0
\(97\) 3.18122 + 5.51004i 0.323004 + 0.559460i 0.981106 0.193469i \(-0.0619738\pi\)
−0.658102 + 0.752929i \(0.728641\pi\)
\(98\) 8.71286 + 15.0911i 0.880131 + 1.52443i
\(99\) 0 0
\(100\) −2.14257 3.71104i −0.214257 0.371104i
\(101\) −3.69726 + 6.40385i −0.367891 + 0.637206i −0.989236 0.146331i \(-0.953253\pi\)
0.621344 + 0.783538i \(0.286587\pi\)
\(102\) 0 0
\(103\) 12.2038 1.20248 0.601240 0.799069i \(-0.294674\pi\)
0.601240 + 0.799069i \(0.294674\pi\)
\(104\) 14.3222 24.8068i 1.40441 2.43251i
\(105\) 0 0
\(106\) −10.9820 −1.06666
\(107\) 1.63355 0.157921 0.0789607 0.996878i \(-0.474840\pi\)
0.0789607 + 0.996878i \(0.474840\pi\)
\(108\) 0 0
\(109\) 3.80820 + 6.59600i 0.364759 + 0.631782i 0.988738 0.149660i \(-0.0478179\pi\)
−0.623978 + 0.781442i \(0.714485\pi\)
\(110\) −0.975385 + 1.68942i −0.0929994 + 0.161080i
\(111\) 0 0
\(112\) 0.642571 + 1.11297i 0.0607173 + 0.105165i
\(113\) −12.4890 −1.17486 −0.587432 0.809273i \(-0.699861\pi\)
−0.587432 + 0.809273i \(0.699861\pi\)
\(114\) 0 0
\(115\) −8.07730 −0.753212
\(116\) 0.475385 + 0.823392i 0.0441384 + 0.0764500i
\(117\) 0 0
\(118\) −3.50000 + 6.06218i −0.322201 + 0.558069i
\(119\) −0.785142 1.35991i −0.0719739 0.124662i
\(120\) 0 0
\(121\) −10.3945 −0.944957
\(122\) −31.5491 −2.85632
\(123\) 0 0
\(124\) −5.37147 + 9.30365i −0.482372 + 0.835493i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.52106 11.2948i 0.578650 1.00225i −0.416984 0.908914i \(-0.636913\pi\)
0.995635 0.0933378i \(-0.0297536\pi\)
\(128\) 7.95779 + 13.7833i 0.703376 + 1.21828i
\(129\) 0 0
\(130\) 6.26755 + 10.8557i 0.549700 + 0.952109i
\(131\) 3.55469 + 6.15690i 0.310575 + 0.537931i 0.978487 0.206309i \(-0.0661452\pi\)
−0.667912 + 0.744240i \(0.732812\pi\)
\(132\) 0 0
\(133\) −0.295720 0.920816i −0.0256422 0.0798448i
\(134\) −26.4999 −2.28924
\(135\) 0 0
\(136\) 20.2726 + 35.1131i 1.73836 + 3.01092i
\(137\) 2.71286 4.69880i 0.231775 0.401446i −0.726556 0.687108i \(-0.758880\pi\)
0.958331 + 0.285662i \(0.0922134\pi\)
\(138\) 0 0
\(139\) −1.78514 + 3.09196i −0.151414 + 0.262256i −0.931747 0.363107i \(-0.881716\pi\)
0.780334 + 0.625363i \(0.215049\pi\)
\(140\) −0.950771 −0.0803548
\(141\) 0 0
\(142\) −12.3363 + 21.3671i −1.03524 + 1.79308i
\(143\) 1.94531 3.36938i 0.162675 0.281761i
\(144\) 0 0
\(145\) −0.221876 −0.0184258
\(146\) 17.6460 30.5638i 1.46040 2.52948i
\(147\) 0 0
\(148\) 4.08086 7.06826i 0.335445 0.581007i
\(149\) −0.468367 0.811235i −0.0383701 0.0664590i 0.846203 0.532861i \(-0.178883\pi\)
−0.884573 + 0.466402i \(0.845550\pi\)
\(150\) 0 0
\(151\) −0.971925 −0.0790942 −0.0395471 0.999218i \(-0.512592\pi\)
−0.0395471 + 0.999218i \(0.512592\pi\)
\(152\) 7.63555 + 23.7757i 0.619325 + 1.92846i
\(153\) 0 0
\(154\) 0.216415 + 0.374841i 0.0174392 + 0.0302056i
\(155\) −1.25351 2.17114i −0.100684 0.174390i
\(156\) 0 0
\(157\) −1.35743 2.35114i −0.108335 0.187641i 0.806761 0.590878i \(-0.201218\pi\)
−0.915096 + 0.403237i \(0.867885\pi\)
\(158\) −1.98596 + 3.43979i −0.157995 + 0.273655i
\(159\) 0 0
\(160\) 3.06327 0.242172
\(161\) −0.896081 + 1.55206i −0.0706210 + 0.122319i
\(162\) 0 0
\(163\) −3.20384 −0.250944 −0.125472 0.992097i \(-0.540044\pi\)
−0.125472 + 0.992097i \(0.540044\pi\)
\(164\) 31.0069 2.42123
\(165\) 0 0
\(166\) −11.9347 20.6716i −0.926315 1.60442i
\(167\) 5.11094 8.85240i 0.395496 0.685020i −0.597668 0.801744i \(-0.703906\pi\)
0.993164 + 0.116724i \(0.0372393\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) −17.7429 −1.36082
\(171\) 0 0
\(172\) 31.2780 2.38493
\(173\) −1.33281 2.30850i −0.101332 0.175512i 0.810902 0.585182i \(-0.198977\pi\)
−0.912234 + 0.409670i \(0.865644\pi\)
\(174\) 0 0
\(175\) 0.110938 0.192150i 0.00838613 0.0145252i
\(176\) −2.25351 3.90319i −0.169865 0.294214i
\(177\) 0 0
\(178\) −7.87347 −0.590141
\(179\) 12.9367 0.966937 0.483468 0.875362i \(-0.339377\pi\)
0.483468 + 0.875362i \(0.339377\pi\)
\(180\) 0 0
\(181\) 9.30620 16.1188i 0.691724 1.19810i −0.279548 0.960132i \(-0.590185\pi\)
0.971273 0.237970i \(-0.0764820\pi\)
\(182\) 2.78124 0.206159
\(183\) 0 0
\(184\) 23.1370 40.0745i 1.70568 2.95433i
\(185\) 0.952328 + 1.64948i 0.0700166 + 0.121272i
\(186\) 0 0
\(187\) 2.75351 + 4.76922i 0.201357 + 0.348760i
\(188\) −5.98240 10.3618i −0.436312 0.755714i
\(189\) 0 0
\(190\) −10.6812 2.30850i −0.774897 0.167476i
\(191\) 23.0421 1.66727 0.833634 0.552317i \(-0.186256\pi\)
0.833634 + 0.552317i \(0.186256\pi\)
\(192\) 0 0
\(193\) 8.53865 + 14.7894i 0.614626 + 1.06456i 0.990450 + 0.137872i \(0.0440262\pi\)
−0.375824 + 0.926691i \(0.622640\pi\)
\(194\) 7.97539 13.8138i 0.572599 0.991771i
\(195\) 0 0
\(196\) 14.8925 25.7946i 1.06375 1.84247i
\(197\) 8.82024 0.628416 0.314208 0.949354i \(-0.398261\pi\)
0.314208 + 0.949354i \(0.398261\pi\)
\(198\) 0 0
\(199\) 1.42771 2.47287i 0.101208 0.175297i −0.810975 0.585081i \(-0.801063\pi\)
0.912183 + 0.409784i \(0.134396\pi\)
\(200\) −2.86445 + 4.96137i −0.202547 + 0.350822i
\(201\) 0 0
\(202\) 18.5382 1.30434
\(203\) −0.0246145 + 0.0426336i −0.00172760 + 0.00299229i
\(204\) 0 0
\(205\) −3.61796 + 6.26648i −0.252689 + 0.437670i
\(206\) −15.2976 26.4963i −1.06584 1.84608i
\(207\) 0 0
\(208\) −28.9608 −2.00807
\(209\) 1.03709 + 3.22932i 0.0717373 + 0.223377i
\(210\) 0 0
\(211\) 6.44375 + 11.1609i 0.443606 + 0.768348i 0.997954 0.0639367i \(-0.0203656\pi\)
−0.554348 + 0.832285i \(0.687032\pi\)
\(212\) 9.38550 + 16.2562i 0.644599 + 1.11648i
\(213\) 0 0
\(214\) −2.04767 3.54667i −0.139976 0.242445i
\(215\) −3.64959 + 6.32128i −0.248900 + 0.431107i
\(216\) 0 0
\(217\) −0.556248 −0.0377606
\(218\) 9.54723 16.5363i 0.646620 1.11998i
\(219\) 0 0
\(220\) 3.33437 0.224803
\(221\) 35.3865 2.38035
\(222\) 0 0
\(223\) −10.3539 17.9334i −0.693346 1.20091i −0.970735 0.240153i \(-0.922802\pi\)
0.277389 0.960758i \(-0.410531\pi\)
\(224\) 0.339833 0.588608i 0.0227060 0.0393280i
\(225\) 0 0
\(226\) 15.6551 + 27.1153i 1.04136 + 1.80369i
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) 3.53910 0.233870 0.116935 0.993140i \(-0.462693\pi\)
0.116935 + 0.993140i \(0.462693\pi\)
\(230\) 10.1250 + 17.5370i 0.667621 + 1.15635i
\(231\) 0 0
\(232\) 0.635553 1.10081i 0.0417261 0.0722717i
\(233\) −9.89252 17.1344i −0.648081 1.12251i −0.983581 0.180468i \(-0.942239\pi\)
0.335500 0.942040i \(-0.391095\pi\)
\(234\) 0 0
\(235\) 2.79216 0.182141
\(236\) 11.9648 0.778843
\(237\) 0 0
\(238\) −1.96837 + 3.40931i −0.127590 + 0.220993i
\(239\) −23.7741 −1.53782 −0.768910 0.639357i \(-0.779201\pi\)
−0.768910 + 0.639357i \(0.779201\pi\)
\(240\) 0 0
\(241\) 2.27111 3.93367i 0.146295 0.253390i −0.783561 0.621315i \(-0.786599\pi\)
0.929855 + 0.367926i \(0.119932\pi\)
\(242\) 13.0296 + 22.5680i 0.837576 + 1.45072i
\(243\) 0 0
\(244\) 26.9628 + 46.7010i 1.72612 + 2.98972i
\(245\) 3.47539 + 6.01954i 0.222034 + 0.384575i
\(246\) 0 0
\(247\) 21.3026 + 4.60408i 1.35545 + 0.292950i
\(248\) 14.3624 0.912016
\(249\) 0 0
\(250\) −1.25351 2.17114i −0.0792789 0.137315i
\(251\) −9.75151 + 16.8901i −0.615510 + 1.06609i 0.374785 + 0.927112i \(0.377716\pi\)
−0.990295 + 0.138982i \(0.955617\pi\)
\(252\) 0 0
\(253\) 3.14257 5.44309i 0.197572 0.342204i
\(254\) −32.6968 −2.05158
\(255\) 0 0
\(256\) 16.0457 27.7919i 1.00285 1.73699i
\(257\) 0.882043 1.52774i 0.0550203 0.0952980i −0.837203 0.546892i \(-0.815811\pi\)
0.892224 + 0.451594i \(0.149144\pi\)
\(258\) 0 0
\(259\) 0.422598 0.0262590
\(260\) 10.7129 18.5552i 0.664383 1.15075i
\(261\) 0 0
\(262\) 8.91168 15.4355i 0.550565 0.953607i
\(263\) −3.23591 5.60477i −0.199535 0.345605i 0.748843 0.662748i \(-0.230610\pi\)
−0.948378 + 0.317143i \(0.897276\pi\)
\(264\) 0 0
\(265\) −4.38049 −0.269091
\(266\) −1.62853 + 1.79630i −0.0998518 + 0.110138i
\(267\) 0 0
\(268\) 22.6476 + 39.2268i 1.38342 + 2.39616i
\(269\) 14.2429 + 24.6695i 0.868407 + 1.50412i 0.863624 + 0.504136i \(0.168189\pi\)
0.00478280 + 0.999989i \(0.498478\pi\)
\(270\) 0 0
\(271\) 0.246491 + 0.426934i 0.0149732 + 0.0259344i 0.873415 0.486977i \(-0.161900\pi\)
−0.858442 + 0.512911i \(0.828567\pi\)
\(272\) 20.4964 35.5009i 1.24278 2.15256i
\(273\) 0 0
\(274\) −13.6024 −0.821749
\(275\) −0.389062 + 0.673875i −0.0234613 + 0.0406362i
\(276\) 0 0
\(277\) −8.78905 −0.528083 −0.264041 0.964511i \(-0.585056\pi\)
−0.264041 + 0.964511i \(0.585056\pi\)
\(278\) 8.95077 0.536832
\(279\) 0 0
\(280\) 0.635553 + 1.10081i 0.0379815 + 0.0657859i
\(281\) −2.37147 + 4.10750i −0.141470 + 0.245033i −0.928050 0.372455i \(-0.878516\pi\)
0.786581 + 0.617488i \(0.211849\pi\)
\(282\) 0 0
\(283\) −8.43473 14.6094i −0.501393 0.868438i −0.999999 0.00160901i \(-0.999488\pi\)
0.498606 0.866829i \(-0.333845\pi\)
\(284\) 42.1718 2.50243
\(285\) 0 0
\(286\) −9.75385 −0.576758
\(287\) 0.802738 + 1.39038i 0.0473841 + 0.0820717i
\(288\) 0 0
\(289\) −16.5441 + 28.6552i −0.973183 + 1.68560i
\(290\) 0.278124 + 0.481725i 0.0163320 + 0.0282878i
\(291\) 0 0
\(292\) −60.3233 −3.53015
\(293\) −11.6336 −0.679639 −0.339820 0.940491i \(-0.610366\pi\)
−0.339820 + 0.940491i \(0.610366\pi\)
\(294\) 0 0
\(295\) −1.39608 + 2.41808i −0.0812830 + 0.140786i
\(296\) −10.9116 −0.634223
\(297\) 0 0
\(298\) −1.17420 + 2.03378i −0.0680198 + 0.117814i
\(299\) −20.1933 34.9758i −1.16781 2.02270i
\(300\) 0 0
\(301\) 0.809757 + 1.40254i 0.0466736 + 0.0808411i
\(302\) 1.21832 + 2.11019i 0.0701063 + 0.121428i
\(303\) 0 0
\(304\) 16.9578 18.7047i 0.972596 1.07279i
\(305\) −12.5843 −0.720576
\(306\) 0 0
\(307\) −2.94531 5.10143i −0.168098 0.291154i 0.769653 0.638462i \(-0.220429\pi\)
−0.937751 + 0.347308i \(0.887096\pi\)
\(308\) 0.369909 0.640701i 0.0210775 0.0365073i
\(309\) 0 0
\(310\) −3.14257 + 5.44309i −0.178486 + 0.309147i
\(311\) −14.8202 −0.840378 −0.420189 0.907437i \(-0.638036\pi\)
−0.420189 + 0.907437i \(0.638036\pi\)
\(312\) 0 0
\(313\) 2.94731 5.10489i 0.166592 0.288546i −0.770628 0.637286i \(-0.780057\pi\)
0.937219 + 0.348740i \(0.113390\pi\)
\(314\) −3.40310 + 5.89434i −0.192048 + 0.332637i
\(315\) 0 0
\(316\) 6.78905 0.381914
\(317\) −2.07930 + 3.60146i −0.116785 + 0.202278i −0.918492 0.395439i \(-0.870592\pi\)
0.801707 + 0.597718i \(0.203926\pi\)
\(318\) 0 0
\(319\) 0.0863236 0.149517i 0.00483319 0.00837133i
\(320\) 1.95233 + 3.38153i 0.109138 + 0.189033i
\(321\) 0 0
\(322\) 4.49298 0.250384
\(323\) −20.7203 + 22.8549i −1.15291 + 1.27168i
\(324\) 0 0
\(325\) 2.50000 + 4.33013i 0.138675 + 0.240192i
\(326\) 4.01604 + 6.95598i 0.222428 + 0.385256i
\(327\) 0 0
\(328\) −20.7269 35.9000i −1.14445 1.98225i
\(329\) 0.309757 0.536515i 0.0170775 0.0295790i
\(330\) 0 0
\(331\) 10.6797 0.587008 0.293504 0.955958i \(-0.405179\pi\)
0.293504 + 0.955958i \(0.405179\pi\)
\(332\) −20.3995 + 35.3330i −1.11957 + 1.93915i
\(333\) 0 0
\(334\) −25.6264 −1.40222
\(335\) −10.5703 −0.577516
\(336\) 0 0
\(337\) 13.1726 + 22.8157i 0.717560 + 1.24285i 0.961964 + 0.273177i \(0.0880743\pi\)
−0.244404 + 0.969673i \(0.578592\pi\)
\(338\) −15.0421 + 26.0537i −0.818183 + 1.41713i
\(339\) 0 0
\(340\) 15.1636 + 26.2642i 0.822363 + 1.42437i
\(341\) 1.95077 0.105640
\(342\) 0 0
\(343\) 3.09534 0.167133
\(344\) −20.9081 36.2139i −1.12729 1.95252i
\(345\) 0 0
\(346\) −3.34139 + 5.78746i −0.179634 + 0.311136i
\(347\) −8.44175 14.6215i −0.453177 0.784925i 0.545404 0.838173i \(-0.316376\pi\)
−0.998581 + 0.0532476i \(0.983043\pi\)
\(348\) 0 0
\(349\) 4.61640 0.247110 0.123555 0.992338i \(-0.460570\pi\)
0.123555 + 0.992338i \(0.460570\pi\)
\(350\) −0.556248 −0.0297327
\(351\) 0 0
\(352\) −1.19180 + 2.06426i −0.0635232 + 0.110025i
\(353\) 24.9508 1.32800 0.663998 0.747735i \(-0.268858\pi\)
0.663998 + 0.747735i \(0.268858\pi\)
\(354\) 0 0
\(355\) −4.92070 + 8.52289i −0.261163 + 0.452348i
\(356\) 6.72889 + 11.6548i 0.356631 + 0.617703i
\(357\) 0 0
\(358\) −16.2163 28.0875i −0.857059 1.48447i
\(359\) 5.90110 + 10.2210i 0.311448 + 0.539444i 0.978676 0.205410i \(-0.0658527\pi\)
−0.667228 + 0.744854i \(0.732519\pi\)
\(360\) 0 0
\(361\) −15.4472 + 11.0627i −0.813011 + 0.582248i
\(362\) −46.6616 −2.45248
\(363\) 0 0
\(364\) −2.37693 4.11696i −0.124585 0.215787i
\(365\) 7.03865 12.1913i 0.368420 0.638122i
\(366\) 0 0
\(367\) −13.1164 + 22.7183i −0.684670 + 1.18588i 0.288870 + 0.957368i \(0.406721\pi\)
−0.973540 + 0.228516i \(0.926613\pi\)
\(368\) −46.7850 −2.43884
\(369\) 0 0
\(370\) 2.38750 4.13528i 0.124120 0.214983i
\(371\) −0.485963 + 0.841712i −0.0252299 + 0.0436995i
\(372\) 0 0
\(373\) 11.9960 0.621129 0.310565 0.950552i \(-0.399482\pi\)
0.310565 + 0.950552i \(0.399482\pi\)
\(374\) 6.90310 11.9565i 0.356951 0.618257i
\(375\) 0 0
\(376\) −7.99800 + 13.8529i −0.412465 + 0.714411i
\(377\) −0.554690 0.960752i −0.0285680 0.0494812i
\(378\) 0 0
\(379\) 0.313217 0.0160889 0.00804444 0.999968i \(-0.497439\pi\)
0.00804444 + 0.999968i \(0.497439\pi\)
\(380\) 5.71130 + 17.7839i 0.292983 + 0.912295i
\(381\) 0 0
\(382\) −28.8835 50.0277i −1.47781 2.55964i
\(383\) 15.0441 + 26.0572i 0.768718 + 1.33146i 0.938258 + 0.345936i \(0.112439\pi\)
−0.169540 + 0.985523i \(0.554228\pi\)
\(384\) 0 0
\(385\) 0.0863236 + 0.149517i 0.00439946 + 0.00762008i
\(386\) 21.4066 37.0772i 1.08957 1.88718i
\(387\) 0 0
\(388\) −27.2640 −1.38412
\(389\) −17.8609 + 30.9360i −0.905583 + 1.56852i −0.0854503 + 0.996342i \(0.527233\pi\)
−0.820133 + 0.572173i \(0.806100\pi\)
\(390\) 0 0
\(391\) 57.1655 2.89099
\(392\) −39.8202 −2.01123
\(393\) 0 0
\(394\) −11.0562 19.1500i −0.557006 0.964762i
\(395\) −0.792161 + 1.37206i −0.0398580 + 0.0690360i
\(396\) 0 0
\(397\) −4.77657 8.27326i −0.239729 0.415223i 0.720907 0.693031i \(-0.243725\pi\)
−0.960636 + 0.277809i \(0.910392\pi\)
\(398\) −7.15861 −0.358829
\(399\) 0 0
\(400\) 5.79216 0.289608
\(401\) 15.4418 + 26.7459i 0.771124 + 1.33563i 0.936947 + 0.349471i \(0.113639\pi\)
−0.165823 + 0.986156i \(0.553028\pi\)
\(402\) 0 0
\(403\) 6.26755 10.8557i 0.312209 0.540761i
\(404\) −15.8433 27.4414i −0.788233 1.36526i
\(405\) 0 0
\(406\) 0.123418 0.00612514
\(407\) −1.48206 −0.0734629
\(408\) 0 0
\(409\) −15.7816 + 27.3345i −0.780349 + 1.35160i 0.151389 + 0.988474i \(0.451625\pi\)
−0.931738 + 0.363130i \(0.881708\pi\)
\(410\) 18.1406 0.895899
\(411\) 0 0
\(412\) −26.1476 + 45.2890i −1.28820 + 2.23123i
\(413\) 0.309757 + 0.536515i 0.0152421 + 0.0264002i
\(414\) 0 0
\(415\) −4.76053 8.24548i −0.233685 0.404755i
\(416\) 7.65817 + 13.2643i 0.375472 + 0.650337i
\(417\) 0 0
\(418\) 5.71130 6.29966i 0.279349 0.308126i
\(419\) 26.5070 1.29495 0.647476 0.762086i \(-0.275824\pi\)
0.647476 + 0.762086i \(0.275824\pi\)
\(420\) 0 0
\(421\) 10.1180 + 17.5248i 0.493119 + 0.854107i 0.999969 0.00792731i \(-0.00252337\pi\)
−0.506850 + 0.862035i \(0.669190\pi\)
\(422\) 16.1546 27.9806i 0.786394 1.36207i
\(423\) 0 0
\(424\) 12.5477 21.7332i 0.609369 1.05546i
\(425\) −7.07730 −0.343300
\(426\) 0 0
\(427\) −1.39608 + 2.41808i −0.0675611 + 0.117019i
\(428\) −3.50000 + 6.06218i −0.169179 + 0.293026i
\(429\) 0 0
\(430\) 18.2992 0.882465
\(431\) −5.73045 + 9.92543i −0.276026 + 0.478091i −0.970394 0.241529i \(-0.922351\pi\)
0.694367 + 0.719621i \(0.255684\pi\)
\(432\) 0 0
\(433\) −12.9734 + 22.4706i −0.623461 + 1.07987i 0.365375 + 0.930860i \(0.380941\pi\)
−0.988836 + 0.149006i \(0.952393\pi\)
\(434\) 0.697262 + 1.20769i 0.0334696 + 0.0579711i
\(435\) 0 0
\(436\) −32.6374 −1.56305
\(437\) 34.4136 + 7.43771i 1.64622 + 0.355794i
\(438\) 0 0
\(439\) −12.6562 21.9211i −0.604046 1.04624i −0.992202 0.124644i \(-0.960221\pi\)
0.388156 0.921594i \(-0.373112\pi\)
\(440\) −2.22889 3.86056i −0.106258 0.184045i
\(441\) 0 0
\(442\) −44.3573 76.8291i −2.10986 3.65439i
\(443\) 10.0125 17.3421i 0.475707 0.823949i −0.523905 0.851776i \(-0.675525\pi\)
0.999613 + 0.0278272i \(0.00885883\pi\)
\(444\) 0 0
\(445\) −3.14057 −0.148877
\(446\) −25.9573 + 44.9594i −1.22912 + 2.12889i
\(447\) 0 0
\(448\) 0.866350 0.0409312
\(449\) −19.7601 −0.932536 −0.466268 0.884644i \(-0.654402\pi\)
−0.466268 + 0.884644i \(0.654402\pi\)
\(450\) 0 0
\(451\) −2.81522 4.87610i −0.132563 0.229607i
\(452\) 26.7585 46.3471i 1.25862 2.17999i
\(453\) 0 0
\(454\) 5.01404 + 8.68457i 0.235320 + 0.407587i
\(455\) 1.10938 0.0520086
\(456\) 0 0
\(457\) −34.4647 −1.61219 −0.806096 0.591785i \(-0.798423\pi\)
−0.806096 + 0.591785i \(0.798423\pi\)
\(458\) −4.43629 7.68388i −0.207294 0.359044i
\(459\) 0 0
\(460\) 17.3062 29.9752i 0.806906 1.39760i
\(461\) −3.96637 6.86995i −0.184732 0.319965i 0.758754 0.651377i \(-0.225808\pi\)
−0.943486 + 0.331412i \(0.892475\pi\)
\(462\) 0 0
\(463\) 9.25395 0.430068 0.215034 0.976607i \(-0.431014\pi\)
0.215034 + 0.976607i \(0.431014\pi\)
\(464\) −1.28514 −0.0596612
\(465\) 0 0
\(466\) −24.8007 + 42.9561i −1.14887 + 1.98990i
\(467\) −9.47183 −0.438304 −0.219152 0.975691i \(-0.570329\pi\)
−0.219152 + 0.975691i \(0.570329\pi\)
\(468\) 0 0
\(469\) −1.17265 + 2.03108i −0.0541478 + 0.0937868i
\(470\) −3.50000 6.06218i −0.161443 0.279627i
\(471\) 0 0
\(472\) −7.99800 13.8529i −0.368138 0.637633i
\(473\) −2.83983 4.91873i −0.130576 0.226164i
\(474\) 0 0
\(475\) −4.26053 0.920816i −0.195486 0.0422499i
\(476\) 6.72889 0.308418
\(477\) 0 0
\(478\) 29.8011 + 51.6170i 1.36307 + 2.36091i
\(479\) −17.3574 + 30.0639i −0.793081 + 1.37366i 0.130969 + 0.991386i \(0.458191\pi\)
−0.924050 + 0.382270i \(0.875142\pi\)
\(480\) 0 0
\(481\) −4.76164 + 8.24740i −0.217112 + 0.376049i
\(482\) −11.3874 −0.518682
\(483\) 0 0
\(484\) 22.2710 38.5745i 1.01232 1.75339i
\(485\) 3.18122 5.51004i 0.144452 0.250198i
\(486\) 0 0
\(487\) −28.5070 −1.29178 −0.645888 0.763432i \(-0.723513\pi\)
−0.645888 + 0.763432i \(0.723513\pi\)
\(488\) 36.0471 62.4355i 1.63178 2.82632i
\(489\) 0 0
\(490\) 8.71286 15.0911i 0.393607 0.681747i
\(491\) −15.5949 27.0112i −0.703788 1.21900i −0.967127 0.254293i \(-0.918157\pi\)
0.263339 0.964703i \(-0.415176\pi\)
\(492\) 0 0
\(493\) 1.57028 0.0707221
\(494\) −16.7070 52.0223i −0.751681 2.34059i
\(495\) 0 0
\(496\) −7.26053 12.5756i −0.326007 0.564661i
\(497\) 1.09178 + 1.89103i 0.0489732 + 0.0848242i
\(498\) 0 0
\(499\) −8.09334 14.0181i −0.362308 0.627535i 0.626032 0.779797i \(-0.284678\pi\)
−0.988340 + 0.152262i \(0.951344\pi\)
\(500\) −2.14257 + 3.71104i −0.0958187 + 0.165963i
\(501\) 0 0
\(502\) 48.8944 2.18226
\(503\) 8.61094 14.9146i 0.383943 0.665008i −0.607679 0.794183i \(-0.707899\pi\)
0.991622 + 0.129174i \(0.0412327\pi\)
\(504\) 0 0
\(505\) 7.39452 0.329052
\(506\) −15.7570 −0.700483
\(507\) 0 0
\(508\) 27.9437 + 48.3998i 1.23980 + 2.14740i
\(509\) −18.2956 + 31.6889i −0.810939 + 1.40459i 0.101268 + 0.994859i \(0.467710\pi\)
−0.912207 + 0.409729i \(0.865623\pi\)
\(510\) 0 0
\(511\) −1.56171 2.70496i −0.0690859 0.119660i
\(512\) −48.6224 −2.14883
\(513\) 0 0
\(514\) −4.42260 −0.195072
\(515\) −6.10192 10.5688i −0.268883 0.465718i
\(516\) 0 0
\(517\) −1.08632 + 1.88157i −0.0477765 + 0.0827512i
\(518\) −0.529730 0.917520i −0.0232750 0.0403135i
\(519\) 0 0
\(520\) −28.6445 −1.25614
\(521\) 3.63667 0.159325 0.0796626 0.996822i \(-0.474616\pi\)
0.0796626 + 0.996822i \(0.474616\pi\)
\(522\) 0 0
\(523\) 17.8117 30.8507i 0.778850 1.34901i −0.153756 0.988109i \(-0.549137\pi\)
0.932605 0.360898i \(-0.117530\pi\)
\(524\) −30.4647 −1.33086
\(525\) 0 0
\(526\) −8.11250 + 14.0513i −0.353722 + 0.612664i
\(527\) 8.87147 + 15.3658i 0.386447 + 0.669346i
\(528\) 0 0
\(529\) −21.1214 36.5834i −0.918322 1.59058i
\(530\) 5.49098 + 9.51066i 0.238513 + 0.413117i
\(531\) 0 0
\(532\) 4.05079 + 0.875485i 0.175624 + 0.0379571i
\(533\) −36.1796 −1.56711
\(534\) 0 0
\(535\) −0.816776 1.41470i −0.0353123 0.0611627i
\(536\) 30.2780 52.4431i 1.30781 2.26520i
\(537\) 0 0
\(538\) 35.7073 61.8469i 1.53945 2.66641i
\(539\) −5.40856 −0.232963
\(540\) 0 0
\(541\) −1.58632 + 2.74759i −0.0682014 + 0.118128i −0.898110 0.439772i \(-0.855059\pi\)
0.829908 + 0.557900i \(0.188393\pi\)
\(542\) 0.617957 1.07033i 0.0265435 0.0459747i
\(543\) 0 0
\(544\) −21.6797 −0.929508
\(545\) 3.80820 6.59600i 0.163125 0.282541i
\(546\) 0 0
\(547\) 14.1902 24.5782i 0.606731 1.05089i −0.385044 0.922898i \(-0.625814\pi\)
0.991775 0.127991i \(-0.0408528\pi\)
\(548\) 11.6250 + 20.1350i 0.496594 + 0.860127i
\(549\) 0 0
\(550\) 1.95077 0.0831812
\(551\) 0.945310 + 0.204307i 0.0402715 + 0.00870377i
\(552\) 0 0
\(553\) 0.175762 + 0.304428i 0.00747415 + 0.0129456i
\(554\) 11.0172 + 19.0823i 0.468074 + 0.810728i
\(555\) 0 0
\(556\) −7.64959 13.2495i −0.324415 0.561903i
\(557\) 1.06527 1.84510i 0.0451368 0.0781793i −0.842574 0.538580i \(-0.818961\pi\)
0.887711 + 0.460401i \(0.152294\pi\)
\(558\) 0 0
\(559\) −36.4959 −1.54361
\(560\) 0.642571 1.11297i 0.0271536 0.0470314i
\(561\) 0 0
\(562\) 11.8906 0.501575
\(563\) 20.2609 0.853894 0.426947 0.904277i \(-0.359589\pi\)
0.426947 + 0.904277i \(0.359589\pi\)
\(564\) 0 0
\(565\) 6.24449 + 10.8158i 0.262708 + 0.455023i
\(566\) −21.1460 + 36.6260i −0.888834 + 1.53951i
\(567\) 0 0
\(568\) −28.1901 48.8268i −1.18283 2.04873i
\(569\) 34.7530 1.45692 0.728460 0.685088i \(-0.240236\pi\)
0.728460 + 0.685088i \(0.240236\pi\)
\(570\) 0 0
\(571\) 32.0702 1.34210 0.671048 0.741414i \(-0.265845\pi\)
0.671048 + 0.741414i \(0.265845\pi\)
\(572\) 8.33593 + 14.4383i 0.348543 + 0.603694i
\(573\) 0 0
\(574\) 2.01248 3.48572i 0.0839993 0.145491i
\(575\) 4.03865 + 6.99515i 0.168423 + 0.291718i
\(576\) 0 0
\(577\) 30.2740 1.26032 0.630162 0.776464i \(-0.282988\pi\)
0.630162 + 0.776464i \(0.282988\pi\)
\(578\) 82.9528 3.45038
\(579\) 0 0
\(580\) 0.475385 0.823392i 0.0197393 0.0341895i
\(581\) −2.11250 −0.0876411
\(582\) 0 0
\(583\) 1.70428 2.95190i 0.0705841 0.122255i
\(584\) 40.3237 + 69.8427i 1.66861 + 2.89011i
\(585\) 0 0
\(586\) 14.5828 + 25.2581i 0.602408 + 1.04340i
\(587\) 1.24805 + 2.16168i 0.0515125 + 0.0892222i 0.890632 0.454725i \(-0.150262\pi\)
−0.839119 + 0.543947i \(0.816929\pi\)
\(588\) 0 0
\(589\) 3.34139 + 10.4045i 0.137680 + 0.428708i
\(590\) 7.00000 0.288185
\(591\) 0 0
\(592\) 5.51604 + 9.55406i 0.226708 + 0.392669i
\(593\) −4.98196 + 8.62901i −0.204585 + 0.354351i −0.950000 0.312249i \(-0.898918\pi\)
0.745416 + 0.666600i \(0.232251\pi\)
\(594\) 0 0
\(595\) −0.785142 + 1.35991i −0.0321877 + 0.0557507i
\(596\) 4.01404 0.164421
\(597\) 0 0
\(598\) −50.6249 + 87.6849i −2.07021 + 3.58570i
\(599\) 16.0351 27.7736i 0.655176 1.13480i −0.326673 0.945137i \(-0.605928\pi\)
0.981850 0.189661i \(-0.0607389\pi\)
\(600\) 0 0
\(601\) 3.68278 0.150224 0.0751119 0.997175i \(-0.476069\pi\)
0.0751119 + 0.997175i \(0.476069\pi\)
\(602\) 2.03008 3.51619i 0.0827397 0.143309i
\(603\) 0 0
\(604\) 2.08242 3.60686i 0.0847324 0.146761i
\(605\) 5.19726 + 9.00192i 0.211299 + 0.365980i
\(606\) 0 0
\(607\) −20.4850 −0.831460 −0.415730 0.909488i \(-0.636474\pi\)
−0.415730 + 0.909488i \(0.636474\pi\)
\(608\) −13.0511 2.82070i −0.529293 0.114395i
\(609\) 0 0
\(610\) 15.7746 + 27.3223i 0.638693 + 1.10625i
\(611\) 6.98040 + 12.0904i 0.282397 + 0.489126i
\(612\) 0 0
\(613\) −5.35587 9.27664i −0.216322 0.374680i 0.737359 0.675501i \(-0.236073\pi\)
−0.953681 + 0.300821i \(0.902739\pi\)
\(614\) −7.38395 + 12.7894i −0.297992 + 0.516137i
\(615\) 0 0
\(616\) −0.989077 −0.0398511
\(617\) −8.86600 + 15.3564i −0.356932 + 0.618224i −0.987447 0.157953i \(-0.949511\pi\)
0.630515 + 0.776177i \(0.282844\pi\)
\(618\) 0 0
\(619\) −13.2780 −0.533689 −0.266844 0.963740i \(-0.585981\pi\)
−0.266844 + 0.963740i \(0.585981\pi\)
\(620\) 10.7429 0.431447
\(621\) 0 0
\(622\) 18.5773 + 32.1768i 0.744882 + 1.29017i
\(623\) −0.348409 + 0.603462i −0.0139587 + 0.0241772i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −14.7779 −0.590645
\(627\) 0 0
\(628\) 11.6336 0.464229
\(629\) −6.73992 11.6739i −0.268738 0.465468i
\(630\) 0 0
\(631\) −2.03208 + 3.51966i −0.0808957 + 0.140115i −0.903635 0.428304i \(-0.859111\pi\)
0.822739 + 0.568419i \(0.192445\pi\)
\(632\) −4.53821 7.86041i −0.180520 0.312670i
\(633\) 0 0
\(634\) 10.4257 0.414058
\(635\) −13.0421 −0.517560
\(636\) 0 0
\(637\) −17.3769 + 30.0977i −0.688499 + 1.19252i
\(638\) −0.432830 −0.0171359
\(639\) 0 0
\(640\) 7.95779 13.7833i 0.314559 0.544833i
\(641\) 2.49254 + 4.31720i 0.0984493 + 0.170519i 0.911043 0.412311i \(-0.135278\pi\)
−0.812594 + 0.582831i \(0.801945\pi\)
\(642\) 0 0
\(643\) 2.93829 + 5.08927i 0.115875 + 0.200701i 0.918129 0.396281i \(-0.129700\pi\)
−0.802254 + 0.596983i \(0.796366\pi\)
\(644\) −3.83983 6.65079i −0.151311 0.262078i
\(645\) 0 0
\(646\) 75.5943 + 16.3380i 2.97422 + 0.642809i
\(647\) −16.9757 −0.667385 −0.333692 0.942682i \(-0.608295\pi\)
−0.333692 + 0.942682i \(0.608295\pi\)
\(648\) 0 0
\(649\) −1.08632 1.88157i −0.0426419 0.0738580i
\(650\) 6.26755 10.8557i 0.245833 0.425796i
\(651\) 0 0
\(652\) 6.86445 11.8896i 0.268833 0.465632i
\(653\) −24.6797 −0.965790 −0.482895 0.875678i \(-0.660415\pi\)
−0.482895 + 0.875678i \(0.660415\pi\)
\(654\) 0 0
\(655\) 3.55469 6.15690i 0.138893 0.240570i
\(656\) −20.9558 + 36.2965i −0.818186 + 1.41714i
\(657\) 0 0
\(658\) −1.55313 −0.0605474
\(659\) 0.943308 1.63386i 0.0367461 0.0636461i −0.847067 0.531485i \(-0.821634\pi\)
0.883814 + 0.467839i \(0.154967\pi\)
\(660\) 0 0
\(661\) −22.3749 + 38.7545i −0.870284 + 1.50738i −0.00858048 + 0.999963i \(0.502731\pi\)
−0.861703 + 0.507413i \(0.830602\pi\)
\(662\) −13.3871 23.1871i −0.520303 0.901191i
\(663\) 0 0
\(664\) 54.5451 2.11676
\(665\) −0.649590 + 0.716509i −0.0251900 + 0.0277850i
\(666\) 0 0
\(667\) −0.896081 1.55206i −0.0346964 0.0600959i
\(668\) 21.9011 + 37.9338i 0.847379 + 1.46770i
\(669\) 0 0
\(670\) 13.2500 + 22.9496i 0.511890 + 0.886620i
\(671\) 4.89608 8.48026i 0.189011 0.327377i
\(672\) 0 0
\(673\) 25.4046 0.979274 0.489637 0.871926i \(-0.337129\pi\)
0.489637 + 0.871926i \(0.337129\pi\)
\(674\) 33.0241 57.1994i 1.27204 2.20324i
\(675\) 0 0
\(676\) 51.4217 1.97776
\(677\) 3.86946 0.148716 0.0743578 0.997232i \(-0.476309\pi\)
0.0743578 + 0.997232i \(0.476309\pi\)
\(678\) 0 0
\(679\) −0.705838 1.22255i −0.0270876 0.0469170i
\(680\) 20.2726 35.1131i 0.777417 1.34653i
\(681\) 0 0
\(682\) −2.44531 4.23540i −0.0936357 0.162182i
\(683\) 48.5171 1.85645 0.928227 0.372015i \(-0.121333\pi\)
0.928227 + 0.372015i \(0.121333\pi\)
\(684\) 0 0
\(685\) −5.42571 −0.207306
\(686\) −3.88004 6.72043i −0.148141 0.256587i
\(687\) 0 0
\(688\) −21.1390 + 36.6138i −0.805917 + 1.39589i
\(689\) −10.9512 18.9681i −0.417208 0.722626i
\(690\) 0 0
\(691\) −47.6374 −1.81221 −0.906105 0.423052i \(-0.860959\pi\)
−0.906105 + 0.423052i \(0.860959\pi\)
\(692\) 11.4226 0.434222
\(693\) 0 0
\(694\) −21.1636 + 36.6565i −0.803360 + 1.39146i
\(695\) 3.57028 0.135429
\(696\) 0 0
\(697\) 25.6054 44.3498i 0.969873 1.67987i
\(698\) −5.78670 10.0229i −0.219030 0.379371i
\(699\) 0 0
\(700\) 0.475385 + 0.823392i 0.0179679 + 0.0311213i
\(701\) 14.2766 + 24.7277i 0.539218 + 0.933954i 0.998946 + 0.0458939i \(0.0146136\pi\)
−0.459728 + 0.888060i \(0.652053\pi\)
\(702\) 0 0
\(703\) −2.53855 7.90458i −0.0957434 0.298127i
\(704\) −3.03831 −0.114510
\(705\) 0 0
\(706\) −31.2760 54.1717i −1.17709 2.03878i
\(707\) 0.820334 1.42086i 0.0308518 0.0534370i
\(708\) 0 0
\(709\) −9.74137 + 16.8726i −0.365845 + 0.633662i −0.988911 0.148507i \(-0.952553\pi\)
0.623066 + 0.782169i \(0.285887\pi\)
\(710\) 24.6725 0.925944
\(711\) 0 0
\(712\) 8.99600 15.5815i 0.337139 0.583942i
\(713\) 10.1250 17.5370i 0.379183 0.656765i
\(714\) 0 0
\(715\) −3.89062 −0.145501
\(716\) −27.7179 + 48.0088i −1.03587 + 1.79417i
\(717\) 0 0
\(718\) 14.7942 25.6242i 0.552113 0.956288i
\(719\) 2.05313 + 3.55613i 0.0765689 + 0.132621i 0.901767 0.432221i \(-0.142270\pi\)
−0.825199 + 0.564843i \(0.808937\pi\)
\(720\) 0 0
\(721\) −2.70774 −0.100842
\(722\) 43.3819 + 19.6709i 1.61451 + 0.732074i
\(723\) 0 0
\(724\) 39.8784 + 69.0714i 1.48207 + 2.56702i
\(725\) 0.110938 + 0.192150i 0.00412014 + 0.00713629i
\(726\) 0 0
\(727\) 6.20584 + 10.7488i 0.230162 + 0.398652i 0.957856 0.287250i \(-0.0927411\pi\)
−0.727694 + 0.685902i \(0.759408\pi\)
\(728\) −3.17776 + 5.50405i −0.117776 + 0.203994i
\(729\) 0 0
\(730\) −35.2921 −1.30622
\(731\) 25.8293 44.7376i 0.955330 1.65468i
\(732\) 0 0
\(733\) −16.3985 −0.605693 −0.302847 0.953039i \(-0.597937\pi\)
−0.302847 + 0.953039i \(0.597937\pi\)
\(734\) 65.7661 2.42747
\(735\) 0 0
\(736\) 12.3715 + 21.4280i 0.456018 + 0.789847i
\(737\) 4.11250 7.12305i 0.151486 0.262381i
\(738\) 0 0
\(739\) 23.1018 + 40.0135i 0.849814 + 1.47192i 0.881374 + 0.472419i \(0.156619\pi\)
−0.0315597 + 0.999502i \(0.510047\pi\)
\(740\) −8.16172 −0.300031
\(741\) 0 0
\(742\) 2.43664 0.0894517
\(743\) −12.4066 21.4888i −0.455153 0.788347i 0.543544 0.839380i \(-0.317082\pi\)
−0.998697 + 0.0510331i \(0.983749\pi\)
\(744\) 0 0
\(745\) −0.468367 + 0.811235i −0.0171596 + 0.0297214i
\(746\) −15.0371 26.0450i −0.550547 0.953576i
\(747\) 0 0
\(748\) −23.5984 −0.862841
\(749\) −0.362446 −0.0132435
\(750\) 0 0
\(751\) 5.26955 9.12712i 0.192289 0.333054i −0.753720 0.657196i \(-0.771742\pi\)
0.946008 + 0.324142i \(0.105076\pi\)
\(752\) 16.1726 0.589756
\(753\) 0 0
\(754\) −1.39062 + 2.40862i −0.0506434 + 0.0877169i
\(755\) 0.485963 + 0.841712i 0.0176860 + 0.0306330i
\(756\) 0 0
\(757\) 3.09836 + 5.36652i 0.112612 + 0.195049i 0.916823 0.399295i \(-0.130745\pi\)
−0.804211 + 0.594344i \(0.797412\pi\)
\(758\) −0.392621 0.680039i −0.0142606 0.0247001i
\(759\) 0 0
\(760\) 16.7726 18.5004i 0.608405 0.671081i
\(761\) −35.6084 −1.29080 −0.645402 0.763843i \(-0.723310\pi\)
−0.645402 + 0.763843i \(0.723310\pi\)
\(762\) 0 0
\(763\) −0.844949 1.46349i −0.0305892 0.0529820i
\(764\) −49.3694 + 85.5103i −1.78612 + 3.09365i
\(765\) 0 0
\(766\) 37.7159 65.3258i 1.36273 2.36032i
\(767\) −13.9608 −0.504095
\(768\) 0 0
\(769\) 0.0777477 0.134663i 0.00280365 0.00485607i −0.864620 0.502426i \(-0.832441\pi\)
0.867424 + 0.497570i \(0.165774\pi\)
\(770\) 0.216415 0.374841i 0.00779905 0.0135083i
\(771\) 0 0
\(772\) −73.1787 −2.63376
\(773\) −2.54411 + 4.40653i −0.0915054 + 0.158492i −0.908145 0.418656i \(-0.862501\pi\)
0.816639 + 0.577148i \(0.195835\pi\)
\(774\) 0 0
\(775\) −1.25351 + 2.17114i −0.0450274 + 0.0779897i
\(776\) 18.2249 + 31.5664i 0.654236 + 1.13317i
\(777\) 0 0
\(778\) 89.5552 3.21071
\(779\) 21.1847 23.3671i 0.759020 0.837212i
\(780\) 0 0
\(781\) −3.82891 6.63187i −0.137009 0.237307i
\(782\) −71.6575 124.114i −2.56247 4.43832i
\(783\) 0