Properties

Label 855.2.k.c.676.1
Level $855$
Weight $2$
Character 855.676
Analytic conductor $6.827$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [855,2,Mod(406,855)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(855, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("855.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 855.676
Dual form 855.2.k.c.406.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{4} +(0.500000 - 0.866025i) q^{5} +2.00000 q^{7} +3.00000 q^{11} +(2.00000 + 3.46410i) q^{13} +(-2.00000 + 3.46410i) q^{16} +(-3.50000 - 2.59808i) q^{19} +2.00000 q^{20} +(-3.00000 - 5.19615i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(2.00000 + 3.46410i) q^{28} +(1.50000 + 2.59808i) q^{29} +5.00000 q^{31} +(1.00000 - 1.73205i) q^{35} +8.00000 q^{37} +(-3.00000 + 5.19615i) q^{41} +(2.00000 - 3.46410i) q^{43} +(3.00000 + 5.19615i) q^{44} +(3.00000 + 5.19615i) q^{47} -3.00000 q^{49} +(-4.00000 + 6.92820i) q^{52} +(-3.00000 - 5.19615i) q^{53} +(1.50000 - 2.59808i) q^{55} +(-4.50000 + 7.79423i) q^{59} +(3.50000 + 6.06218i) q^{61} -8.00000 q^{64} +4.00000 q^{65} +(-1.00000 - 1.73205i) q^{67} +(-4.50000 + 7.79423i) q^{71} +(2.00000 - 3.46410i) q^{73} +(1.00000 - 8.66025i) q^{76} +6.00000 q^{77} +(3.50000 - 6.06218i) q^{79} +(2.00000 + 3.46410i) q^{80} +(1.50000 + 2.59808i) q^{89} +(4.00000 + 6.92820i) q^{91} +(6.00000 - 10.3923i) q^{92} +(-4.00000 + 1.73205i) q^{95} +(5.00000 - 8.66025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + q^{5} + 4 q^{7} + 6 q^{11} + 4 q^{13} - 4 q^{16} - 7 q^{19} + 4 q^{20} - 6 q^{23} - q^{25} + 4 q^{28} + 3 q^{29} + 10 q^{31} + 2 q^{35} + 16 q^{37} - 6 q^{41} + 4 q^{43} + 6 q^{44} + 6 q^{47}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −3.50000 2.59808i −0.802955 0.596040i
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 2.00000 + 3.46410i 0.377964 + 0.654654i
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 1.73205i 0.169031 0.292770i
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 3.00000 + 5.19615i 0.452267 + 0.783349i
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) −4.00000 + 6.92820i −0.554700 + 0.960769i
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0 0
\(55\) 1.50000 2.59808i 0.202260 0.350325i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.50000 + 7.79423i −0.585850 + 1.01472i 0.408919 + 0.912571i \(0.365906\pi\)
−0.994769 + 0.102151i \(0.967427\pi\)
\(60\) 0 0
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.50000 + 7.79423i −0.534052 + 0.925005i 0.465157 + 0.885228i \(0.345998\pi\)
−0.999209 + 0.0397765i \(0.987335\pi\)
\(72\) 0 0
\(73\) 2.00000 3.46410i 0.234082 0.405442i −0.724923 0.688830i \(-0.758125\pi\)
0.959006 + 0.283387i \(0.0914581\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.00000 8.66025i 0.114708 0.993399i
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) 3.50000 6.06218i 0.393781 0.682048i −0.599164 0.800626i \(-0.704500\pi\)
0.992945 + 0.118578i \(0.0378336\pi\)
\(80\) 2.00000 + 3.46410i 0.223607 + 0.387298i
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.50000 + 2.59808i 0.159000 + 0.275396i 0.934508 0.355942i \(-0.115840\pi\)
−0.775509 + 0.631337i \(0.782506\pi\)
\(90\) 0 0
\(91\) 4.00000 + 6.92820i 0.419314 + 0.726273i
\(92\) 6.00000 10.3923i 0.625543 1.08347i
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 + 1.73205i −0.410391 + 0.177705i
\(96\) 0 0
\(97\) 5.00000 8.66025i 0.507673 0.879316i −0.492287 0.870433i \(-0.663839\pi\)
0.999961 0.00888289i \(-0.00282755\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000 1.73205i 0.100000 0.173205i
\(101\) −7.50000 12.9904i −0.746278 1.29259i −0.949595 0.313478i \(-0.898506\pi\)
0.203317 0.979113i \(-0.434828\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) −5.50000 + 9.52628i −0.526804 + 0.912452i 0.472708 + 0.881219i \(0.343277\pi\)
−0.999512 + 0.0312328i \(0.990057\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 + 6.92820i −0.377964 + 0.654654i
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 0 0
\(124\) 5.00000 + 8.66025i 0.449013 + 0.777714i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −1.00000 1.73205i −0.0887357 0.153695i 0.818241 0.574875i \(-0.194949\pi\)
−0.906977 + 0.421180i \(0.861616\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) −7.00000 5.19615i −0.606977 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) −10.0000 17.3205i −0.848189 1.46911i −0.882823 0.469706i \(-0.844360\pi\)
0.0346338 0.999400i \(-0.488974\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 + 10.3923i 0.501745 + 0.869048i
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) 0 0
\(148\) 8.00000 + 13.8564i 0.657596 + 1.13899i
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0 0
\(151\) −19.0000 −1.54620 −0.773099 0.634285i \(-0.781294\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.50000 4.33013i 0.200805 0.347804i
\(156\) 0 0
\(157\) 8.00000 13.8564i 0.638470 1.10586i −0.347299 0.937754i \(-0.612901\pi\)
0.985769 0.168107i \(-0.0537655\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 10.3923i −0.472866 0.819028i
\(162\) 0 0
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) −3.00000 5.19615i −0.232147 0.402090i 0.726293 0.687386i \(-0.241242\pi\)
−0.958440 + 0.285295i \(0.907908\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) −1.00000 1.73205i −0.0755929 0.130931i
\(176\) −6.00000 + 10.3923i −0.452267 + 0.783349i
\(177\) 0 0
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) −1.00000 1.73205i −0.0743294 0.128742i 0.826465 0.562988i \(-0.190348\pi\)
−0.900794 + 0.434246i \(0.857015\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.00000 6.92820i 0.294086 0.509372i
\(186\) 0 0
\(187\) 0 0
\(188\) −6.00000 + 10.3923i −0.437595 + 0.757937i
\(189\) 0 0
\(190\) 0 0
\(191\) 21.0000 1.51951 0.759753 0.650211i \(-0.225320\pi\)
0.759753 + 0.650211i \(0.225320\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −3.00000 5.19615i −0.214286 0.371154i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −2.50000 4.33013i −0.177220 0.306955i 0.763707 0.645563i \(-0.223377\pi\)
−0.940927 + 0.338608i \(0.890044\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.00000 + 5.19615i 0.210559 + 0.364698i
\(204\) 0 0
\(205\) 3.00000 + 5.19615i 0.209529 + 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) −16.0000 −1.10940
\(209\) −10.5000 7.79423i −0.726300 0.539138i
\(210\) 0 0
\(211\) −8.50000 + 14.7224i −0.585164 + 1.01353i 0.409691 + 0.912224i \(0.365637\pi\)
−0.994855 + 0.101310i \(0.967697\pi\)
\(212\) 6.00000 10.3923i 0.412082 0.713746i
\(213\) 0 0
\(214\) 0 0
\(215\) −2.00000 3.46410i −0.136399 0.236250i
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) 0 0
\(219\) 0 0
\(220\) 6.00000 0.404520
\(221\) 0 0
\(222\) 0 0
\(223\) 5.00000 8.66025i 0.334825 0.579934i −0.648626 0.761107i \(-0.724656\pi\)
0.983451 + 0.181173i \(0.0579895\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) −19.0000 −1.25556 −0.627778 0.778393i \(-0.716035\pi\)
−0.627778 + 0.778393i \(0.716035\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 + 20.7846i −0.786146 + 1.36165i 0.142166 + 0.989843i \(0.454593\pi\)
−0.928312 + 0.371802i \(0.878740\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) −18.0000 −1.17170
\(237\) 0 0
\(238\) 0 0
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 0 0
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −7.00000 + 12.1244i −0.448129 + 0.776182i
\(245\) −1.50000 + 2.59808i −0.0958315 + 0.165985i
\(246\) 0 0
\(247\) 2.00000 17.3205i 0.127257 1.10208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.50000 + 12.9904i 0.473396 + 0.819946i 0.999536 0.0304521i \(-0.00969471\pi\)
−0.526140 + 0.850398i \(0.676361\pi\)
\(252\) 0 0
\(253\) −9.00000 15.5885i −0.565825 0.980038i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 12.0000 + 20.7846i 0.748539 + 1.29651i 0.948523 + 0.316709i \(0.102578\pi\)
−0.199983 + 0.979799i \(0.564089\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 4.00000 + 6.92820i 0.248069 + 0.429669i
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) −13.5000 + 23.3827i −0.823110 + 1.42567i 0.0802460 + 0.996775i \(0.474429\pi\)
−0.903356 + 0.428892i \(0.858904\pi\)
\(270\) 0 0
\(271\) 12.5000 21.6506i 0.759321 1.31518i −0.183876 0.982949i \(-0.558865\pi\)
0.943197 0.332233i \(-0.107802\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.00000 15.5885i −0.536895 0.929929i −0.999069 0.0431402i \(-0.986264\pi\)
0.462174 0.886789i \(-0.347070\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) −18.0000 −1.06810
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 + 10.3923i −0.354169 + 0.613438i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 0.468165
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) 4.00000 6.92820i 0.230556 0.399335i
\(302\) 0 0
\(303\) 0 0
\(304\) 16.0000 6.92820i 0.917663 0.397360i
\(305\) 7.00000 0.400819
\(306\) 0 0
\(307\) 8.00000 13.8564i 0.456584 0.790827i −0.542194 0.840254i \(-0.682406\pi\)
0.998778 + 0.0494267i \(0.0157394\pi\)
\(308\) 6.00000 + 10.3923i 0.341882 + 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) −9.00000 15.5885i −0.505490 0.875535i −0.999980 0.00635137i \(-0.997978\pi\)
0.494489 0.869184i \(-0.335355\pi\)
\(318\) 0 0
\(319\) 4.50000 + 7.79423i 0.251952 + 0.436393i
\(320\) −4.00000 + 6.92820i −0.223607 + 0.387298i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.00000 + 10.3923i 0.330791 + 0.572946i
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) −7.00000 + 12.1244i −0.381314 + 0.660456i −0.991250 0.131995i \(-0.957862\pi\)
0.609936 + 0.792451i \(0.291195\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.0000 0.812296
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.0000 25.9808i 0.805242 1.39472i −0.110885 0.993833i \(-0.535369\pi\)
0.916127 0.400887i \(-0.131298\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 4.50000 + 7.79423i 0.238835 + 0.413675i
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 + 20.7846i −0.633336 + 1.09697i 0.353529 + 0.935423i \(0.384981\pi\)
−0.986865 + 0.161546i \(0.948352\pi\)
\(360\) 0 0
\(361\) 5.50000 + 18.1865i 0.289474 + 0.957186i
\(362\) 0 0
\(363\) 0 0
\(364\) −8.00000 + 13.8564i −0.419314 + 0.726273i
\(365\) −2.00000 3.46410i −0.104685 0.181319i
\(366\) 0 0
\(367\) 2.00000 + 3.46410i 0.104399 + 0.180825i 0.913493 0.406855i \(-0.133375\pi\)
−0.809093 + 0.587680i \(0.800041\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 0 0
\(371\) −6.00000 10.3923i −0.311504 0.539542i
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.00000 + 10.3923i −0.309016 + 0.535231i
\(378\) 0 0
\(379\) 11.0000 0.565032 0.282516 0.959263i \(-0.408831\pi\)
0.282516 + 0.959263i \(0.408831\pi\)
\(380\) −7.00000 5.19615i −0.359092 0.266557i
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) 3.00000 5.19615i 0.152894 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 20.0000 1.01535
\(389\) −13.5000 23.3827i −0.684477 1.18555i −0.973601 0.228257i \(-0.926697\pi\)
0.289124 0.957292i \(-0.406636\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.50000 6.06218i −0.176104 0.305021i
\(396\) 0 0
\(397\) −10.0000 + 17.3205i −0.501886 + 0.869291i 0.498112 + 0.867113i \(0.334027\pi\)
−0.999998 + 0.00217869i \(0.999307\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 4.50000 7.79423i 0.224719 0.389225i −0.731516 0.681824i \(-0.761187\pi\)
0.956235 + 0.292599i \(0.0945202\pi\)
\(402\) 0 0
\(403\) 10.0000 + 17.3205i 0.498135 + 0.862796i
\(404\) 15.0000 25.9808i 0.746278 1.29259i
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 6.50000 + 11.2583i 0.321404 + 0.556689i 0.980778 0.195127i \(-0.0625118\pi\)
−0.659374 + 0.751815i \(0.729178\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.00000 + 13.8564i 0.394132 + 0.682656i
\(413\) −9.00000 + 15.5885i −0.442861 + 0.767058i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) −8.50000 + 14.7224i −0.414265 + 0.717527i −0.995351 0.0963145i \(-0.969295\pi\)
0.581086 + 0.813842i \(0.302628\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.00000 + 12.1244i 0.338754 + 0.586739i
\(428\) 18.0000 + 31.1769i 0.870063 + 1.50699i
\(429\) 0 0
\(430\) 0 0
\(431\) 7.50000 + 12.9904i 0.361262 + 0.625725i 0.988169 0.153370i \(-0.0490126\pi\)
−0.626907 + 0.779094i \(0.715679\pi\)
\(432\) 0 0
\(433\) −13.0000 22.5167i −0.624740 1.08208i −0.988591 0.150624i \(-0.951872\pi\)
0.363851 0.931457i \(-0.381462\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −22.0000 −1.05361
\(437\) −3.00000 + 25.9808i −0.143509 + 1.24283i
\(438\) 0 0
\(439\) 0.500000 0.866025i 0.0238637 0.0413331i −0.853847 0.520524i \(-0.825737\pi\)
0.877711 + 0.479191i \(0.159070\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.0000 31.1769i −0.855206 1.48126i −0.876454 0.481486i \(-0.840097\pi\)
0.0212481 0.999774i \(-0.493236\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) 0 0
\(448\) −16.0000 −0.755929
\(449\) 15.0000 0.707894 0.353947 0.935266i \(-0.384839\pi\)
0.353947 + 0.935266i \(0.384839\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) −18.0000 31.1769i −0.846649 1.46644i
\(453\) 0 0
\(454\) 0 0
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −6.00000 10.3923i −0.279751 0.484544i
\(461\) −7.50000 + 12.9904i −0.349310 + 0.605022i −0.986127 0.165992i \(-0.946917\pi\)
0.636817 + 0.771015i \(0.280251\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) −12.0000 −0.557086
\(465\) 0 0
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −2.00000 3.46410i −0.0923514 0.159957i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.00000 10.3923i 0.275880 0.477839i
\(474\) 0 0
\(475\) −0.500000 + 4.33013i −0.0229416 + 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.50000 2.59808i −0.0685367 0.118709i 0.829721 0.558179i \(-0.188500\pi\)
−0.898257 + 0.439470i \(0.855166\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) 0 0
\(483\) 0 0
\(484\) −2.00000 3.46410i −0.0909091 0.157459i
\(485\) −5.00000 8.66025i −0.227038 0.393242i
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.5000 + 28.5788i −0.744635 + 1.28974i 0.205731 + 0.978609i \(0.434043\pi\)
−0.950365 + 0.311136i \(0.899290\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −10.0000 + 17.3205i −0.449013 + 0.777714i
\(497\) −9.00000 + 15.5885i −0.403705 + 0.699238i
\(498\) 0 0
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) −1.00000 1.73205i −0.0447214 0.0774597i
\(501\) 0 0
\(502\) 0 0
\(503\) −3.00000 5.19615i −0.133763 0.231685i 0.791361 0.611349i \(-0.209373\pi\)
−0.925124 + 0.379664i \(0.876040\pi\)
\(504\) 0 0
\(505\) −15.0000 −0.667491
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 3.46410i 0.0887357 0.153695i
\(509\) 9.00000 + 15.5885i 0.398918 + 0.690946i 0.993593 0.113020i \(-0.0360525\pi\)
−0.594675 + 0.803966i \(0.702719\pi\)
\(510\) 0 0
\(511\) 4.00000 6.92820i 0.176950 0.306486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.00000 6.92820i 0.176261 0.305293i
\(516\) 0 0
\(517\) 9.00000 + 15.5885i 0.395820 + 0.685580i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 11.0000 + 19.0526i 0.480996 + 0.833110i 0.999762 0.0218062i \(-0.00694167\pi\)
−0.518766 + 0.854916i \(0.673608\pi\)
\(524\) 24.0000 1.04844
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 2.00000 17.3205i 0.0867110 0.750939i
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) 9.00000 15.5885i 0.389104 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.50000 + 9.52628i 0.235594 + 0.408061i
\(546\) 0 0
\(547\) −13.0000 22.5167i −0.555840 0.962743i −0.997838 0.0657267i \(-0.979063\pi\)
0.441998 0.897016i \(-0.354270\pi\)
\(548\) 18.0000 31.1769i 0.768922 1.33181i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.50000 12.9904i 0.0639021 0.553409i
\(552\) 0 0
\(553\) 7.00000 12.1244i 0.297670 0.515580i
\(554\) 0 0
\(555\) 0 0
\(556\) 20.0000 34.6410i 0.848189 1.46911i
\(557\) 15.0000 + 25.9808i 0.635570 + 1.10084i 0.986394 + 0.164399i \(0.0525683\pi\)
−0.350824 + 0.936442i \(0.614098\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 4.00000 + 6.92820i 0.169031 + 0.292770i
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 0 0
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.00000 −0.377300 −0.188650 0.982044i \(-0.560411\pi\)
−0.188650 + 0.982044i \(0.560411\pi\)
\(570\) 0 0
\(571\) −31.0000 −1.29731 −0.648655 0.761083i \(-0.724668\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) −12.0000 + 20.7846i −0.501745 + 0.869048i
\(573\) 0 0
\(574\) 0 0
\(575\) −3.00000 + 5.19615i −0.125109 + 0.216695i
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 3.00000 + 5.19615i 0.124568 + 0.215758i
\(581\) 0 0
\(582\) 0 0
\(583\) −9.00000 15.5885i −0.372742 0.645608i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00000 5.19615i 0.123823 0.214468i −0.797449 0.603386i \(-0.793818\pi\)
0.921272 + 0.388918i \(0.127151\pi\)
\(588\) 0 0
\(589\) −17.5000 12.9904i −0.721075 0.535259i
\(590\) 0 0
\(591\) 0 0
\(592\) −16.0000 + 27.7128i −0.657596 + 1.13899i
\(593\) −9.00000 15.5885i −0.369586 0.640141i 0.619915 0.784669i \(-0.287167\pi\)
−0.989501 + 0.144528i \(0.953834\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 0 0
\(599\) 18.0000 + 31.1769i 0.735460 + 1.27385i 0.954521 + 0.298143i \(0.0963673\pi\)
−0.219061 + 0.975711i \(0.570299\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −19.0000 32.9090i −0.773099 1.33905i
\(605\) −1.00000 + 1.73205i −0.0406558 + 0.0704179i
\(606\) 0 0
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 0 0
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 + 15.5885i 0.362326 + 0.627568i 0.988343 0.152242i \(-0.0486493\pi\)
−0.626017 + 0.779809i \(0.715316\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 10.0000 0.401610
\(621\) 0 0
\(622\) 0 0
\(623\) 3.00000 + 5.19615i 0.120192 + 0.208179i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 32.0000 1.27694
\(629\) 0 0
\(630\) 0 0
\(631\) −2.50000 4.33013i −0.0995234 0.172380i 0.811964 0.583707i \(-0.198398\pi\)
−0.911487 + 0.411328i \(0.865065\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) −6.00000 10.3923i −0.237729 0.411758i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.50000 2.59808i 0.0592464 0.102618i −0.834881 0.550431i \(-0.814464\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(642\) 0 0
\(643\) −1.00000 + 1.73205i −0.0394362 + 0.0683054i −0.885070 0.465458i \(-0.845890\pi\)
0.845634 + 0.533764i \(0.179223\pi\)
\(644\) 12.0000 20.7846i 0.472866 0.819028i
\(645\) 0 0
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) −13.5000 + 23.3827i −0.529921 + 0.917851i
\(650\) 0 0
\(651\) 0 0
\(652\) −22.0000 38.1051i −0.861586 1.49231i
\(653\) −12.0000 −0.469596 −0.234798 0.972044i \(-0.575443\pi\)
−0.234798 + 0.972044i \(0.575443\pi\)
\(654\) 0 0
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) −12.0000 20.7846i −0.468521 0.811503i
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 + 31.1769i 0.701180 + 1.21448i 0.968052 + 0.250748i \(0.0806766\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(660\) 0 0
\(661\) −20.5000 35.5070i −0.797358 1.38106i −0.921331 0.388778i \(-0.872897\pi\)
0.123974 0.992286i \(-0.460436\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 + 3.46410i −0.310227 + 0.134332i
\(666\) 0 0
\(667\) 9.00000 15.5885i 0.348481 0.603587i
\(668\) 6.00000 10.3923i 0.232147 0.402090i
\(669\) 0 0
\(670\) 0 0
\(671\) 10.5000 + 18.1865i 0.405348 + 0.702083i
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −6.00000 −0.230769
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) 10.0000 17.3205i 0.383765 0.664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.0000 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 8.00000 + 13.8564i 0.304997 + 0.528271i
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 0 0
\(691\) 35.0000 1.33146 0.665731 0.746191i \(-0.268120\pi\)
0.665731 + 0.746191i \(0.268120\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 0 0
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 2.00000 3.46410i 0.0755929 0.130931i
\(701\) −15.0000 + 25.9808i −0.566542 + 0.981280i 0.430362 + 0.902656i \(0.358386\pi\)
−0.996904 + 0.0786236i \(0.974947\pi\)
\(702\) 0 0
\(703\) −28.0000 20.7846i −1.05604 0.783906i
\(704\) −24.0000 −0.904534
\(705\) 0 0
\(706\) 0 0
\(707\) −15.0000 25.9808i −0.564133 0.977107i
\(708\) 0 0
\(709\) −20.5000 35.5070i −0.769894 1.33349i −0.937620 0.347661i \(-0.886976\pi\)
0.167727 0.985834i \(-0.446357\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −15.0000 25.9808i −0.561754 0.972987i
\(714\) 0 0
\(715\) 12.0000 0.448775
\(716\) −21.0000 36.3731i −0.784807 1.35933i
\(717\) 0 0
\(718\) 0 0
\(719\) 10.5000 18.1865i 0.391584 0.678243i −0.601075 0.799193i \(-0.705261\pi\)
0.992659 + 0.120950i \(0.0385939\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 2.00000 3.46410i 0.0743294 0.128742i
\(725\) 1.50000 2.59808i 0.0557086 0.0964901i
\(726\) 0 0
\(727\) −19.0000 + 32.9090i −0.704671 + 1.22053i 0.262139 + 0.965030i \(0.415572\pi\)
−0.966810 + 0.255496i \(0.917761\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 32.0000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.00000 5.19615i −0.110506 0.191403i
\(738\) 0 0
\(739\) −5.50000 + 9.52628i −0.202321 + 0.350430i −0.949276 0.314445i \(-0.898182\pi\)
0.746955 + 0.664875i \(0.231515\pi\)
\(740\) 16.0000 0.588172
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0000 20.7846i 0.440237 0.762513i −0.557470 0.830197i \(-0.688228\pi\)
0.997707 + 0.0676840i \(0.0215610\pi\)
\(744\) 0 0
\(745\) −4.50000 7.79423i −0.164867 0.285558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) 3.50000 + 6.06218i 0.127717 + 0.221212i 0.922792 0.385299i \(-0.125902\pi\)
−0.795075 + 0.606511i \(0.792568\pi\)
\(752\) −24.0000 −0.875190
\(753\) 0 0
\(754\) 0 0
\(755\) −9.50000 + 16.4545i −0.345740 + 0.598840i
\(756\) 0 0
\(757\) −16.0000 + 27.7128i −0.581530 + 1.00724i 0.413768 + 0.910382i \(0.364212\pi\)
−0.995298 + 0.0968571i \(0.969121\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) −11.0000 + 19.0526i −0.398227 + 0.689749i
\(764\) 21.0000 + 36.3731i 0.759753 + 1.31593i
\(765\) 0 0
\(766\) 0 0
\(767\) −36.0000 −1.29988
\(768\) 0 0
\(769\) −20.5000 35.5070i −0.739249 1.28042i −0.952834 0.303492i \(-0.901847\pi\)
0.213585 0.976924i \(-0.431486\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −28.0000 −1.00774
\(773\) −9.00000 15.5885i −0.323708 0.560678i 0.657542 0.753418i \(-0.271596\pi\)
−0.981250 + 0.192740i \(0.938263\pi\)
\(774\) 0 0
\(775\) −2.50000 4.33013i −0.0898027 0.155543i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 10.3923i 0.859889 0.372343i
\(780\) 0 0
\(781\) −13.5000 + 23.3827i −0.483068 + 0.836698i
\(782\) 0 0
\(783\) 0 0
\(784\) 6.00000 10.3923i 0.214286 0.371154i
\(785\) −8.00000 13.8564i −0.285532 0.494556i
\(786\) 0 0
\(787\) −46.0000 −1.63972 −0.819861 0.572562i \(-0.805950\pi\)
−0.819861 + 0.572562i \(0.805950\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) −14.0000 + 24.2487i −0.497155 + 0.861097i
\(794\) 0 0
\(795\) 0 0
\(796\) 5.00000 8.66025i 0.177220 0.306955i
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.00000 10.3923i 0.211735 0.366736i
\(804\) 0 0
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.0000 1.58212 0.791058 0.611741i \(-0.209531\pi\)
0.791058 + 0.611741i \(0.209531\pi\)
\(810\) 0 0
\(811\) 3.50000 + 6.06218i 0.122902 + 0.212872i 0.920911 0.389774i \(-0.127447\pi\)
−0.798009 + 0.602645i \(0.794113\pi\)
\(812\) −6.00000 + 10.3923i −0.210559 + 0.364698i
\(813\) 0 0
\(814\) 0 0
\(815\) −11.0000 + 19.0526i −0.385313 + 0.667382i
\(816\) 0 0
\(817\) −16.0000 + 6.92820i −0.559769 + 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) −6.00000 + 10.3923i −0.209529 + 0.362915i
\(821\) 13.5000 + 23.3827i 0.471153 + 0.816061i 0.999456 0.0329950i \(-0.0105045\pi\)
−0.528302 + 0.849056i \(0.677171\pi\)
\(822\) 0 0
\(823\) 11.0000 + 19.0526i 0.383436 + 0.664130i 0.991551 0.129719i \(-0.0414074\pi\)
−0.608115 + 0.793849i \(0.708074\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.0000 25.9808i −0.521601 0.903440i −0.999684 0.0251251i \(-0.992002\pi\)
0.478083 0.878315i \(-0.341332\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16.0000 27.7128i −0.554700 0.960769i
\(833\) 0 0
\(834\) 0 0
\(835\) −6.00000 −0.207639
\(836\) 3.00000 25.9808i 0.103757 0.898563i
\(837\) 0 0
\(838\) 0 0
\(839\) −12.0000 + 20.7846i −0.414286 + 0.717564i −0.995353 0.0962912i \(-0.969302\pi\)
0.581067 + 0.813856i \(0.302635\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) −34.0000 −1.17033
\(845\) 1.50000 + 2.59808i 0.0516016 + 0.0893765i
\(846\) 0 0
\(847\) −4.00000 −0.137442
\(848\) 24.0000 0.824163
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 41.5692i −0.822709 1.42497i
\(852\) 0 0
\(853\) −7.00000 + 12.1244i −0.239675 + 0.415130i −0.960621 0.277862i \(-0.910374\pi\)
0.720946 + 0.692992i \(0.243708\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.0000 + 41.5692i −0.819824 + 1.41998i 0.0859870 + 0.996296i \(0.472596\pi\)
−0.905811 + 0.423681i \(0.860738\pi\)
\(858\) 0 0
\(859\) 21.5000 + 37.2391i 0.733571 + 1.27058i 0.955348 + 0.295484i \(0.0954809\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(860\) 4.00000 6.92820i 0.136399 0.236250i
\(861\) 0 0
\(862\) 0 0
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 0 0
\(865\) −3.00000 5.19615i −0.102003 0.176674i
\(866\) 0 0
\(867\) 0 0
\(868\) 10.0000 + 17.3205i 0.339422 + 0.587896i
\(869\) 10.5000 18.1865i 0.356188 0.616936i
\(870\) 0 0
\(871\) 4.00000 6.92820i 0.135535 0.234753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.00000 −0.0676123
\(876\) 0 0
\(877\) −25.0000 + 43.3013i −0.844190 + 1.46218i 0.0421327 + 0.999112i \(0.486585\pi\)
−0.886323 + 0.463068i \(0.846749\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 6.00000 + 10.3923i 0.202260 + 0.350325i
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 0 0
\(883\) −22.0000 38.1051i −0.740359 1.28234i −0.952332 0.305064i \(-0.901322\pi\)
0.211973 0.977276i \(-0.432011\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.00000 10.3923i −0.201460 0.348939i 0.747539 0.664218i \(-0.231235\pi\)
−0.948999 + 0.315279i \(0.897902\pi\)
\(888\) 0 0
\(889\) −2.00000 3.46410i −0.0670778 0.116182i
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 3.00000 25.9808i 0.100391 0.869413i
\(894\) 0 0
\(895\) −10.5000 + 18.1865i −0.350976 + 0.607909i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.50000 + 12.9904i 0.250139 + 0.433253i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) 24.0000 + 41.5692i 0.796468 + 1.37952i
\(909\) 0 0
\(910\) 0 0
\(911\) 45.0000 1.49092 0.745458 0.666552i \(-0.232231\pi\)
0.745458 + 0.666552i \(0.232231\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −19.0000 32.9090i −0.627778 1.08734i
\(917\) 12.0000 20.7846i 0.396275 0.686368i
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −36.0000 −1.18495
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.5000 49.3634i 0.935055 1.61956i 0.160518 0.987033i \(-0.448683\pi\)
0.774536 0.632529i \(-0.217983\pi\)
\(930\) 0 0
\(931\) 10.5000 + 7.79423i 0.344124 + 0.255446i
\(932\) −48.0000 −1.57229
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17.0000 + 29.4449i 0.555366 + 0.961922i 0.997875 + 0.0651578i \(0.0207551\pi\)
−0.442509 + 0.896764i \(0.645912\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 6.00000 + 10.3923i 0.195698 + 0.338960i
\(941\) −1.50000 2.59808i −0.0488986 0.0846949i 0.840540 0.541749i \(-0.182238\pi\)
−0.889439 + 0.457054i \(0.848904\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) −18.0000 31.1769i −0.585850 1.01472i
\(945\) 0 0
\(946\) 0 0
\(947\) −15.0000 + 25.9808i −0.487435 + 0.844261i −0.999896 0.0144491i \(-0.995401\pi\)
0.512461 + 0.858710i \(0.328734\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.0000 + 41.5692i −0.777436 + 1.34656i 0.155979 + 0.987760i \(0.450147\pi\)
−0.933415 + 0.358799i \(0.883186\pi\)
\(954\) 0 0
\(955\) 10.5000 18.1865i 0.339772 0.588502i
\(956\) −15.0000 25.9808i −0.485135 0.840278i
\(957\) 0 0
\(958\) 0 0
\(959\) −18.0000 31.1769i −0.581250 1.00676i
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 17.0000 29.4449i 0.547533 0.948355i
\(965\) 7.00000 + 12.1244i 0.225338 + 0.390297i
\(966\) 0 0
\(967\) 5.00000 8.66025i 0.160789 0.278495i −0.774363 0.632742i \(-0.781929\pi\)
0.935152 + 0.354247i \(0.115263\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.0000 51.9615i 0.962746 1.66752i 0.247193 0.968966i \(-0.420492\pi\)
0.715553 0.698558i \(-0.246175\pi\)
\(972\) 0 0
\(973\) −20.0000 34.6410i −0.641171 1.11054i
\(974\) 0 0
\(975\) 0 0
\(976\) −28.0000 −0.896258
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 4.50000 + 7.79423i 0.143821 + 0.249105i
\(980\) −6.00000 −0.191663
\(981\) 0 0
\(982\) 0 0
\(983\) −9.00000 + 15.5885i −0.287055 + 0.497195i −0.973106 0.230360i \(-0.926010\pi\)
0.686050 + 0.727554i \(0.259343\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 32.0000 13.8564i 1.01806 0.440831i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −16.0000 + 27.7128i −0.508257 + 0.880327i 0.491698 + 0.870766i \(0.336377\pi\)
−0.999954 + 0.00956046i \(0.996957\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.00000 −0.158511
\(996\) 0 0
\(997\) −25.0000 43.3013i −0.791758 1.37136i −0.924878 0.380265i \(-0.875833\pi\)
0.133120 0.991100i \(-0.457501\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.k.c.676.1 2
3.2 odd 2 285.2.i.b.106.1 2
19.7 even 3 inner 855.2.k.c.406.1 2
57.8 even 6 5415.2.a.f.1.1 1
57.11 odd 6 5415.2.a.g.1.1 1
57.26 odd 6 285.2.i.b.121.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.i.b.106.1 2 3.2 odd 2
285.2.i.b.121.1 yes 2 57.26 odd 6
855.2.k.c.406.1 2 19.7 even 3 inner
855.2.k.c.676.1 2 1.1 even 1 trivial
5415.2.a.f.1.1 1 57.8 even 6
5415.2.a.g.1.1 1 57.11 odd 6